code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowercase (pl.LightningModule ): """simple docstring""" def __init__( self , lowerCAmelCase__ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : Optional[int] = model SCREAMING_SNAKE_CASE_ : List[str] = 2 SCREAMING_SNAKE_CASE_ : int = nn.Linear(self.model.config.hidden_size , self.num_labels ) def UpperCamelCase__ ( self ): """simple docstring""" pass def a__ ( A__, A__, A__ ): # load longformer model from model identifier SCREAMING_SNAKE_CASE_ : List[str] = LongformerModel.from_pretrained(A__ ) SCREAMING_SNAKE_CASE_ : int = LightningModel(A__ ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.load(A__, map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model SCREAMING_SNAKE_CASE_ : Optional[Any] = LongformerForQuestionAnswering.from_pretrained(A__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(A__ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": lowerCAmelCase__ : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ : Optional[int] =parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
101
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase_ = ksize + 1 lowerCamelCase_ = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__UpperCamelCase ): for x in range(__UpperCamelCase ): # distance from center lowerCamelCase_ = x - ksize // 2 lowerCamelCase_ = y - ksize // 2 # degree to radiant lowerCamelCase_ = theta / 1_80 * np.pi lowerCamelCase_ = np.cos(_theta ) lowerCamelCase_ = np.sin(_theta ) # get kernel x lowerCamelCase_ = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase_ = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A_ = imread("../image_data/lena.jpg") # turn image in gray scale value A_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A_ = out / out.max() * 255 A_ = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
42
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __magic_name__ : List[Any] = ["""small""", """medium""", """large"""] __magic_name__ : int = """lm_head.decoder.weight""" __magic_name__ : Any = """lm_head.weight""" def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = torch.load(SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = d.pop(SCREAMING_SNAKE_CASE ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": __magic_name__ : Any = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) __magic_name__ : Union[str, Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: __magic_name__ : Any = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __magic_name__ : Optional[int] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
102
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ['transformers', 'torch', 'note_seq'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
42
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def snake_case ( lowerCAmelCase_=None ) -> int: if subparsers is not None: _snake_case = subparsers.add_parser('''test''' ) else: _snake_case = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=lowerCAmelCase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case ( lowerCAmelCase_ ) -> int: _snake_case = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _snake_case = script_name else: _snake_case = f"""--config_file={args.config_file} {script_name}""" _snake_case = ['''accelerate-launch'''] + test_args.split() _snake_case = execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def snake_case ( ) -> List[Any]: _snake_case = test_command_parser() _snake_case = parser.parse_args() test_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
103
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCamelCase( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) lowerCamelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vqvae_and_unet lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 ) lowerCamelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = self.dummy_unet_condition lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = torch.rand((1, 1, 10) ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = torch_device lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
42
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> None: warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
104
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _UpperCamelCase ( __UpperCamelCase = 8 ) -> str: lowerCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCamelCase ) lowerCamelCase_ = i // 3 lowerCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCamelCase_ = ( chars_incl + random(__UpperCamelCase ,quotient + remainder ) + random(__UpperCamelCase ,__UpperCamelCase ) + random(__UpperCamelCase ,__UpperCamelCase ) ) lowerCamelCase_ = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 8 ) -> bool: if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCamelCase_ = any(char in ascii_uppercase for char in password ) lowerCamelCase_ = any(char in ascii_lowercase for char in password ) lowerCamelCase_ = any(char in digits for char in password ) lowerCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _UpperCamelCase ( ) -> Optional[int]: lowerCamelCase_ = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCamelCase_ = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' ,password_generator(__UpperCamelCase ) ) print( 'Alternative Password generated:' ,alternative_password_generator(__UpperCamelCase ,__UpperCamelCase ) ,) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
42
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=sys.maxsize ): SCREAMING_SNAKE_CASE_ : str = 'bilinear' SCREAMING_SNAKE_CASE_ : List[str] = max_size SCREAMING_SNAKE_CASE_ : Dict = short_edge_length def __call__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = [] for img in imgs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = img.shape[:2] # later: provide list and randomly choose index for resize SCREAMING_SNAKE_CASE_ : Optional[Any] = np.random.randint(self.short_edge_length[0] ,self.short_edge_length[1] + 1 ) if size == 0: return img SCREAMING_SNAKE_CASE_ : str = size * 1.0 / min(snake_case__ ,snake_case__ ) if h < w: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = size, scale * w else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = scale * h, size if max(snake_case__ ,snake_case__ ) > self.max_size: SCREAMING_SNAKE_CASE_ : Tuple = self.max_size * 1.0 / max(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = newh * scale SCREAMING_SNAKE_CASE_ : Tuple = neww * scale SCREAMING_SNAKE_CASE_ : List[str] = int(neww + 0.5 ) SCREAMING_SNAKE_CASE_ : List[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: SCREAMING_SNAKE_CASE_ : Optional[Any] = Image.fromarray(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = pil_image.resize((neww, newh) ,PILImageResampling.BILINEAR ) SCREAMING_SNAKE_CASE_ : Dict = np.asarray(snake_case__ ) else: SCREAMING_SNAKE_CASE_ : List[Any] = img.permute(2 ,0 ,1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.functional.interpolate( snake_case__ ,(newh, neww) ,mode=self.interp_method ,align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase_ : def __init__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] ,cfg.INPUT.MAX_SIZE_TEST ) SCREAMING_SNAKE_CASE_ : str = cfg.INPUT.FORMAT SCREAMING_SNAKE_CASE_ : Dict = cfg.SIZE_DIVISIBILITY SCREAMING_SNAKE_CASE_ : Dict = cfg.PAD_VALUE SCREAMING_SNAKE_CASE_ : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST SCREAMING_SNAKE_CASE_ : str = cfg.MODEL.DEVICE SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) SCREAMING_SNAKE_CASE_ : Tuple = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = [im.shape[-2:] for im in images] SCREAMING_SNAKE_CASE_ : Optional[int] = [ nn.functional.pad( snake_case__ ,[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] ,value=self.pad_value ,) for size, im in zip(snake_case__ ,snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self ,snake_case__ ,snake_case__=False ): with torch.no_grad(): if not isinstance(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] ,torch.Tensor ): images.insert(snake_case__ ,images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] ,torch.Tensor ): images.insert( snake_case__ ,torch.as_tensor(img_tensorize(images.pop(snake_case__ ) ,input_format=self.input_format ) ) .to(self.device ) .float() ,) # resize smallest edge SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([im.shape[:2] for im in images] ) SCREAMING_SNAKE_CASE_ : Dict = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic SCREAMING_SNAKE_CASE_ : Any = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad SCREAMING_SNAKE_CASE_ : List[Any] = torch.true_divide(snake_case__ ,snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : str ) -> Any: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple[int, int] ) -> List[Any]: """simple docstring""" assert torch.isfinite(lowerCamelCase_ ).all(), "Box tensor contains infinite or NaN!" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 1].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 2].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 3].clamp_(min=0 , max=lowerCamelCase_ )
105
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase_ = test_metrics @require_cpu def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase( self ) -> Tuple: '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) lowerCamelCase_ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
42
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowerCAmelCase__ ( _lowerCamelCase ): def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __UpperCamelCase ( self : List[Any] ) -> str: A = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} return Dataset.from_dict(__UpperCamelCase ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: A = self._create_example_records() A = Dataset.from_list(__UpperCamelCase ) self.assertListEqual(dset.column_names , ['col_1', 'col_2'] ) for i, r in enumerate(__UpperCamelCase ): self.assertDictEqual(__UpperCamelCase , example_records[i] ) def __UpperCamelCase ( self : Tuple ) -> int: A = self._create_example_records() A = Dataset.from_list(__UpperCamelCase ) A = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: # checks what happens with missing columns A = [{'col_1': 1}, {'col_2': 'x'}] A = Dataset.from_list(__UpperCamelCase ) self.assertDictEqual(dset[0] , {'col_1': 1} ) self.assertDictEqual(dset[1] , {'col_1': None} ) # NB: first record is used for columns def __UpperCamelCase ( self : Dict ) -> List[str]: # checks if the type can be inferred from the second record A = [{'col_1': []}, {'col_1': [1, 2]}] A = Dataset.from_list(__UpperCamelCase ) self.assertEqual(dset.info.features['col_1'] , Sequence(Value('int64' ) ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: A = Dataset.from_list([] ) self.assertEqual(len(__UpperCamelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
106
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: if hor == 1_28: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 64, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') lowerCamelCase_ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase_ = model.state_dict() lowerCamelCase_ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> Tuple: lowerCamelCase_ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } lowerCamelCase_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) lowerCamelCase_ = model lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = CLIPTokenizer __lowerCAmelCase = CLIPTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = {} __lowerCAmelCase = False def __UpperCAmelCase ( self : Dict ) -> Tuple: super().setUp() # fmt: off _A = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _A = dict(zip(UpperCamelCase__, range(len(UpperCamelCase__ ) ) ) ) _A = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] _A = {'unk_token': '<unk>'} _A = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) _A = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase__ ) ) def __UpperCAmelCase ( self : List[Any], **UpperCamelCase__ : Optional[Any] ) -> int: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def __UpperCAmelCase ( self : str, **UpperCamelCase__ : List[str] ) -> Tuple: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : str ) -> Tuple: _A = 'lower newer' _A = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: _A = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) _A = 'lower newer' _A = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] _A = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) _A = tokens + [tokenizer.unk_token] _A = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ), UpperCamelCase__ ) @require_ftfy def __UpperCAmelCase ( self : int ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _A = self.tokenizer_class.from_pretrained(UpperCamelCase__, **UpperCamelCase__ ) _A = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__, **UpperCamelCase__ ) _A = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' _A = tokenizer_s.tokenize(UpperCamelCase__ ) _A = tokenizer_r.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A = 'xa\u0303y' + ' ' + 'x\xe3y' _A = tokenizer_s.tokenize(UpperCamelCase__ ) _A = tokenizer_r.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) # Test that the tokenization is identical on unicode of space type _A = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A = tokenizer_s.tokenize(UpperCamelCase__ ) _A = tokenizer_r.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) # Test that the tokenization is identical on unicode of line break type _A = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A = tokenizer_s.tokenize(UpperCamelCase__ ) _A = tokenizer_r.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _A = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _A = f'{text_of_1_token} {text_of_1_token}' _A = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__, use_fast=UpperCamelCase__, ) _A = tokenizer_r(UpperCamelCase__, return_offsets_mapping=UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0], (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1], (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )), ) _A = f' {text}' _A = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__, use_fast=UpperCamelCase__, ) _A = tokenizer_r(UpperCamelCase__, return_offsets_mapping=UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )), ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(UpperCamelCase__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def __UpperCAmelCase ( self : Any ) -> List[Any]: super().test_tokenization_python_rust_equals() def __UpperCAmelCase ( self : str ) -> str: # CLIP always lower cases letters pass
107
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ = 250_004 A_ = 250_020 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = MBartTokenizer SCREAMING_SNAKE_CASE_ = MBartTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase( self ) -> int: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'facebook/mbart-large-en-ro' SCREAMING_SNAKE_CASE_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE_ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def UpperCamelCase( cls ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase_ = 1 return cls def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) lowerCamelCase_ = targets['input_ids'] lowerCamelCase_ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
42
0
from __future__ import annotations from typing import Any def _SCREAMING_SNAKE_CASE ( __snake_case ) -> None: create_state_space_tree(__snake_case , [] , 0 ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> None: if index == len(__snake_case ): print(__snake_case ) return create_state_space_tree(__snake_case , __snake_case , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__snake_case , __snake_case , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __a: list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
108
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'ylacombe/bark-small' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = 'en_speaker_1' lowerCamelCase_ = 'This is a test string' lowerCamelCase_ = 'speaker_embeddings_path.json' lowerCamelCase_ = 'speaker_embeddings' def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase_ = 35 lowerCamelCase_ = 2 lowerCamelCase_ = 8 lowerCamelCase_ = { 'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase_ = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string ) lowerCamelCase_ = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
42
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example a = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example a = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __magic_name__ ( __UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for i in range(len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __SCREAMING_SNAKE_CASE = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__UpperCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__UpperCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__UpperCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __SCREAMING_SNAKE_CASE = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__UpperCAmelCase ) return next_generation def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[Image.Image]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for _ in range(__UpperCAmelCase ): # Create output image __SCREAMING_SNAKE_CASE = Image.new("""RGB""" , (len(cells[0] ), len(__UpperCAmelCase )) ) __SCREAMING_SNAKE_CASE = img.load() # Save cells to image for x in range(len(__UpperCAmelCase ) ): for y in range(len(cells[0] ) ): __SCREAMING_SNAKE_CASE = 255 - cells[y][x] * 255 __SCREAMING_SNAKE_CASE = (colour, colour, colour) # Save image images.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = new_generation(__UpperCAmelCase ) return images if __name__ == "__main__": a = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
109
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} A_ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } A_ = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase ,__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowerCamelCase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ ,lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowerCamelCase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = ' '.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = word return word def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) return bpe_tokens def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = ''.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) lowerCamelCase_ = 0 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs)
42
0
"""simple docstring""" UpperCamelCase__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase ( _snake_case ): # Make sure the supplied data is a bytes-like object if not isinstance(_snake_case ,_snake_case ): UpperCAmelCase__ : Tuple = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_snake_case ) UpperCAmelCase__ : int = ''.join(bin(_snake_case )[2:].zfill(8 ) for byte in data ) UpperCAmelCase__ : Optional[int] = len(_snake_case ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase__ : Any = b'=' * ((6 - len(_snake_case ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_snake_case ) % 6) else: UpperCAmelCase__ : List[str] = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] ,2 )] for index in range(0 ,len(_snake_case ) ,6 ) ).encode() + padding ) def lowerCamelCase ( _snake_case ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_snake_case ,_snake_case ) and not isinstance(_snake_case ,_snake_case ): UpperCAmelCase__ : List[str] = ( 'argument should be a bytes-like object or ASCII string, ' F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_snake_case ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_snake_case ,_snake_case ): try: UpperCAmelCase__ : Tuple = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) UpperCAmelCase__ : Dict = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_snake_case ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase__ : Tuple = encoded_data[:-padding] UpperCAmelCase__ : List[str] = ''.join( bin(B64_CHARSET.index(_snake_case ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase__ : Tuple = ''.join( bin(B64_CHARSET.index(_snake_case ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase__ : Tuple = [ int(binary_stream[index : index + 8] ,2 ) for index in range(0 ,len(_snake_case ) ,8 ) ] return bytes(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
110
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } A_ = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } A_ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = RealmTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = do_lower_case def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = PaddingStrategy.MAX_LENGTH lowerCamelCase_ = text lowerCamelCase_ = kwargs.pop('text_pair' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = kwargs.pop('return_tensors' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(SCREAMING_SNAKE_CASE_ ): if batch_text_pair is not None: lowerCamelCase_ = batch_text_pair[idx] else: lowerCamelCase_ = None lowerCamelCase_ = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = encoded_candidates.get('input_ids' ) lowerCamelCase_ = encoded_candidates.get('attention_mask' ) lowerCamelCase_ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(SCREAMING_SNAKE_CASE_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(SCREAMING_SNAKE_CASE_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {key: item for key, item in output_data.items() if len(SCREAMING_SNAKE_CASE_ ) != 0} return BatchEncoding(SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
42
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' a_ : Any =AudioLDMPipeline a_ : Dict =TEXT_TO_AUDIO_PARAMS a_ : Any =TEXT_TO_AUDIO_BATCH_PARAMS a_ : Any =frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(32, 64) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , ) _snake_case : Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) _snake_case : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case : Any = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , projection_dim=32 , ) _snake_case : int = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) _snake_case : Dict = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=77 ) _snake_case : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_60_00 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , ) _snake_case : List[str] = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : List[Any]=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): _snake_case : str = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: _snake_case : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : Union[str, Any] = self.get_dummy_components() _snake_case : str = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) _snake_case : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) _snake_case : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 2_56 _snake_case : Optional[int] = audio[:10] _snake_case : Optional[Any] = np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.get_dummy_components() _snake_case : str = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) _snake_case : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) _snake_case : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) _snake_case : Dict = 3 * [inputs['prompt']] # forward _snake_case : int = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = output.audios[0] _snake_case : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[Any] = 3 * [inputs.pop('prompt' )] _snake_case : Optional[Any] = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) _snake_case : Optional[Any] = text_inputs['input_ids'].to(SCREAMING_SNAKE_CASE_ ) _snake_case : str = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) _snake_case : List[str] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _snake_case : Dict = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) _snake_case : Dict = prompt_embeds # forward _snake_case : Any = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) _snake_case : int = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Tuple = self.get_dummy_components() _snake_case : str = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) _snake_case : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) _snake_case : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) _snake_case : str = 3 * ['this is a negative prompt'] _snake_case : Optional[Any] = negative_prompt _snake_case : Optional[int] = 3 * [inputs['prompt']] # forward _snake_case : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[int] = output.audios[0] _snake_case : Any = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) _snake_case : str = 3 * [inputs.pop('prompt' )] _snake_case : Optional[int] = [] for p in [prompt, negative_prompt]: _snake_case : int = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) _snake_case : int = text_inputs['input_ids'].to(SCREAMING_SNAKE_CASE_ ) _snake_case : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) _snake_case : Optional[int] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _snake_case : str = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) embeds.append(SCREAMING_SNAKE_CASE_ ) _snake_case , _snake_case : Dict = embeds # forward _snake_case : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : Any = self.get_dummy_components() _snake_case : Dict = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) _snake_case : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) _snake_case : int = 'egg cracking' _snake_case : Tuple = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ ) _snake_case : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 2_56 _snake_case : Union[str, Any] = audio[:10] _snake_case : Any = np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : Any = self.get_dummy_components() _snake_case : Union[str, Any] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) _snake_case : Dict = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : Any = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) _snake_case : str = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts _snake_case : Tuple = 2 _snake_case : Dict = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt _snake_case : Optional[int] = 2 _snake_case : Union[str, Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts _snake_case : int = 2 _snake_case : List[Any] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : Union[str, Any] = self.get_dummy_components() _snake_case : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) _snake_case : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = audioldm_pipe.vocoder.config.sampling_rate _snake_case : List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[int] = audioldm_pipe(audio_length_in_s=0.0_16 , **SCREAMING_SNAKE_CASE_ ) _snake_case : str = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.0_16 _snake_case : List[Any] = audioldm_pipe(audio_length_in_s=0.0_32 , **SCREAMING_SNAKE_CASE_ ) _snake_case : List[str] = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.0_32 def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.get_dummy_components() _snake_case : List[str] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[int] = ['hey'] _snake_case : Union[str, Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) _snake_case : Any = output.audios.shape assert audio_shape == (1, 2_56) _snake_case : List[str] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _snake_case : Optional[Any] = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) _snake_case : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) _snake_case : Optional[int] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[Any]="cpu" , UpperCamelCase : Optional[int]=torch.floataa , UpperCamelCase : str=0 ): '''simple docstring''' _snake_case : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) _snake_case : Dict = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 1_28, 16) ) _snake_case : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) _snake_case : int = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) _snake_case : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : Union[str, Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ ) _snake_case : List[Any] = 25 _snake_case : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_19_20 _snake_case : int = audio[7_72_30:7_72_40] _snake_case : int = np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) _snake_case : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) _snake_case : Union[str, Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _snake_case : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : Dict = self.get_inputs(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_19_20 _snake_case : Optional[Any] = audio[2_77_80:2_77_90] _snake_case : Optional[int] = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) _snake_case : str = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
411
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __UpperCamelCase ) -> bool: lowerCamelCase_ = str(__UpperCamelCase ) return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set('123456789' ) def _UpperCamelCase ( ) -> int | None: for base_num in range(99_99 ,49_99 ,-1 ): lowerCamelCase_ = 10_00_02 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate for base_num in range(3_33 ,99 ,-1 ): lowerCamelCase_ = 1_00_20_03 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
42
0
"""simple docstring""" def a__ ( snake_case__ = 1_00_00_00 ) -> int: lowerCamelCase = 1 lowerCamelCase = 1 lowerCamelCase = {1: 1} for inputa in range(2 , __UpperCamelCase ): lowerCamelCase = 0 lowerCamelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase = counter if counter > pre_counter: lowerCamelCase = inputa lowerCamelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
543
'''simple docstring''' A_ = "Input must be a string of 8 numbers plus letter" A_ = "TRWAGMYFPDXBNJZSQVHLCKE" def _UpperCamelCase ( __UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) lowerCamelCase_ = spanish_id.replace('-' ,'' ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: lowerCamelCase_ = int(spanish_id_clean[0:8] ) lowerCamelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
42
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int]=10_24 ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [], [] SCREAMING_SNAKE_CASE_ = list(zip(__UpperCamelCase , __UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = sorted_examples[0] def is_too_big(__UpperCAmelCase : Optional[Any] ): return tok(__UpperCamelCase , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE_ = new_src + ' ' + src SCREAMING_SNAKE_CASE_ = new_tgt + ' ' + tgt if is_too_big(__UpperCamelCase ) or is_too_big(__UpperCamelCase ): # cant fit, finalize example finished_src.append(__UpperCamelCase ) finished_tgt.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__UpperCamelCase ) finished_tgt.append(__UpperCamelCase ) return finished_src, finished_tgt def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = Path(__UpperCamelCase ) save_path.mkdir(exist_ok=__UpperCamelCase ) for split in ["train"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = data_dir / f"{split}.source", data_dir / f"{split}.target" SCREAMING_SNAKE_CASE_ = [x.rstrip() for x in Path(__UpperCamelCase ).open().readlines()] SCREAMING_SNAKE_CASE_ = [x.rstrip() for x in Path(__UpperCamelCase ).open().readlines()] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pack_examples(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) print(f"packed {split} split from {len(__UpperCamelCase )} examples -> {len(__UpperCamelCase )}." ) Path(save_path / f"{split}.source" ).open('w' ).write('\n'.join(__UpperCamelCase ) ) Path(save_path / f"{split}.target" ).open('w' ).write('\n'.join(__UpperCamelCase ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = data_dir / f"{split}.source", data_dir / f"{split}.target" shutil.copyfile(__UpperCamelCase , save_path / f"{split}.source" ) shutil.copyfile(__UpperCamelCase , save_path / f"{split}.target" ) def UpperCAmelCase_ ( ) -> List[str]: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=__UpperCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=__UpperCamelCase , default=1_28 ) parser.add_argument('--data_dir' , type=__UpperCamelCase ) parser.add_argument('--save_path' , type=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__UpperCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
31
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = {'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase_ = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowerCamelCase_ = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def UpperCamelCase( self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。 こんばんは、㔺界。' lowerCamelCase_ = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowerCamelCase_ = 'こんにちは、、、、世界。こんばんは、、、、世界。' lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。こんばんは、世界。😀' lowerCamelCase_ = tokenizer.encode(prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode('' , prefix_text=prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = [1] + [0] * (len_prefix + len_text + 1) lowerCamelCase_ = [1] * (len_prefix + len_text + 1) + [0] lowerCamelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCamelCase_ = tokenizer(prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = tokenizer.encode('あンいワ' ) lowerCamelCase_ = tokenizer.encode('' , prefix_text='あンいワ' ) lowerCamelCase_ = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off lowerCamelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowerCamelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCamelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass
42
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Dict = GPTSanJapaneseTokenizer _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Any = {"do_clean_text": False, "add_prefix_space": False} def A ( self : Dict ): '''simple docstring''' super().setUp() # fmt: off _snake_case = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on _snake_case = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def A ( self : Optional[int] , **lowercase : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def A ( self : Dict , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = 'こんにちは、世界。 \nこんばんは、㔺界。😀' _snake_case = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def A ( self : int , lowercase : Dict ): '''simple docstring''' _snake_case , _snake_case = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) _snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) _snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def A ( self : List[Any] ): '''simple docstring''' pass # TODO add if relevant def A ( self : Union[str, Any] ): '''simple docstring''' pass # TODO add if relevant def A ( self : List[Any] ): '''simple docstring''' pass # TODO add if relevant def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizer() # Testing tokenization _snake_case = 'こんにちは、世界。 こんばんは、㔺界。' _snake_case = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] _snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens _snake_case = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _snake_case = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens _snake_case = tokens + [tokenizer.unk_token] _snake_case = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _snake_case = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A ( self : Dict ): '''simple docstring''' _snake_case = self.get_tokenizer() # Testing tokenization _snake_case = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' _snake_case = 'こんにちは、、、、世界。こんばんは、、、、世界。' _snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) _snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def A ( self : str ): '''simple docstring''' _snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization _snake_case = 'こんにちは、世界。' _snake_case = 'こんばんは、㔺界。😀' _snake_case = 'こんにちは、世界。こんばんは、世界。😀' _snake_case = tokenizer.encode(prefix_text + input_text ) _snake_case = tokenizer.encode('' , prefix_text=prefix_text + input_text ) _snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) _snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) _snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) _snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def A ( self : Any ): '''simple docstring''' _snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization _snake_case = 'こんにちは、世界。' _snake_case = 'こんばんは、㔺界。😀' _snake_case = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 _snake_case = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 _snake_case = [1] + [0] * (len_prefix + len_text + 1) _snake_case = [1] * (len_prefix + len_text + 1) + [0] _snake_case = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _snake_case = tokenizer(prefix_text + input_text ).token_type_ids _snake_case = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids _snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def A ( self : Tuple ): '''simple docstring''' _snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) _snake_case = tokenizer.encode('あンいワ' ) _snake_case = tokenizer.encode('' , prefix_text='あンいワ' ) _snake_case = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A ( self : List[str] ): '''simple docstring''' _snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) _snake_case = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] _snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) _snake_case = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off _snake_case = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] _snake_case = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _snake_case = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def A ( self : int ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' pass
686
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> List[str]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) # get prompt text embeddings lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCamelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = text_embeddings.shape lowerCamelCase_ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = 42 if negative_prompt is None: lowerCamelCase_ = [''] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowerCamelCase_ = negative_prompt lowerCamelCase_ = text_input_ids.shape[-1] lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ = uncond_embeddings.shape[1] lowerCamelCase_ = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase_ = latents_reference.to(self.device ) lowerCamelCase_ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCamelCase_ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCamelCase_ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCamelCase_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCamelCase_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCamelCase_ = 0 if dx < 0 else dx lowerCamelCase_ = 0 if dy < 0 else dy lowerCamelCase_ = max(-dx , 0 ) lowerCamelCase_ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCamelCase_ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual lowerCamelCase_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase_ ,lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 1 / 0.18_215 * latents lowerCamelCase_ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCamelCase_ = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='pt' ).to( self.device ) lowerCamelCase_ ,lowerCamelCase_ = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCamelCase_ = None if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
42
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCamelCase = random.Random() def A ( lowercase__ : List[str] , lowercase__ : List[str]=1.0 , lowercase__ : List[Any]=None , lowercase__ : str=None ) -> Union[str, Any]: if rng is None: UpperCamelCase__ :Dict = global_rng UpperCamelCase__ :List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int=7 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=20_00 , lowerCamelCase__ :List[Any]=10 , lowerCamelCase__ :Dict=1_60 , lowerCamelCase__ :List[Any]=8 , lowerCamelCase__ :List[str]=0.0 , lowerCamelCase__ :str=40_00 , lowerCamelCase__ :Any=False , lowerCamelCase__ :Any=True , ): UpperCamelCase__ :int = parent UpperCamelCase__ :Optional[Any] = batch_size UpperCamelCase__ :str = min_seq_length UpperCamelCase__ :Optional[Any] = max_seq_length UpperCamelCase__ :List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ :List[Any] = padding_value UpperCamelCase__ :List[str] = sampling_rate UpperCamelCase__ :List[Any] = return_attention_mask UpperCamelCase__ :Union[str, Any] = do_normalize UpperCamelCase__ :int = feature_size UpperCamelCase__ :Any = chunk_length UpperCamelCase__ :Optional[Any] = hop_length def __a ( self :str ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __a ( self :Optional[Any] , lowerCamelCase__ :Any=False , lowerCamelCase__ :Any=False ): def _flatten(lowerCamelCase__ :str ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: UpperCamelCase__ :Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ :Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase__ :int = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = WhisperFeatureExtractor if is_speech_available() else None def __a ( self :str ): UpperCamelCase__ :Dict = WhisperFeatureExtractionTester(self ) def __a ( self :Optional[int] ): UpperCamelCase__ :str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :Any = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE_ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Tuple = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :List[str] = feat_extract_first.to_dict() UpperCamelCase__ :Union[str, Any] = feat_extract_second.to_dict() UpperCamelCase__ :Tuple = feat_extract_first.mel_filters UpperCamelCase__ :Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a ( self :Dict ): UpperCamelCase__ :Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :Any = os.path.join(SCREAMING_SNAKE_CASE_ , """feat_extract.json""" ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :List[Any] = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Optional[Any] = feat_extract_first.to_dict() UpperCamelCase__ :List[str] = feat_extract_second.to_dict() UpperCamelCase__ :Tuple = feat_extract_first.mel_filters UpperCamelCase__ :Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ :str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCamelCase__ :int = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ :List[Any] = feature_extractor(SCREAMING_SNAKE_CASE_ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ :Any = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features UpperCamelCase__ :int = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # Test batched UpperCamelCase__ :Any = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ).input_features UpperCamelCase__ :str = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ :Optional[int] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] UpperCamelCase__ :str = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Tuple = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ).input_features UpperCamelCase__ :Optional[int] = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # Test truncation required UpperCamelCase__ :Optional[int] = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] UpperCamelCase__ :int = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] UpperCamelCase__ :Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] UpperCamelCase__ :Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs_truncated] UpperCamelCase__ :Union[str, Any] = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ).input_features UpperCamelCase__ :Tuple = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def __a ( self :Union[str, Any] ): import torch UpperCamelCase__ :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ :List[Any] = np.random.rand(1_00 , 32 ).astype(np.floataa ) UpperCamelCase__ :Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ :str = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ :str = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __a ( self :Union[str, Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech UpperCamelCase__ :Optional[int] = ds.sort("""id""" ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def __a ( self :List[str] ): UpperCamelCase__ :str = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on UpperCamelCase__ :List[Any] = self._load_datasamples(1 ) UpperCamelCase__ :List[Any] = WhisperFeatureExtractor() UpperCamelCase__ :Dict = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) def __a ( self :int ): UpperCamelCase__ :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ :Dict = self._load_datasamples(1 )[0] UpperCamelCase__ :Optional[int] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue UpperCamelCase__ :Optional[int] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=SCREAMING_SNAKE_CASE_ )[0] self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_ ) - 1 ) < 1e-3 ) )
45
'''simple docstring''' import pprint import requests A_ = "https://zenquotes.io/api" def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": A_ = random_quotes() pprint.pprint(response)
42
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class snake_case_ : '''simple docstring''' def UpperCAmelCase ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int ) -> Any: '''simple docstring''' return None class snake_case_ : '''simple docstring''' def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : int ) -> Union[str, Any]: '''simple docstring''' return None class snake_case_ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE_ , 'tf' , 12 , **SCREAMING_SNAKE_CASE_ ) @require_torch @slow def UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE_ , 'pt' , 12 , **SCREAMING_SNAKE_CASE_ ) @require_torch @slow def UpperCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' from transformers import BertModel __lowercase = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) vocab_file.flush() __lowercase = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __lowercase = BertModel(BertConfig(vocab_size=len(SCREAMING_SNAKE_CASE_ ) ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) self._test_export(SCREAMING_SNAKE_CASE_ , 'pt' , 12 , SCREAMING_SNAKE_CASE_ ) @require_tf @slow def UpperCAmelCase ( self : int ) -> int: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowercase = self._test_export(SCREAMING_SNAKE_CASE_ , 'tf' , 12 , **SCREAMING_SNAKE_CASE_ ) __lowercase = quantize(Path(SCREAMING_SNAKE_CASE_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def UpperCAmelCase ( self : Any ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowercase = self._test_export(SCREAMING_SNAKE_CASE_ , 'pt' , 12 , **SCREAMING_SNAKE_CASE_ ) __lowercase = quantize(SCREAMING_SNAKE_CASE_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def UpperCAmelCase ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str=None , **__lowerCamelCase : str ) -> Optional[Any]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: __lowercase = Path(SCREAMING_SNAKE_CASE_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return path except Exception as e: self.fail(SCREAMING_SNAKE_CASE_ ) @require_torch @require_tokenizers @slow def UpperCAmelCase ( self : int ) -> Tuple: '''simple docstring''' from transformers import BertModel __lowercase = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __lowercase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'pt' ) @require_tf @require_tokenizers @slow def UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' from transformers import TFBertModel __lowercase = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __lowercase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'tf' ) def UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple ) -> Dict: '''simple docstring''' __lowercase = FeatureExtractionPipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowercase = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] __lowercase , __lowercase , __lowercase , __lowercase = infer_shapes(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Assert all variables are present self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , SCREAMING_SNAKE_CASE_ ) self.assertSequenceEqual(variable_names[3:] , SCREAMING_SNAKE_CASE_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' __lowercase = ['input_ids', 'attention_mask', 'token_type_ids'] __lowercase = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} __lowercase , __lowercase = ensure_valid_input(FuncContiguousArgs() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(SCREAMING_SNAKE_CASE_ ) , set(SCREAMING_SNAKE_CASE_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(SCREAMING_SNAKE_CASE_ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __lowercase , __lowercase = ensure_valid_input(FuncNonContiguousArgs() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' __lowercase = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
375
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=33 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> int: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = EsmModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = EsmForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = EsmForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = () SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = EsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = EsmModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCamelCase_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCamelCase_ = create_position_ids_from_input_ids(SCREAMING_SNAKE_CASE_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.empty(2 , 4 , 30 ) lowerCamelCase_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCamelCase_ = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCamelCase_ = embeddings.create_position_ids_from_inputs_embeds(SCREAMING_SNAKE_CASE_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass @require_torch class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase_ = 33 lowerCamelCase_ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> Tuple: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. lowerCamelCase_ = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
42
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _A: int = logging.get_logger(__name__) _A: Any = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off _A: Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] _A: str = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class UpperCAmelCase ( UpperCAmelCase__ ): _A : List[Any] = """whisper""" _A : List[Any] = ["""past_key_values"""] _A : Tuple = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __A=51_865 , __A=80 , __A=6 , __A=4 , __A=6 , __A=4 , __A=1_536 , __A=1_536 , __A=0.0 , __A=0.0 , __A=50_257 , __A=True , __A=True , __A="gelu" , __A=256 , __A=0.0 , __A=0.0 , __A=0.0 , __A=0.0_2 , __A=False , __A=1_500 , __A=448 , __A=50_256 , __A=50_256 , __A=50_256 , __A=None , __A=[220, 50_256] , __A=False , __A=256 , __A=False , __A=0.0_5 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=0 , __A=7 , **__A , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = num_mel_bins __UpperCAmelCase = d_model __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase = max_source_positions __UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCAmelCase = classifier_proj_size __UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase = apply_spec_augment __UpperCAmelCase = mask_time_prob __UpperCAmelCase = mask_time_length __UpperCAmelCase = mask_time_min_masks __UpperCAmelCase = mask_feature_prob __UpperCAmelCase = mask_feature_length __UpperCAmelCase = mask_feature_min_masks __UpperCAmelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class UpperCAmelCase ( UpperCAmelCase__ ): @property def __lowerCamelCase ( self ): __UpperCAmelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __UpperCAmelCase = {0: 'batch'} else: __UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='inputs' ) return common_inputs def __lowerCamelCase ( self , __A , __A = -1 , __A = -1 , __A = False , __A = None , __A = 22_050 , __A = 5.0 , __A = 220 , ): __UpperCAmelCase = OrderedDict() __UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCAmelCase = encoder_inputs['input_features'].shape[2] __UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = encoder_inputs.pop('input_features' ) __UpperCAmelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __UpperCAmelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def __lowerCamelCase ( self ): return 1E-3
126
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
42
0
def __lowerCAmelCase ( _UpperCamelCase ) -> bool: '''simple docstring''' if num < 0: return False lowerCamelCase__: Any = num lowerCamelCase__: Tuple = 0 while num > 0: lowerCamelCase__: Union[str, Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
306
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'xlm-prophetnet' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 30522 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 128 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = num_encoder_layers lowerCamelCase_ = num_encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = num_decoder_layers lowerCamelCase_ = num_decoder_attention_heads lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = init_std # Normal(0, this parameter) lowerCamelCase_ = activation_function # parameters for xlmprophetnet lowerCamelCase_ = ngram lowerCamelCase_ = num_buckets lowerCamelCase_ = relative_max_distance lowerCamelCase_ = disable_ngram_loss lowerCamelCase_ = eps # 3 Types of Dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = dropout lowerCamelCase_ = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
42
0
import os def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" with open(os.path.dirname(__UpperCamelCase ) + "/grid.txt" ) as f: lowerCamelCase__: Dict =[] # noqa: E741 for _ in range(20 ): l.append([int(__UpperCamelCase ) for x in f.readline().split()] ) lowerCamelCase__: Union[str, Any] =0 # right for i in range(20 ): for j in range(17 ): lowerCamelCase__: int =l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCamelCase__: Optional[int] =temp # down for i in range(17 ): for j in range(20 ): lowerCamelCase__: str =l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCamelCase__: Optional[int] =temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCamelCase__: Any =l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCamelCase__: int =temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCamelCase__: Union[str, Any] =l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCamelCase__: int =temp return maximum if __name__ == "__main__": print(solution())
59
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float: lowerCamelCase_ = x lowerCamelCase_ = y for step in range(__UpperCamelCase ): # noqa: B007 lowerCamelCase_ = a * a - b * b + x lowerCamelCase_ = 2 * a * b + y lowerCamelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( __UpperCamelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _UpperCamelCase ( __UpperCamelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase ,1 ,1 ) ) def _UpperCamelCase ( __UpperCamelCase = 8_00 ,__UpperCamelCase = 6_00 ,__UpperCamelCase = -0.6 ,__UpperCamelCase = 0 ,__UpperCamelCase = 3.2 ,__UpperCamelCase = 50 ,__UpperCamelCase = True ,) -> Image.Image: lowerCamelCase_ = Image.new('RGB' ,(image_width, image_height) ) lowerCamelCase_ = img.load() # loop through the image-coordinates for image_x in range(__UpperCamelCase ): for image_y in range(__UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase_ = figure_width / image_width * image_height lowerCamelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase_ = get_distance(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase_ = get_color_coded_rgb(__UpperCamelCase ) else: lowerCamelCase_ = get_black_and_white_rgb(__UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure A_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
42
0
'''simple docstring''' def a__ ( UpperCamelCase_ : int, UpperCamelCase_ : int ): UpperCAmelCase__ :Any = '''''' for i in table: res += inp[i - 1] return res def a__ ( UpperCamelCase_ : List[Any] ): return data[1:] + data[0] def a__ ( UpperCamelCase_ : List[Any], UpperCamelCase_ : str ): UpperCAmelCase__ :Tuple = '''''' for i in range(len(__UpperCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a__ ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict ): UpperCAmelCase__ :Dict = int('''0b''' + data[0] + data[-1], 2 ) UpperCAmelCase__ :List[str] = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def a__ ( UpperCamelCase_ : Dict, UpperCamelCase_ : List[Any], UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Dict ): UpperCAmelCase__ :Optional[int] = message[:4] UpperCAmelCase__ :Optional[int] = message[4:] UpperCAmelCase__ :List[Any] = apply_table(__UpperCamelCase, __UpperCamelCase ) UpperCAmelCase__ :Union[str, Any] = xor(__UpperCamelCase, __UpperCamelCase ) UpperCAmelCase__ :Dict = apply_sbox(__UpperCamelCase, temp[:4] ) # noqa: E741 UpperCAmelCase__ :List[Any] = apply_sbox(__UpperCamelCase, temp[4:] ) UpperCAmelCase__ :List[Any] = '''0''' * (2 - len(__UpperCamelCase )) + l # noqa: E741 UpperCAmelCase__ :Optional[int] = '''0''' * (2 - len(__UpperCamelCase )) + r UpperCAmelCase__ :Optional[Any] = apply_table(l + r, __UpperCamelCase ) UpperCAmelCase__ :Any = xor(__UpperCamelCase, __UpperCamelCase ) return temp + right if __name__ == "__main__": __lowerCamelCase = input('''Enter 10 bit key: ''') __lowerCamelCase = input('''Enter 8 bit message: ''') __lowerCamelCase = [6, 3, 7, 4, 8, 5, 10, 9] __lowerCamelCase = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __lowerCamelCase = [2, 4, 3, 1] __lowerCamelCase = [2, 6, 3, 1, 4, 8, 5, 7] __lowerCamelCase = [4, 1, 3, 5, 7, 2, 8, 6] __lowerCamelCase = [4, 1, 2, 3, 2, 3, 4, 1] __lowerCamelCase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __lowerCamelCase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __lowerCamelCase = apply_table(key, paa_table) __lowerCamelCase = temp[:5] __lowerCamelCase = temp[5:] __lowerCamelCase = left_shift(left) __lowerCamelCase = left_shift(right) __lowerCamelCase = apply_table(left + right, pa_table) __lowerCamelCase = left_shift(left) __lowerCamelCase = left_shift(right) __lowerCamelCase = left_shift(left) __lowerCamelCase = left_shift(right) __lowerCamelCase = apply_table(left + right, pa_table) # encryption __lowerCamelCase = apply_table(message, IP) __lowerCamelCase = function(expansion, sa, sa, keya, temp) __lowerCamelCase = temp[4:] + temp[:4] __lowerCamelCase = function(expansion, sa, sa, keya, temp) __lowerCamelCase = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption __lowerCamelCase = apply_table(CT, IP) __lowerCamelCase = function(expansion, sa, sa, keya, temp) __lowerCamelCase = temp[4:] + temp[:4] __lowerCamelCase = function(expansion, sa, sa, keya, temp) __lowerCamelCase = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
467
'''simple docstring''' from math import isclose, sqrt def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> tuple[float, float, float]: lowerCamelCase_ = point_y / 4 / point_x lowerCamelCase_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCamelCase_ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCamelCase_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCamelCase_ = outgoing_gradient**2 + 4 lowerCamelCase_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCamelCase_ = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 lowerCamelCase_ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCamelCase_ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCamelCase_ = x_minus if isclose(__UpperCamelCase ,__UpperCamelCase ) else x_plus lowerCamelCase_ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _UpperCamelCase ( __UpperCamelCase = 1.4 ,__UpperCamelCase = -9.6 ) -> int: lowerCamelCase_ = 0 lowerCamelCase_ = first_x_coord lowerCamelCase_ = first_y_coord lowerCamelCase_ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = next_point(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
42
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase ='ylacombe/bark-small' __lowercase =tempfile.mkdtemp() __lowercase ='en_speaker_1' __lowercase ='This is a test string' __lowercase ='speaker_embeddings_path.json' __lowercase ='speaker_embeddings' def __lowerCamelCase ( self : Dict , **_lowerCAmelCase : Any): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_) def __lowerCamelCase ( self : str): '''simple docstring''' shutil.rmtree(self.tmpdirname) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.get_tokenizer() __lowercase =BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_) processor.save_pretrained(self.tmpdirname) __lowercase =BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowercase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __lowercase =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowercase =3_5 __lowercase =2 __lowercase =8 __lowercase ={ 'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len)), 'fine_prompt': np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset __lowercase =processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_) __lowercase =inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([])).tolist()) # test loading voice preset from npz file __lowercase =os.path.join(self.tmpdirname , 'file.npz') np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) __lowercase =processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_) __lowercase =inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([])).tolist()) # test loading voice preset from the hub __lowercase =processor(text=self.input_string , voice_preset=self.voice_preset) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.get_tokenizer() __lowercase =BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_) __lowercase =processor(text=self.input_string) __lowercase =tokenizer( self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
474
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis lowerCamelCase_ = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] lowerCamelCase_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__UpperCamelCase ,1 ): if n < _p: # then we have our last prime to check lowerCamelCase_ = primes[:idx] break lowerCamelCase_ ,lowerCamelCase_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase_ = False for r in range(__UpperCamelCase ): lowerCamelCase_ = pow(__UpperCamelCase ,d * 2**r ,__UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _UpperCamelCase ( ) -> None: assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
42
0
import sys def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> Optional[Any]: _snake_case : Optional[Any] = len(__UpperCamelCase ) _snake_case : Any = [[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )] _snake_case : Union[str, Any] = [[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )] for chain_length in range(2 , __UpperCamelCase ): for a in range(1 , n - chain_length + 1 ): _snake_case : Optional[Any] = a + chain_length - 1 _snake_case : Union[str, Any] = sys.maxsize for c in range(__UpperCamelCase , __UpperCamelCase ): _snake_case : List[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _snake_case : Union[str, Any] = cost _snake_case : Union[str, Any] = c return matrix, sol def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: str , lowerCAmelCase: Tuple )-> Optional[int]: if i == j: print('A' + str(__UpperCamelCase ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__UpperCamelCase , __UpperCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__UpperCamelCase , optimal_solution[i][j] + 1 , __UpperCamelCase ) print(')' , end=' ' ) def lowerCamelCase_ ( )-> Optional[int]: _snake_case : Union[str, Any] = [30, 35, 15, 5, 10, 20, 25] _snake_case : Dict = len(__UpperCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _snake_case , _snake_case : Optional[Any] = matrix_chain_order(__UpperCamelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__UpperCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
411
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ = 16 A_ = 32 def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 16 ,__UpperCamelCase = "bert-base-cased" ) -> List[Any]: lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = load_dataset('glue' ,'mrpc' ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets['train'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCamelCase_ = DataLoader( tokenized_datasets['validation'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: model.eval() lowerCamelCase_ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: lowerCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase ,references=__UpperCamelCase ,) lowerCamelCase_ = metric.compute() return eval_metric["accuracy"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]: # Initialize accelerator lowerCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config['lr'] lowerCamelCase_ = int(config['num_epochs'] ) lowerCamelCase_ = int(config['seed'] ) lowerCamelCase_ = int(config['batch_size'] ) lowerCamelCase_ = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCamelCase_ = 1 lowerCamelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCamelCase_ = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ = 0 lowerCamelCase_ = evaluate.load('glue' ,'mrpc' ) lowerCamelCase_ = num_epochs if args.partial_train_epoch is not None: lowerCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase_ = args.resume_from_checkpoint.split('epoch_' )[1] lowerCamelCase_ = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase_ = int(__UpperCamelCase ) + 1 lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) accelerator.print('resumed checkpoint performance:' ,__UpperCamelCase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,f'''state_{starting_epoch-1}.json''' ) ,'r' ) as f: lowerCamelCase_ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase_ = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.loss lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase_ = f'''epoch_{epoch}''' lowerCamelCase_ = os.path.join(args.output_dir ,__UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = accuracy lowerCamelCase_ = lr_scheduler.get_lr()[0] lowerCamelCase_ = optimizer.param_groups[0]['lr'] lowerCamelCase_ = epoch lowerCamelCase_ = overall_step accelerator.print(f'''epoch {epoch}:''' ,__UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f'''state_{epoch}.json''' ) ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> str: lowerCamelCase_ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=__UpperCamelCase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__UpperCamelCase ,) parser.add_argument( '--output_dir' ,type=__UpperCamelCase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=__UpperCamelCase ,default=2 ,help='Number of train epochs.' ,) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
42
0
"""simple docstring""" from __future__ import annotations import numpy as np def a__ ( snake_case__ ) -> Tuple: return np.maximum(0 , __UpperCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
543
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase_ = ksize + 1 lowerCamelCase_ = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__UpperCamelCase ): for x in range(__UpperCamelCase ): # distance from center lowerCamelCase_ = x - ksize // 2 lowerCamelCase_ = y - ksize // 2 # degree to radiant lowerCamelCase_ = theta / 1_80 * np.pi lowerCamelCase_ = np.cos(_theta ) lowerCamelCase_ = np.sin(_theta ) # get kernel x lowerCamelCase_ = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase_ = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A_ = imread("../image_data/lena.jpg") # turn image in gray scale value A_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A_ = out / out.max() * 255 A_ = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
42
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' lowercase_ = ViTImageProcessor if is_vision_available() else None @property def lowerCAmelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = (3, 32, 128) SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE_ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on SCREAMING_SNAKE_CASE_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) SCREAMING_SNAKE_CASE_ = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : int , **_lowerCAmelCase : Any ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : Any , **_lowerCAmelCase : Dict ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) SCREAMING_SNAKE_CASE_ = Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) return image_input def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = 'test' SCREAMING_SNAKE_CASE_ = processor(text=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = 'test' SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.char_decode(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = [seq.replace(' ' , '' ) for seq in decoded_tok] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.randn(1 , 27 , 38 ) SCREAMING_SNAKE_CASE_ = torch.randn(1 , 27 , 50_257 ) SCREAMING_SNAKE_CASE_ = torch.randn(1 , 27 , 30_522 ) SCREAMING_SNAKE_CASE_ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ['transformers', 'torch', 'note_seq'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
42
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : List[Any] = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) _lowerCamelCase : Tuple = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) _lowerCamelCase : str = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) _lowerCamelCase : Dict = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) _lowerCamelCase : int = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) _lowerCamelCase : Any = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) _lowerCamelCase : List[str] = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) _lowerCamelCase : List[Any] = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) _lowerCamelCase : List[str] = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) _lowerCamelCase : str = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) _lowerCamelCase : Tuple = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) _lowerCamelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : Tuple = FLAX_MODEL_MAPPING _lowerCamelCase : int = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : str = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : Any = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : Optional[int] = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase : Dict = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase : List[Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : List[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : Tuple = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase : Any = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : Tuple = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : Any = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
686
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCamelCase( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) lowerCamelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vqvae_and_unet lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 ) lowerCamelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = self.dummy_unet_condition lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = torch.rand((1, 1, 10) ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = torch_device lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
42
0
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def __a ( lowerCamelCase__ :int ): UpperCamelCase__ :Tuple = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[int] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Optional[Any] ): if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) UpperCamelCase__ :List[Any] = kwargs.pop("""main_process_only""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Dict = kwargs.pop("""in_order""" , SCREAMING_SNAKE_CASE_ ) if self.isEnabledFor(SCREAMING_SNAKE_CASE_ ): if self._should_log(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ , UpperCamelCase__ :Any = self.process(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.logger.log(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif in_order: UpperCamelCase__ :Any = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = self.process(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.logger.log(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) state.wait_for_everyone() def A ( lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] = None ) -> Optional[int]: if log_level is None: UpperCamelCase__ :List[str] = os.environ.get("""ACCELERATE_LOG_LEVEL""" , __UpperCamelCase ) UpperCamelCase__ :List[str] = logging.getLogger(__UpperCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__UpperCamelCase , {} )
45
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _UpperCamelCase ( __UpperCamelCase = 8 ) -> str: lowerCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCamelCase ) lowerCamelCase_ = i // 3 lowerCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCamelCase_ = ( chars_incl + random(__UpperCamelCase ,quotient + remainder ) + random(__UpperCamelCase ,__UpperCamelCase ) + random(__UpperCamelCase ,__UpperCamelCase ) ) lowerCamelCase_ = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 8 ) -> bool: if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCamelCase_ = any(char in ascii_uppercase for char in password ) lowerCamelCase_ = any(char in ascii_lowercase for char in password ) lowerCamelCase_ = any(char in digits for char in password ) lowerCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _UpperCamelCase ( ) -> Optional[int]: lowerCamelCase_ = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCamelCase_ = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' ,password_generator(__UpperCamelCase ) ) print( 'Alternative Password generated:' ,alternative_password_generator(__UpperCamelCase ,__UpperCamelCase ) ,) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
42
0
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration SCREAMING_SNAKE_CASE_ : Optional[int] = '''facebook/wmt19-en-de''' SCREAMING_SNAKE_CASE_ : Optional[int] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model SCREAMING_SNAKE_CASE_ : Tuple = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) SCREAMING_SNAKE_CASE_ : int = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer(['''Making tiny model'''], return_tensors='''pt''') SCREAMING_SNAKE_CASE_ : str = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save SCREAMING_SNAKE_CASE_ : str = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
375
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase_ = test_metrics @require_cpu def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase( self ) -> Tuple: '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) lowerCamelCase_ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
42
0
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A: List[Any] = logging.get_logger(__name__) _A: Union[str, Any] = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class UpperCAmelCase ( UpperCAmelCase__ ): _A : Optional[int] = """xlm-prophetnet""" _A : Union[str, Any] = ["""past_key_values"""] _A : Optional[int] = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self , __A = 0.1 , __A = "gelu" , __A = 30_522 , __A = 1_024 , __A = 4_096 , __A = 12 , __A = 16 , __A = 4_096 , __A = 12 , __A = 16 , __A = 0.1 , __A = 0.1 , __A = 512 , __A = 0.0_2 , __A = True , __A = True , __A = 0 , __A = 2 , __A = 32 , __A = 128 , __A = False , __A = 0.0 , __A = True , __A = 0 , __A = 1 , __A = 2 , **__A , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = num_encoder_layers __UpperCAmelCase = num_encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = num_decoder_layers __UpperCAmelCase = num_decoder_attention_heads __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = init_std # Normal(0, this parameter) __UpperCAmelCase = activation_function # parameters for xlmprophetnet __UpperCAmelCase = ngram __UpperCAmelCase = num_buckets __UpperCAmelCase = relative_max_distance __UpperCAmelCase = disable_ngram_loss __UpperCAmelCase = eps # 3 Types of Dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = dropout __UpperCAmelCase = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @property def __lowerCamelCase ( self ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __lowerCamelCase ( self , __A ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
126
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: if hor == 1_28: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 64, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') lowerCamelCase_ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase_ = model.state_dict() lowerCamelCase_ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> Tuple: lowerCamelCase_ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } lowerCamelCase_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) lowerCamelCase_ = model lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
0
from collections.abc import Sequence from queue import Queue class lowerCamelCase__ : def __init__( self : Dict , __a : List[str] , __a : Optional[int] , __a : Optional[Any] , __a : Tuple=None , __a : Dict=None ): '''simple docstring''' lowerCamelCase__: List[Any] = start lowerCamelCase__: str = end lowerCamelCase__: Optional[int] = val lowerCamelCase__: Union[str, Any] = (start + end) // 2 lowerCamelCase__: Optional[int] = left lowerCamelCase__: Dict = right def __repr__( self : Optional[int] ): '''simple docstring''' return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class lowerCamelCase__ : def __init__( self : str , __a : str , __a : List[str] ): '''simple docstring''' lowerCamelCase__: List[Any] = collection lowerCamelCase__: Dict = function if self.collection: lowerCamelCase__: Any = self._build_tree(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) def lowerCamelCase_ ( self : Dict , __a : Union[str, Any] , __a : Optional[Any] ): '''simple docstring''' self._update_tree(self.root , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : List[str] , __a : Optional[int] , __a : List[str] ): '''simple docstring''' return self._query_range(self.root , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Tuple , __a : List[str] , __a : List[str] ): '''simple docstring''' if start == end: return SegmentTreeNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.collection[start] ) lowerCamelCase__: Optional[int] = (start + end) // 2 lowerCamelCase__: Dict = self._build_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: List[str] = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE_ ) return SegmentTreeNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int] , __a : Dict ): '''simple docstring''' if node.start == i and node.end == i: lowerCamelCase__: Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: self._update_tree(node.right , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: str = self.fn(node.left.val , node.right.val ) def lowerCamelCase_ ( self : Optional[int] , __a : Dict , __a : Optional[Any] , __a : int ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , SCREAMING_SNAKE_CASE_ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE_ ) , ) else: # range in right child tree return self._query_range(node.right , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' if self.root is not None: lowerCamelCase__: Optional[Any] = Queue() queue.put(self.root ) while not queue.empty(): lowerCamelCase__: Optional[int] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('*' * 50) _lowercase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
306
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ = 250_004 A_ = 250_020 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = MBartTokenizer SCREAMING_SNAKE_CASE_ = MBartTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase( self ) -> int: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'facebook/mbart-large-en-ro' SCREAMING_SNAKE_CASE_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE_ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def UpperCamelCase( cls ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase_ = 1 return cls def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) lowerCamelCase_ = targets['input_ids'] lowerCamelCase_ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
42
0
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __A = 10 def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int: """simple docstring""" for i in range(__UpperCamelCase , __UpperCamelCase ): if array[i] == target: return i return -1 def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" lowerCamelCase__: Dict =0 lowerCamelCase__: str =len(__UpperCamelCase ) while left <= right: if right - left < precision: return lin_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase__: Any =(left + right) // 3 + 1 lowerCamelCase__: Tuple =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCamelCase__: Union[str, Any] =one_third - 1 elif array[two_third] < target: lowerCamelCase__: Union[str, Any] =two_third + 1 else: lowerCamelCase__: Union[str, Any] =one_third + 1 lowerCamelCase__: List[str] =two_third - 1 else: return -1 def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase__: Dict =(left + right) // 3 + 1 lowerCamelCase__: int =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__UpperCamelCase , one_third - 1 , __UpperCamelCase , __UpperCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __UpperCamelCase , __UpperCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __A = input("Enter numbers separated by comma:\n").strip() __A = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __A = int(input("Enter the number to be found in the list:\n").strip()) __A = ite_ternary_search(collection, target) __A = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'Iterative search: {target} found at positions: {resulta}') print(f'Recursive search: {target} found at positions: {resulta}') else: print("Not found")
59
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'ylacombe/bark-small' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = 'en_speaker_1' lowerCamelCase_ = 'This is a test string' lowerCamelCase_ = 'speaker_embeddings_path.json' lowerCamelCase_ = 'speaker_embeddings' def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase_ = 35 lowerCamelCase_ = 2 lowerCamelCase_ = 8 lowerCamelCase_ = { 'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase_ = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string ) lowerCamelCase_ = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
42
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCAmelCase ( UpperCAmelCase__ ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : Dict , __lowerCamelCase : List[str]=5_0_2_6_5 , __lowerCamelCase : int=1_0_2_4 , __lowerCamelCase : List[Any]=1_2 , __lowerCamelCase : List[Any]=1_6 , __lowerCamelCase : Optional[int]=4_0_9_6 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : Tuple=5_1_2 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : int=True , __lowerCamelCase : Tuple=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=2 , **__lowerCamelCase : int , ): UpperCAmelCase__ :str = vocab_size UpperCAmelCase__ :int = d_model UpperCAmelCase__ :Optional[int] = decoder_layers UpperCAmelCase__ :List[str] = decoder_attention_heads UpperCAmelCase__ :str = decoder_ffn_dim UpperCAmelCase__ :str = activation_function UpperCAmelCase__ :List[Any] = max_position_embeddings UpperCAmelCase__ :List[str] = dropout UpperCAmelCase__ :List[str] = attention_dropout UpperCAmelCase__ :str = activation_dropout UpperCAmelCase__ :List[Any] = init_std UpperCAmelCase__ :Tuple = decoder_layerdrop UpperCAmelCase__ :int = use_cache UpperCAmelCase__ :List[str] = scale_embedding UpperCAmelCase__ :Dict = use_learned_position_embeddings UpperCAmelCase__ :List[str] = layernorm_embedding super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
467
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} A_ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } A_ = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase ,__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowerCamelCase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ ,lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowerCamelCase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = ' '.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = word return word def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) return bpe_tokens def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = ''.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) lowerCamelCase_ = 0 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs)
42
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
474
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } A_ = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } A_ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = RealmTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = do_lower_case def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = PaddingStrategy.MAX_LENGTH lowerCamelCase_ = text lowerCamelCase_ = kwargs.pop('text_pair' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = kwargs.pop('return_tensors' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(SCREAMING_SNAKE_CASE_ ): if batch_text_pair is not None: lowerCamelCase_ = batch_text_pair[idx] else: lowerCamelCase_ = None lowerCamelCase_ = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = encoded_candidates.get('input_ids' ) lowerCamelCase_ = encoded_candidates.get('attention_mask' ) lowerCamelCase_ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(SCREAMING_SNAKE_CASE_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(SCREAMING_SNAKE_CASE_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {key: item for key, item in output_data.items() if len(SCREAMING_SNAKE_CASE_ ) != 0} return BatchEncoding(SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
42
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Tuple = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Any = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) _snake_case : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : str = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _snake_case : List[str] = DDPMScheduler() _snake_case : Optional[int] = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) _snake_case : str = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) _snake_case : str = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 ) _snake_case : Tuple = output.audios[0] _snake_case : int = output.images[0] _snake_case : List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) _snake_case : str = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[int] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _snake_case : Any = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] _snake_case : Union[str, Any] = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] _snake_case : Dict = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _snake_case : Union[str, Any] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _snake_case : str = DDIMScheduler() _snake_case : List[str] = self.dummy_vqvae_and_unet _snake_case : Union[str, Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) _snake_case : Optional[int] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _snake_case : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) _snake_case : List[str] = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 ) _snake_case : int = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _snake_case : str = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] _snake_case : Dict = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _snake_case : Optional[int] = self.dummy_unet_condition _snake_case : Optional[int] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) _snake_case : List[str] = torch.rand((1, 1, 10) ) _snake_case : Any = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ ) _snake_case : List[Any] = output.images[0] _snake_case : int = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] _snake_case : Tuple = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Any = torch_device _snake_case : List[Any] = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) _snake_case : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) _snake_case : Optional[int] = pipe(generator=SCREAMING_SNAKE_CASE_ ) _snake_case : Union[str, Any] = output.audios[0] _snake_case : List[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _snake_case : Optional[int] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] _snake_case : str = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
411
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __UpperCamelCase ) -> bool: lowerCamelCase_ = str(__UpperCamelCase ) return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set('123456789' ) def _UpperCamelCase ( ) -> int | None: for base_num in range(99_99 ,49_99 ,-1 ): lowerCamelCase_ = 10_00_02 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate for base_num in range(3_33 ,99 ,-1 ): lowerCamelCase_ = 1_00_20_03 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
42
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __magic_name__ : '''simple docstring''' @staticmethod def _lowerCAmelCase ( *_a , **_a ): """simple docstring""" pass def a__ ( snake_case__ ) -> List[Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCAmelCase : str = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = pipeline( """document-question-answering""" , model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowerCamelCase = INVOICE_URL lowerCamelCase = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , """""" ) ) ) lowerCamelCase = """What is the placebo?""" lowerCamelCase = [ { """image""": load_image(SCREAMING_SNAKE_CASE_ ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = dqa_pipeline(SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ {"""score""": ANY(SCREAMING_SNAKE_CASE_ ), """answer""": ANY(SCREAMING_SNAKE_CASE_ ), """start""": ANY(SCREAMING_SNAKE_CASE_ ), """end""": ANY(SCREAMING_SNAKE_CASE_ )}, {"""score""": ANY(SCREAMING_SNAKE_CASE_ ), """answer""": ANY(SCREAMING_SNAKE_CASE_ ), """start""": ANY(SCREAMING_SNAKE_CASE_ ), """end""": ANY(SCREAMING_SNAKE_CASE_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) lowerCamelCase = INVOICE_URL lowerCamelCase = """How many cats are there?""" lowerCamelCase = [ {"""score""": 0.0_001, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.0_001, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] lowerCamelCase = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , SCREAMING_SNAKE_CASE_ ) lowerCamelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , SCREAMING_SNAKE_CASE_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCamelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCamelCase = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) # We can optionnally pass directly the words and bounding boxes lowerCamelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , words=SCREAMING_SNAKE_CASE_ , boxes=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) lowerCamelCase = INVOICE_URL lowerCamelCase = """What is the invoice number?""" lowerCamelCase = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowerCamelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowerCamelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) lowerCamelCase = INVOICE_URL lowerCamelCase = """What is the invoice number?""" lowerCamelCase = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowerCamelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowerCamelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=SCREAMING_SNAKE_CASE_ ) lowerCamelCase = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=SCREAMING_SNAKE_CASE_ , revision="""3dc6de3""" , ) lowerCamelCase = INVOICE_URL lowerCamelCase = """What is the invoice number?""" lowerCamelCase = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) lowerCamelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) lowerCamelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) lowerCamelCase = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , """""" ) ) ) # This model should also work if `image` is set to None lowerCamelCase = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=SCREAMING_SNAKE_CASE_ ) lowerCamelCase = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=SCREAMING_SNAKE_CASE_ , revision="""3dc6de3""" , max_seq_len=50 , ) lowerCamelCase = INVOICE_URL lowerCamelCase = """What is the invoice number?""" lowerCamelCase = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowerCamelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) lowerCamelCase = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , """""" ) ) ) # This model should also work if `image` is set to None lowerCamelCase = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) lowerCamelCase = INVOICE_URL lowerCamelCase = """What is the invoice number?""" lowerCamelCase = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass
543
'''simple docstring''' A_ = "Input must be a string of 8 numbers plus letter" A_ = "TRWAGMYFPDXBNJZSQVHLCKE" def _UpperCamelCase ( __UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) lowerCamelCase_ = spanish_id.replace('-' ,'' ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: lowerCamelCase_ = int(spanish_id_clean[0:8] ) lowerCamelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
42
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput lowerCamelCase__ : Any = 'scheduler_config.json' class lowerCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ = 1 lowercase_ = 2 lowercase_ = 3 lowercase_ = 4 lowercase_ = 5 @dataclass class lowerCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ = 42 class lowerCamelCase_ : '''simple docstring''' lowercase_ = SCHEDULER_CONFIG_NAME lowercase_ = ["dtype"] lowercase_ = [] lowercase_ = True @classmethod def lowerCAmelCase_ ( cls : str , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : int = None , _lowerCAmelCase : Optional[int]=False , **_lowerCAmelCase : Optional[int] , ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.load_config( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.from_config(SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if hasattr(SCREAMING_SNAKE_CASE_ , 'create_state' ) and getattr(SCREAMING_SNAKE_CASE_ , 'has_state' , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] = False , **_lowerCAmelCase : Dict ): self.save_config(save_directory=SCREAMING_SNAKE_CASE_ , push_to_hub=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def lowerCAmelCase_ ( self : Dict ): return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls : Any ): SCREAMING_SNAKE_CASE_ = list(set([cls.__name__] + cls._compatibles ) ) SCREAMING_SNAKE_CASE_ = importlib.import_module(__name__.split('.' )[0] ) SCREAMING_SNAKE_CASE_ = [ getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for c in compatible_classes_str if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] return compatible_classes def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] ) -> jnp.ndarray: assert len(__UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__UpperCamelCase ) - x.ndim) ) , __UpperCamelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Any=0.9_9_9 , __UpperCAmelCase : Dict=jnp.floataa ) -> jnp.ndarray: def alpha_bar(__UpperCAmelCase : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE_ = [] for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__UpperCamelCase ) / alpha_bar(__UpperCamelCase ) , __UpperCamelCase ) ) return jnp.array(__UpperCamelCase , dtype=__UpperCamelCase ) @flax.struct.dataclass class lowerCamelCase_ : '''simple docstring''' lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 @classmethod def lowerCAmelCase_ ( cls : List[str] , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = scheduler.config if config.trained_betas is not None: SCREAMING_SNAKE_CASE_ = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": SCREAMING_SNAKE_CASE_ = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE_ = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE_ = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" ) SCREAMING_SNAKE_CASE_ = 1.0 - betas SCREAMING_SNAKE_CASE_ = jnp.cumprod(SCREAMING_SNAKE_CASE_ , axis=0 ) return cls( alphas=SCREAMING_SNAKE_CASE_ , betas=SCREAMING_SNAKE_CASE_ , alphas_cumprod=SCREAMING_SNAKE_CASE_ , ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) -> Any: SCREAMING_SNAKE_CASE_ = state.alphas_cumprod SCREAMING_SNAKE_CASE_ = alphas_cumprod[timesteps] ** 0.5 SCREAMING_SNAKE_CASE_ = sqrt_alpha_prod.flatten() SCREAMING_SNAKE_CASE_ = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) SCREAMING_SNAKE_CASE_ = (1 - alphas_cumprod[timesteps]) ** 0.5 SCREAMING_SNAKE_CASE_ = sqrt_one_minus_alpha_prod.flatten() SCREAMING_SNAKE_CASE_ = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
31
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = {'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase_ = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowerCamelCase_ = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def UpperCamelCase( self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。 こんばんは、㔺界。' lowerCamelCase_ = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowerCamelCase_ = 'こんにちは、、、、世界。こんばんは、、、、世界。' lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。こんばんは、世界。😀' lowerCamelCase_ = tokenizer.encode(prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode('' , prefix_text=prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = [1] + [0] * (len_prefix + len_text + 1) lowerCamelCase_ = [1] * (len_prefix + len_text + 1) + [0] lowerCamelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCamelCase_ = tokenizer(prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = tokenizer.encode('あンいワ' ) lowerCamelCase_ = tokenizer.encode('' , prefix_text='あンいワ' ) lowerCamelCase_ = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off lowerCamelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowerCamelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCamelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass
42
0
import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowerCamelCase : str = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def a_ ( ) -> str: _snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case = get_sagemaker_input() else: _snake_case = get_cluster_input() return config def a_ ( __lowercase : Any=None ) -> Union[str, Any]: if subparsers is not None: _snake_case = subparsers.add_parser('config' , description=__UpperCamelCase ) else: _snake_case = argparse.ArgumentParser('Accelerate config command' , description=__UpperCamelCase ) parser.add_argument( '--config_file' , default=__UpperCamelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def a_ ( __lowercase : Dict ) -> Tuple: _snake_case = get_user_input() if args.config_file is not None: _snake_case = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) _snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(f'''accelerate configuration saved at {config_file}''' ) def a_ ( ) -> List[Any]: _snake_case = config_command_parser() _snake_case = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
686
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> List[str]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) # get prompt text embeddings lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCamelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = text_embeddings.shape lowerCamelCase_ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = 42 if negative_prompt is None: lowerCamelCase_ = [''] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowerCamelCase_ = negative_prompt lowerCamelCase_ = text_input_ids.shape[-1] lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ = uncond_embeddings.shape[1] lowerCamelCase_ = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase_ = latents_reference.to(self.device ) lowerCamelCase_ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCamelCase_ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCamelCase_ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCamelCase_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCamelCase_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCamelCase_ = 0 if dx < 0 else dx lowerCamelCase_ = 0 if dy < 0 else dy lowerCamelCase_ = max(-dx , 0 ) lowerCamelCase_ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCamelCase_ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual lowerCamelCase_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase_ ,lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 1 / 0.18_215 * latents lowerCamelCase_ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCamelCase_ = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='pt' ).to( self.device ) lowerCamelCase_ ,lowerCamelCase_ = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCamelCase_ = None if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
42
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" def __init__( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , ): super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def __a ( self :List[str] , lowerCamelCase__ :Any = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase__ :List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def __a ( self :List[Any] ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] = 5_12 , lowerCamelCase__ :int = 5_12 , lowerCamelCase__ :Tuple = 50 , lowerCamelCase__ :Any = 7.5 , lowerCamelCase__ :int = None , lowerCamelCase__ :int = 1 , lowerCamelCase__ :int = 0.0 , lowerCamelCase__ :int = None , lowerCamelCase__ :Union[str, Any] = None , lowerCamelCase__ :Tuple = "pil" , lowerCamelCase__ :List[Any] = True , lowerCamelCase__ :Dict = None , lowerCamelCase__ :Union[str, Any] = 1 , lowerCamelCase__ :List[Any] = None , **lowerCamelCase__ :str , ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ :Union[str, Any] = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ :int = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(SCREAMING_SNAKE_CASE_ )}.""" ) # get prompt text embeddings UpperCamelCase__ :Dict = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase__ :Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase__ :Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCamelCase__ :Any = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCamelCase__ :List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[int] = text_embeddings.shape UpperCamelCase__ :str = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase__ :Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase__ :Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase__ :List[str] = 42 if negative_prompt is None: UpperCamelCase__ :str = [""""""] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=""" f""" {type(SCREAMING_SNAKE_CASE_ )}.""" ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ :Optional[Any] = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: UpperCamelCase__ :List[str] = negative_prompt UpperCamelCase__ :Union[str, Any] = text_input_ids.shape[-1] UpperCamelCase__ :Dict = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase__ :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ :Union[str, Any] = uncond_embeddings.shape[1] UpperCamelCase__ :Dict = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase__ :int = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ :List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase__ :Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase__ :int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCamelCase__ :List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase__ :int = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) UpperCamelCase__ :Optional[int] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: UpperCamelCase__ :int = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :List[str] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCamelCase__ :Dict = latents_reference.to(self.device ) UpperCamelCase__ :Optional[Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCamelCase__ :str = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCamelCase__ :int = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCamelCase__ :Optional[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCamelCase__ :Optional[int] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCamelCase__ :str = 0 if dx < 0 else dx UpperCamelCase__ :Tuple = 0 if dy < 0 else dy UpperCamelCase__ :List[str] = max(-dx , 0 ) UpperCamelCase__ :List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCamelCase__ :Tuple = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase__ :Any = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ :List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ :str = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ :Any = {} if accepts_eta: UpperCamelCase__ :Any = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ :List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ :int = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase__ :Dict = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = noise_pred.chunk(2 ) UpperCamelCase__ :str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ :int = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Dict = 1 / 0.1_8215 * latents UpperCamelCase__ :List[str] = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ :Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase__ :List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCamelCase__ :Optional[int] = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors="""pt""" ).to( self.device ) UpperCamelCase__ , UpperCamelCase__ :Any = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCamelCase__ :List[str] = None if output_type == "pil": UpperCamelCase__ :int = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
45
'''simple docstring''' import pprint import requests A_ = "https://zenquotes.io/api" def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": A_ = random_quotes() pprint.pprint(response)
42
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class snake_case_ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = '''deit''' def __init__( self : Tuple , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=3_072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Any=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : Any=224 , __lowerCamelCase : Union[str, Any]=16 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=16 , **__lowerCamelCase : str , ) -> int: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = encoder_stride class snake_case_ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase ( self : Any ) -> float: '''simple docstring''' return 1E-4
375
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=33 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> int: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = EsmModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = EsmForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = EsmForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = () SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = EsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = EsmModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCamelCase_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCamelCase_ = create_position_ids_from_input_ids(SCREAMING_SNAKE_CASE_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.empty(2 , 4 , 30 ) lowerCamelCase_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCamelCase_ = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCamelCase_ = embeddings.create_position_ids_from_inputs_embeds(SCREAMING_SNAKE_CASE_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass @require_torch class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase_ = 33 lowerCamelCase_ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> Tuple: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. lowerCamelCase_ = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
42
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCAmelCase ( UpperCAmelCase__ ): _A : Optional[int] = 42 _A : List[str] = 42 _A : Union[str, Any] = None class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): _A : List[Any] = 2 @register_to_config def __init__( self , __A = 0.0_2 , __A = 100 , __A = 1.0_0_7 , __A = 80 , __A = 0.0_5 , __A = 50 , ): __UpperCAmelCase = sigma_max # setable values __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # sigma(t_i) def __lowerCamelCase ( self , __A , __A = None ): return sample def __lowerCamelCase ( self , __A , __A = None ): __UpperCAmelCase = num_inference_steps __UpperCAmelCase = np.arange(0 , self.num_inference_steps )[::-1].copy() __UpperCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __UpperCAmelCase = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , __A , __A , __A = None ): if self.config.s_min <= sigma <= self.config.s_max: __UpperCAmelCase = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: __UpperCAmelCase = 0 # sample eps ~ N(0, S_noise^2 * I) __UpperCAmelCase = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) __UpperCAmelCase = sigma + gamma * sigma __UpperCAmelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowerCamelCase ( self , __A , __A , __A , __A , __A = True , ): __UpperCAmelCase = sample_hat + sigma_hat * model_output __UpperCAmelCase = (sample_hat - pred_original_sample) / sigma_hat __UpperCAmelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A = True , ): __UpperCAmelCase = sample_prev + sigma_prev * model_output __UpperCAmelCase = (sample_prev - pred_original_sample) / sigma_prev __UpperCAmelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , __A , __A , __A ): raise NotImplementedError()
126
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
42
0
def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase = False ) -> bool: '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis lowerCamelCase__: Optional[int] = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] lowerCamelCase__: Union[str, Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check lowerCamelCase__: Union[str, Any] = primes[:idx] break lowerCamelCase__ , lowerCamelCase__: Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase__: Tuple = False for r in range(__UpperCamelCase ): lowerCamelCase__: Dict = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase__: Union[str, Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ) -> None: '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
306
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'xlm-prophetnet' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 30522 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 128 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = num_encoder_layers lowerCamelCase_ = num_encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = num_decoder_layers lowerCamelCase_ = num_decoder_attention_heads lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = init_std # Normal(0, this parameter) lowerCamelCase_ = activation_function # parameters for xlmprophetnet lowerCamelCase_ = ngram lowerCamelCase_ = num_buckets lowerCamelCase_ = relative_max_distance lowerCamelCase_ = disable_ngram_loss lowerCamelCase_ = eps # 3 Types of Dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = dropout lowerCamelCase_ = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
42
0
from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
59
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float: lowerCamelCase_ = x lowerCamelCase_ = y for step in range(__UpperCamelCase ): # noqa: B007 lowerCamelCase_ = a * a - b * b + x lowerCamelCase_ = 2 * a * b + y lowerCamelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( __UpperCamelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _UpperCamelCase ( __UpperCamelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase ,1 ,1 ) ) def _UpperCamelCase ( __UpperCamelCase = 8_00 ,__UpperCamelCase = 6_00 ,__UpperCamelCase = -0.6 ,__UpperCamelCase = 0 ,__UpperCamelCase = 3.2 ,__UpperCamelCase = 50 ,__UpperCamelCase = True ,) -> Image.Image: lowerCamelCase_ = Image.new('RGB' ,(image_width, image_height) ) lowerCamelCase_ = img.load() # loop through the image-coordinates for image_x in range(__UpperCamelCase ): for image_y in range(__UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase_ = figure_width / image_width * image_height lowerCamelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase_ = get_distance(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase_ = get_color_coded_rgb(__UpperCamelCase ) else: lowerCamelCase_ = get_black_and_white_rgb(__UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure A_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
42
0
'''simple docstring''' import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } __lowerCamelCase = KEYMAP['''up'''] __lowerCamelCase = KEYMAP['''left'''] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def a__ ( ): if os.name == "nt": import msvcrt UpperCAmelCase__ :Any = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCamelCase ) == 0: # Read the keystroke UpperCAmelCase__ :List[str] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase__ :Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase__ :List[str] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(__UpperCamelCase ) if ord(__UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) UpperCAmelCase__ :Union[str, Any] = chr(KEYMAP['''esc'''] ) except KeyError: UpperCAmelCase__ :Optional[int] = cha[1] else: UpperCAmelCase__ :Optional[Any] = ch.decode(__UpperCamelCase ) else: UpperCAmelCase__ :Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase__ :str = sys.stdin.fileno() UpperCAmelCase__ :int = termios.tcgetattr(__UpperCamelCase ) try: tty.setraw(__UpperCamelCase ) UpperCAmelCase__ :Any = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCamelCase, termios.TCSADRAIN, __UpperCamelCase ) return ch def a__ ( ): UpperCAmelCase__ :Optional[Any] = get_raw_chars() if ord(__UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCamelCase ) == KEYMAP["esc"]: UpperCAmelCase__ :Optional[Any] = get_raw_chars() if ord(__UpperCamelCase ) == KEYMAP["mod_int"]: UpperCAmelCase__ :List[str] = get_raw_chars() if ord(__UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
467
'''simple docstring''' from math import isclose, sqrt def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> tuple[float, float, float]: lowerCamelCase_ = point_y / 4 / point_x lowerCamelCase_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCamelCase_ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCamelCase_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCamelCase_ = outgoing_gradient**2 + 4 lowerCamelCase_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCamelCase_ = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 lowerCamelCase_ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCamelCase_ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCamelCase_ = x_minus if isclose(__UpperCamelCase ,__UpperCamelCase ) else x_plus lowerCamelCase_ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _UpperCamelCase ( __UpperCamelCase = 1.4 ,__UpperCamelCase = -9.6 ) -> int: lowerCamelCase_ = 0 lowerCamelCase_ = first_x_coord lowerCamelCase_ = first_y_coord lowerCamelCase_ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = next_point(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
42
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ = """timm_backbone""" def __init__( self : Union[str, Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) __lowercase =backbone __lowercase =num_channels __lowercase =features_only __lowercase =use_pretrained_backbone __lowercase =True __lowercase =out_indices if out_indices is not None else (-1,)
474
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis lowerCamelCase_ = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] lowerCamelCase_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__UpperCamelCase ,1 ): if n < _p: # then we have our last prime to check lowerCamelCase_ = primes[:idx] break lowerCamelCase_ ,lowerCamelCase_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase_ = False for r in range(__UpperCamelCase ): lowerCamelCase_ = pow(__UpperCamelCase ,d * 2**r ,__UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _UpperCamelCase ( ) -> None: assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
42
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _snake_case : Tuple = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _snake_case : str = 'The dog is cute and lives in the garden house' _snake_case : str = jnp.array([tokenizer.encode(SCREAMING_SNAKE_CASE_ )] ) _snake_case : Tuple = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim _snake_case : Tuple = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )['last_hidden_state'] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) )
411
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ = 16 A_ = 32 def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 16 ,__UpperCamelCase = "bert-base-cased" ) -> List[Any]: lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = load_dataset('glue' ,'mrpc' ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets['train'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCamelCase_ = DataLoader( tokenized_datasets['validation'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: model.eval() lowerCamelCase_ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: lowerCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase ,references=__UpperCamelCase ,) lowerCamelCase_ = metric.compute() return eval_metric["accuracy"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]: # Initialize accelerator lowerCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config['lr'] lowerCamelCase_ = int(config['num_epochs'] ) lowerCamelCase_ = int(config['seed'] ) lowerCamelCase_ = int(config['batch_size'] ) lowerCamelCase_ = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCamelCase_ = 1 lowerCamelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCamelCase_ = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ = 0 lowerCamelCase_ = evaluate.load('glue' ,'mrpc' ) lowerCamelCase_ = num_epochs if args.partial_train_epoch is not None: lowerCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase_ = args.resume_from_checkpoint.split('epoch_' )[1] lowerCamelCase_ = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase_ = int(__UpperCamelCase ) + 1 lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) accelerator.print('resumed checkpoint performance:' ,__UpperCamelCase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,f'''state_{starting_epoch-1}.json''' ) ,'r' ) as f: lowerCamelCase_ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase_ = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.loss lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase_ = f'''epoch_{epoch}''' lowerCamelCase_ = os.path.join(args.output_dir ,__UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = accuracy lowerCamelCase_ = lr_scheduler.get_lr()[0] lowerCamelCase_ = optimizer.param_groups[0]['lr'] lowerCamelCase_ = epoch lowerCamelCase_ = overall_step accelerator.print(f'''epoch {epoch}:''' ,__UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f'''state_{epoch}.json''' ) ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> str: lowerCamelCase_ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=__UpperCamelCase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__UpperCamelCase ,) parser.add_argument( '--output_dir' ,type=__UpperCamelCase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=__UpperCamelCase ,default=2 ,help='Number of train epochs.' ,) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
42
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=False , _a=True , _a=False , _a=True , _a=33 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_input_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_labels lowerCamelCase = num_choices lowerCamelCase = scope def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_input_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self ): """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a ): """simple docstring""" lowerCamelCase = EsmModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) lowerCamelCase = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a ): """simple docstring""" lowerCamelCase = EsmForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a ): """simple docstring""" lowerCamelCase = self.num_labels lowerCamelCase = EsmForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = config_and_inputs lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = False __UpperCamelCase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase = () __UpperCamelCase = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = EsmModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _lowerCAmelCase ( self ): """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = EsmModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCamelCase = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCamelCase = create_position_ids_from_input_ids(SCREAMING_SNAKE_CASE_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase = torch.empty(2 , 4 , 30 ) lowerCamelCase = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCamelCase = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCamelCase = embeddings.create_position_ids_from_inputs_embeds(SCREAMING_SNAKE_CASE_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass @require_torch class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): """simple docstring""" with torch.no_grad(): lowerCamelCase = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() lowerCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase = model(SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase = 33 lowerCamelCase = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self ): """simple docstring""" with torch.no_grad(): lowerCamelCase = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() lowerCamelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. lowerCamelCase = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
543
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase_ = ksize + 1 lowerCamelCase_ = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__UpperCamelCase ): for x in range(__UpperCamelCase ): # distance from center lowerCamelCase_ = x - ksize // 2 lowerCamelCase_ = y - ksize // 2 # degree to radiant lowerCamelCase_ = theta / 1_80 * np.pi lowerCamelCase_ = np.cos(_theta ) lowerCamelCase_ = np.sin(_theta ) # get kernel x lowerCamelCase_ = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase_ = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A_ = imread("../image_data/lena.jpg") # turn image in gray scale value A_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A_ = out / out.max() * 255 A_ = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
42
0
from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCamelCase__ : str = TypeVar('KT') lowerCamelCase__ : Optional[Any] = TypeVar('VT') class lowerCamelCase_ ( Generic[KT, VT] ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : Dict = "root" , _lowerCAmelCase : Any = None ): SCREAMING_SNAKE_CASE_ = key SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = [] def __repr__( self : str ): return F"Node({self.key}: {self.value})" @property def lowerCAmelCase_ ( self : Optional[int] ): return len(self.forward ) class lowerCamelCase_ ( Generic[KT, VT] ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Dict = 0.5 , _lowerCAmelCase : Union[str, Any] = 16 ): SCREAMING_SNAKE_CASE_ = Node[KT, VT]() SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = p SCREAMING_SNAKE_CASE_ = max_level def __str__( self : Any ): SCREAMING_SNAKE_CASE_ = list(self ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return F"SkipList(level={self.level})" SCREAMING_SNAKE_CASE_ = max((len(str(SCREAMING_SNAKE_CASE_ ) ) for item in items) , default=4 ) SCREAMING_SNAKE_CASE_ = max(SCREAMING_SNAKE_CASE_ , 4 ) + 4 SCREAMING_SNAKE_CASE_ = self.head SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = node.forward.copy() lines.append(F"[{node.key}]".ljust(SCREAMING_SNAKE_CASE_ , '-' ) + '* ' * len(SCREAMING_SNAKE_CASE_ ) ) lines.append(' ' * label_size + '| ' * len(SCREAMING_SNAKE_CASE_ ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE_ = node.forward[0] lines.append( F"[{node.key}]".ljust(SCREAMING_SNAKE_CASE_ , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = node.forward lines.append('None'.ljust(SCREAMING_SNAKE_CASE_ ) + '* ' * len(SCREAMING_SNAKE_CASE_ ) ) return F"SkipList(level={self.level})\n" + "\n".join(SCREAMING_SNAKE_CASE_ ) def __iter__( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE_ = node.forward[0] def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = 1 while random() < self.p and level < self.max_level: level += 1 return level def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE_ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(SCREAMING_SNAKE_CASE_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: for i, update_node in enumerate(SCREAMING_SNAKE_CASE_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE_ = node.forward[i] else: SCREAMING_SNAKE_CASE_ = update_node.forward[:i] def lowerCAmelCase_ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: SCREAMING_SNAKE_CASE_ = value else: SCREAMING_SNAKE_CASE_ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , SCREAMING_SNAKE_CASE_ ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE_ = level SCREAMING_SNAKE_CASE_ = Node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE_ = new_node def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: return node.value return None def UpperCAmelCase_ ( ) -> Any: SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) SCREAMING_SNAKE_CASE_ = skip_list.head SCREAMING_SNAKE_CASE_ = {} while node.level != 0: SCREAMING_SNAKE_CASE_ = node.forward[0] SCREAMING_SNAKE_CASE_ = node.value assert len(__UpperCamelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def UpperCAmelCase_ ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) SCREAMING_SNAKE_CASE_ = skip_list.head SCREAMING_SNAKE_CASE_ = {} while node.level != 0: SCREAMING_SNAKE_CASE_ = node.forward[0] SCREAMING_SNAKE_CASE_ = node.value if len(__UpperCamelCase ) != 4: print() assert len(__UpperCamelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def UpperCAmelCase_ ( ) -> int: SCREAMING_SNAKE_CASE_ = SkipList() assert skip_list.find('Some key' ) is None def UpperCAmelCase_ ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def UpperCAmelCase_ ( ) -> List[str]: SCREAMING_SNAKE_CASE_ = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def UpperCAmelCase_ ( ) -> str: SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 1_42 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(__UpperCAmelCase : Any ): yield node.key for forward_node in node.forward: yield from traverse_keys(__UpperCamelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def UpperCAmelCase_ ( ) -> List[str]: def is_sorted(__UpperCAmelCase : Tuple ): return all(next_item >= item for item, next_item in zip(__UpperCamelCase , lst[1:] ) ) SCREAMING_SNAKE_CASE_ = SkipList() for i in range(10 ): skip_list.insert(__UpperCamelCase , __UpperCamelCase ) assert is_sorted(list(__UpperCamelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__UpperCamelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(__UpperCamelCase ) ) def UpperCAmelCase_ ( ) -> List[str]: for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def UpperCAmelCase_ ( ) -> List[str]: SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ['transformers', 'torch', 'note_seq'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
42
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): '''simple docstring''' _UpperCAmelCase : Any = ["image_processor", "tokenizer"] _UpperCAmelCase : Tuple = "ViltImageProcessor" _UpperCAmelCase : Optional[int] = ("BertTokenizer", "BertTokenizerFast") def __init__( self : List[Any] , lowercase : str=None , lowercase : Tuple=None , **lowercase : Dict ): '''simple docstring''' _snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE_ , ) _snake_case = kwargs.pop('feature_extractor' ) _snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _snake_case = self.image_processor def __call__( self : Tuple , lowercase : int , lowercase : List[str] = None , lowercase : Dict = True , lowercase : List[Any] = False , lowercase : Optional[int] = None , lowercase : Tuple = None , lowercase : str = 0 , lowercase : Any = None , lowercase : List[Any] = None , lowercase : Optional[int] = None , lowercase : Union[str, Any] = False , lowercase : Dict = False , lowercase : Optional[int] = False , lowercase : Any = False , lowercase : List[Any] = True , lowercase : Dict = None , **lowercase : Any , ): '''simple docstring''' _snake_case = self.tokenizer( text=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_special_tokens_mask=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , return_length=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # add pixel_values + pixel_mask _snake_case = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) encoding.update(SCREAMING_SNAKE_CASE_ ) return encoding def A ( self : List[str] , *lowercase : List[Any] , **lowercase : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A ( self : str , *lowercase : Any , **lowercase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def A ( self : int ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
686
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCamelCase( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) lowerCamelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vqvae_and_unet lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 ) lowerCamelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = self.dummy_unet_condition lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = torch.rand((1, 1, 10) ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = torch_device lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
42
0
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging UpperCamelCase = logging.get_logger(__name__) def A ( lowercase__ : Any , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : Any=False ) -> Tuple: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: UpperCamelCase__ :str = os.path.abspath(__UpperCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) UpperCamelCase__ :List[Any] = torch.load(__UpperCamelCase , map_location="""cpu""" ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) UpperCamelCase__ :Optional[Any] = convert_pytorch_state_dict_to_flax(__UpperCamelCase , __UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ :Dict = convert_pytorch_sharded_state_dict_to_flax(__UpperCamelCase , __UpperCamelCase ) return flax_state_dict def A ( lowercase__ : int , lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(lowercase__ : List[str] ) -> bool: return len(set(__UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ :Union[str, Any] = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ :Union[str, Any] = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ :Tuple = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ :str = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ :List[str] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__UpperCamelCase ): UpperCamelCase__ :List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ :List[str] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__UpperCamelCase ): UpperCamelCase__ :Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ :Any = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ :Union[str, Any] = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ :Any = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ :Tuple = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ :List[str] = pt_tuple_key[-2] + """_v""" if name is not None: UpperCamelCase__ :Dict = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A ( lowercase__ : str , lowercase__ : Optional[int] ) -> Optional[Any]: # convert pytorch tensor to numpy UpperCamelCase__ :Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ :str = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ :List[str] = flax_model.params["""params"""] else: UpperCamelCase__ :str = flax_model.params UpperCamelCase__ :Any = flatten_dict(__UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ :Tuple = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(__UpperCamelCase ) UpperCamelCase__ :Any = {} UpperCamelCase__ :Optional[int] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ :Optional[int] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ :Tuple = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary UpperCamelCase__ :int = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ :Optional[int] = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ :Tuple = rename_key_and_reshape_tensor( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ :Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ :Union[str, Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ :Dict = jnp.asarray(__UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__UpperCamelCase , __UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ :List[Any] = jnp.asarray(__UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ :List[Any] = jnp.asarray(__UpperCamelCase ) return unflatten_dict(__UpperCamelCase ) def A ( lowercase__ : str , lowercase__ : Dict ) -> Dict: import torch # Load the index UpperCamelCase__ :List[str] = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ :Dict = torch.load(__UpperCamelCase ) UpperCamelCase__ :int = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ :Any = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ :Dict = flax_model.params["""params"""] UpperCamelCase__ :Any = flatten_dict(__UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: UpperCamelCase__ :List[Any] = flax_model.params UpperCamelCase__ :Optional[int] = flatten_dict(__UpperCamelCase ) UpperCamelCase__ :str = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ :List[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ :Optional[int] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary UpperCamelCase__ :Optional[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ :Tuple = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ :List[Any] = rename_key_and_reshape_tensor( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ :int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ :Optional[int] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ :Union[str, Any] = jnp.asarray(__UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ :List[str] = jnp.asarray(__UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__UpperCamelCase , __UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ :Tuple = jnp.asarray(__UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ :Any = jnp.asarray(__UpperCamelCase ) return unflatten_dict(__UpperCamelCase ) def A ( lowercase__ : str , lowercase__ : Optional[int] ) -> List[Any]: UpperCamelCase__ :str = os.path.abspath(__UpperCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class UpperCamelCase__ :List[str] = getattr(__UpperCamelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(__UpperCamelCase , """rb""" ) as state_f: try: UpperCamelCase__ :Optional[int] = from_bytes(__UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__UpperCamelCase , __UpperCamelCase ) def A ( lowercase__ : Any , lowercase__ : Dict ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights UpperCamelCase__ :Dict = flatten_dict(jax.tree_util.tree_map(lambda lowercase__ : x.dtype == jnp.bfloataa , __UpperCamelCase ) ).values() if any(__UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) UpperCamelCase__ :Dict = jax.tree_util.tree_map( lambda lowercase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __UpperCamelCase ) UpperCamelCase__ :Dict = flatten_dict(__UpperCamelCase ) UpperCamelCase__ :List[Any] = pt_model.state_dict() UpperCamelCase__ :Optional[Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ :Union[str, Any] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ :str = [] UpperCamelCase__ :List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ :Optional[Any] = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ :Any = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ :Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ :Tuple = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ :Dict = flax_key_tuple[:-1] + ("""weight""",) UpperCamelCase__ :str = jnp.transpose(__UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ :Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) UpperCamelCase__ :Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ :List[str] = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ :List[str] = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ :List[Any] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: UpperCamelCase__ :Union[str, Any] = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ :int = """.""".join(__UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ :List[str] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ :List[Any] = key.split(""".""" ) UpperCamelCase__ :str = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ :Any = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ :str = key_components[-2] + """_v""" if name is not None: UpperCamelCase__ :str = key_components[:-3] + [name] UpperCamelCase__ :Optional[int] = """.""".join(__UpperCamelCase ) UpperCamelCase__ :Union[str, Any] = key if flax_key in special_pt_names: UpperCamelCase__ :List[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCamelCase__ :Optional[int] = np.asarray(__UpperCamelCase ) if not isinstance(__UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ :Optional[Any] = torch.from_numpy(__UpperCamelCase ) # remove from missing keys missing_keys.remove(__UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCamelCase ) pt_model.load_state_dict(__UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ :Dict = list(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__UpperCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" """If your task is similar to the task the model of the checkpoint was trained on, """ f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
45
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _UpperCamelCase ( __UpperCamelCase = 8 ) -> str: lowerCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCamelCase ) lowerCamelCase_ = i // 3 lowerCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCamelCase_ = ( chars_incl + random(__UpperCamelCase ,quotient + remainder ) + random(__UpperCamelCase ,__UpperCamelCase ) + random(__UpperCamelCase ,__UpperCamelCase ) ) lowerCamelCase_ = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 8 ) -> bool: if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCamelCase_ = any(char in ascii_uppercase for char in password ) lowerCamelCase_ = any(char in ascii_lowercase for char in password ) lowerCamelCase_ = any(char in digits for char in password ) lowerCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _UpperCamelCase ( ) -> Optional[int]: lowerCamelCase_ = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCamelCase_ = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' ,password_generator(__UpperCamelCase ) ) print( 'Alternative Password generated:' ,alternative_password_generator(__UpperCamelCase ,__UpperCamelCase ) ,) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
42
0
import os import pytest from transformers.dynamic_module_utils import get_imports SCREAMING_SNAKE_CASE_ : Tuple = '''\nimport os\n''' SCREAMING_SNAKE_CASE_ : Optional[Any] = '''\ndef foo():\n import os\n return False\n''' SCREAMING_SNAKE_CASE_ : Tuple = '''\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n''' SCREAMING_SNAKE_CASE_ : List[Any] = '''\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n''' SCREAMING_SNAKE_CASE_ : Optional[Any] = '''\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n''' SCREAMING_SNAKE_CASE_ : Tuple = '''\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n''' SCREAMING_SNAKE_CASE_ : int = '''\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n''' SCREAMING_SNAKE_CASE_ : Any = '''\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n''' SCREAMING_SNAKE_CASE_ : List[str] = '''\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n''' SCREAMING_SNAKE_CASE_ : str = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('case' , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> List[Any]: __lowercase = os.path.join(__UpperCamelCase , 'test_file.py' ) with open(__UpperCamelCase , 'w' ) as _tmp_file: _tmp_file.write(__UpperCamelCase ) __lowercase = get_imports(__UpperCamelCase ) assert parsed_imports == ["os"]
375
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase_ = test_metrics @require_cpu def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase( self ) -> Tuple: '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) lowerCamelCase_ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
42
0
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=False , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.0_2 , __A=3 , __A=4 , __A=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope def __lowerCamelCase ( self ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = BioGptModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ): __UpperCAmelCase = BioGptForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , *__A ): __UpperCAmelCase = BioGptModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # create attention mask __UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.seq_length // 2 __UpperCAmelCase = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __UpperCAmelCase = ids_tensor((1,) , SCREAMING_SNAKE_CASE_ ).item() + 1 __UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __UpperCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )] , dim=1 , ) # get two different outputs __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )['last_hidden_state'] __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )['last_hidden_state'] # select random slice __UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , *__A ): __UpperCAmelCase = BioGptModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval() __UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # first forward pass __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase , __UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )['last_hidden_state'] __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )[ 'last_hidden_state' ] # select random slice __UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , *__A , __A=False ): __UpperCAmelCase = BioGptForCausalLM(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __lowerCamelCase ( self , __A , *__A ): __UpperCAmelCase = BioGptModel(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , *__A ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = BioGptForTokenClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): _A : Union[str, Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _A : List[str] = (BioGptForCausalLM,) if is_torch_available() else () _A : Optional[int] = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) _A : List[str] = False def __lowerCamelCase ( self ): __UpperCAmelCase = BioGptModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*SCREAMING_SNAKE_CASE_ , gradient_checkpointing=SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __lowerCamelCase ( self ): __UpperCAmelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCAmelCase = 'left' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase = tokenizer.eos_token __UpperCAmelCase = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase = [ 'Hello, my dog is a little', 'Today, I', ] __UpperCAmelCase = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = inputs['input_ids'].to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = model.generate( input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'].to(SCREAMING_SNAKE_CASE_ ) , ) __UpperCAmelCase = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = model.generate(input_ids=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() __UpperCAmelCase = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_length=model.config.max_length - num_paddings ) __UpperCAmelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] ) @slow def __lowerCamelCase ( self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = BioGptModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = input_dict['input_ids'] __UpperCAmelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = 'multi_label_classification' __UpperCAmelCase = input_dict['input_ids'] __UpperCAmelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): __UpperCAmelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) __UpperCAmelCase = torch.tensor([[2, 4_805, 9, 656, 21]] ) __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ )[0] __UpperCAmelCase = 42_384 __UpperCAmelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def __lowerCamelCase ( self ): __UpperCAmelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCAmelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(SCREAMING_SNAKE_CASE_ ) torch.manual_seed(0 ) __UpperCAmelCase = tokenizer('COVID-19 is' , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = model.generate( **SCREAMING_SNAKE_CASE_ , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=SCREAMING_SNAKE_CASE_ , ) __UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
126
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: if hor == 1_28: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 64, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') lowerCamelCase_ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase_ = model.state_dict() lowerCamelCase_ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> Tuple: lowerCamelCase_ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } lowerCamelCase_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) lowerCamelCase_ = model lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
0
import math class lowerCamelCase__ : def lowerCamelCase_ ( self : Any , __a : List[Any] , __a : Optional[int] ): '''simple docstring''' lowerCamelCase__: List[str] = 0.0 lowerCamelCase__: List[str] = 0.0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCamelCase_ ( self : Optional[Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] ): '''simple docstring''' for i in range(len(SCREAMING_SNAKE_CASE_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __lowerCAmelCase ( ) -> None: '''simple docstring''' lowerCamelCase__: Tuple = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowerCamelCase__: Any = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowerCamelCase__: Union[str, Any] = SelfOrganizingMap() lowerCamelCase__: List[Any] = 3 lowerCamelCase__: Union[str, Any] = 0.5 for _ in range(__UpperCamelCase ): for j in range(len(__UpperCamelCase ) ): # training sample lowerCamelCase__: int = training_samples[j] # Compute the winning vector lowerCamelCase__: str = self_organizing_map.get_winner(__UpperCamelCase , __UpperCamelCase ) # Update the winning vector lowerCamelCase__: Any = self_organizing_map.update(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # classify test sample lowerCamelCase__: List[str] = [0, 0, 0, 1] lowerCamelCase__: Optional[int] = self_organizing_map.get_winner(__UpperCamelCase , __UpperCamelCase ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
306
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ = 250_004 A_ = 250_020 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = MBartTokenizer SCREAMING_SNAKE_CASE_ = MBartTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase( self ) -> int: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'facebook/mbart-large-en-ro' SCREAMING_SNAKE_CASE_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE_ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def UpperCamelCase( cls ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase_ = 1 return cls def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) lowerCamelCase_ = targets['input_ids'] lowerCamelCase_ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
42
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ = "rwkv" lowercase_ = {"max_position_embeddings": "context_length"} def __init__(self : Tuple , UpperCAmelCase_ : int=50_277 , UpperCAmelCase_ : str=1_024 , UpperCAmelCase_ : Any=4_096 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Union[str, Any]=6 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=True , **UpperCAmelCase_ : Tuple , ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: Any =context_length lowerCamelCase__: Dict =hidden_size lowerCamelCase__: str =num_hidden_layers lowerCamelCase__: str =attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCamelCase__: Any =intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCamelCase__: List[Any] =layer_norm_epsilon lowerCamelCase__: Optional[int] =rescale_every lowerCamelCase__: Dict =use_cache lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: Optional[Any] =eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
59
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'ylacombe/bark-small' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = 'en_speaker_1' lowerCamelCase_ = 'This is a test string' lowerCamelCase_ = 'speaker_embeddings_path.json' lowerCamelCase_ = 'speaker_embeddings' def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase_ = 35 lowerCamelCase_ = 2 lowerCamelCase_ = 8 lowerCamelCase_ = { 'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase_ = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string ) lowerCamelCase_ = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
42
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def a__ ( UpperCamelCase_ : str, UpperCamelCase_ : Tuple, UpperCamelCase_ : Union[str, Any] ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase, 2 ) - pow(__UpperCamelCase, 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase, 2 ) - pow(__UpperCamelCase, 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase, 2 ) + pow(__UpperCamelCase, 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
467
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} A_ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } A_ = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase ,__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowerCamelCase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ ,lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowerCamelCase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = ' '.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = word return word def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) return bpe_tokens def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = ''.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) lowerCamelCase_ = 0 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs)
42
0
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 5_0003 lowerCamelCase = 5_0002 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = PLBartTokenizer lowerCAmelCase__ = None lowerCAmelCase__ = False def __lowerCamelCase ( self : Any): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase =PLBartTokenizer(SCREAMING_SNAKE_CASE_ , language_codes='base' , keep_accents=SCREAMING_SNAKE_CASE_) tokenizer.save_pretrained(self.tmpdirname) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =PLBartTokenizer(SCREAMING_SNAKE_CASE_ , language_codes='base' , keep_accents=SCREAMING_SNAKE_CASE_) __lowercase =tokenizer.tokenize('This is a test') self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __lowercase =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowercase =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __lowercase =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) __lowercase =tokenizer.vocab_size __lowercase =[tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) for x in range(end - 4 , SCREAMING_SNAKE_CASE_)] self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['__java__', '__python__', '__en_XX__', '<mask>']) __lowercase ='java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' __lowercase =tokenizer(SCREAMING_SNAKE_CASE_).input_ids self.assertEqual( tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_ , ) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =PLBartTokenizer(SCREAMING_SNAKE_CASE_ , language_codes='multi' , keep_accents=SCREAMING_SNAKE_CASE_) __lowercase =tokenizer.tokenize('This is a test') self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __lowercase =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowercase =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __lowercase =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) __lowercase =tokenizer.vocab_size __lowercase =[tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) for x in range(end - 7 , SCREAMING_SNAKE_CASE_)] self.assertListEqual( SCREAMING_SNAKE_CASE_ , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__']) __lowercase ='java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' __lowercase =tokenizer(SCREAMING_SNAKE_CASE_).input_ids self.assertEqual( tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_ , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = """uclanlp/plbart-python-en_XX""" lowerCAmelCase__ = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] lowerCAmelCase__ = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] lowerCAmelCase__ = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def __lowerCamelCase ( cls : List[Any]): '''simple docstring''' __lowercase =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX') __lowercase =1 return cls def __lowerCamelCase ( self : Any): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_0_0_0_1) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_0_0_0_2) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_0_0_0_3) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_) def __lowerCamelCase ( self : Any): '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids) __lowercase =[EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] __lowercase =self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) __lowercase =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 2_0] self.assertIsInstance(src_text[0] , SCREAMING_SNAKE_CASE_) __lowercase =1_0 __lowercase =self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_) self.assertEqual(len(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) def __lowerCamelCase ( self : int): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__']) , [5_0_0_0_4, 5_0_0_0_1]) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =tempfile.mkdtemp() __lowercase =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_) __lowercase =PLBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_) @require_torch def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt') __lowercase =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE]) self.assertEqual(batch.decoder_input_ids[1][0] , SCREAMING_SNAKE_CASE_) self.assertEqual(batch.decoder_input_ids[1][-1] , 2) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE]) @require_torch def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens) , return_tensors='pt' , ) __lowercase =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertEqual((2, 2_6) , batch.input_ids.shape) self.assertEqual((2, 2_6) , batch.attention_mask.shape) __lowercase =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE]) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt') __lowercase =self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=1_0 , return_tensors='pt') __lowercase =targets['input_ids'] __lowercase =shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0) @require_torch def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java') self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_) , { # A, test, EOS, en_XX 'input_ids': [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_0_0_0_1, } , )
474
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } A_ = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } A_ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = RealmTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = do_lower_case def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = PaddingStrategy.MAX_LENGTH lowerCamelCase_ = text lowerCamelCase_ = kwargs.pop('text_pair' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = kwargs.pop('return_tensors' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(SCREAMING_SNAKE_CASE_ ): if batch_text_pair is not None: lowerCamelCase_ = batch_text_pair[idx] else: lowerCamelCase_ = None lowerCamelCase_ = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = encoded_candidates.get('input_ids' ) lowerCamelCase_ = encoded_candidates.get('attention_mask' ) lowerCamelCase_ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(SCREAMING_SNAKE_CASE_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(SCREAMING_SNAKE_CASE_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {key: item for key, item in output_data.items() if len(SCREAMING_SNAKE_CASE_ ) != 0} return BatchEncoding(SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
42
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =LEDTokenizer a_ : int =LEDTokenizerFast a_ : str =True def UpperCamelCase_ ( self : int ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case : List[str] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) _snake_case : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case : Optional[Any] = {'unk_token': '<unk>'} _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase_ ( self : Any , **UpperCamelCase : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : int , **UpperCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : int , UpperCamelCase : Optional[int] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case : List[Any] = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , max_length=len(SCREAMING_SNAKE_CASE_ ) , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertIn('input_ids' , SCREAMING_SNAKE_CASE_ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ ) self.assertNotIn('labels' , SCREAMING_SNAKE_CASE_ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : List[Any] = tokenizer(text_target=SCREAMING_SNAKE_CASE_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : str = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = ['A long paragraph for summarization.'] _snake_case : Union[str, Any] = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : str = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) _snake_case : List[str] = tokenizer(text_target=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) _snake_case : Optional[Any] = inputs['input_ids'] _snake_case : int = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : List[str] = ['Summary of the text.', 'Another summary.'] _snake_case : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case : Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) _snake_case : List[str] = [[0] * len(SCREAMING_SNAKE_CASE_ ) for x in encoded_output['input_ids']] _snake_case : str = tokenizer.pad(SCREAMING_SNAKE_CASE_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _snake_case : int = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _snake_case : List[str] = 'A, <mask> AllenNLP sentence.' _snake_case : Union[str, Any] = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[int] = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case : int = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
411
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __UpperCamelCase ) -> bool: lowerCamelCase_ = str(__UpperCamelCase ) return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set('123456789' ) def _UpperCamelCase ( ) -> int | None: for base_num in range(99_99 ,49_99 ,-1 ): lowerCamelCase_ = 10_00_02 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate for base_num in range(3_33 ,99 ,-1 ): lowerCamelCase_ = 1_00_20_03 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
42
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = IFInpaintingSuperResolutionPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) __UpperCamelCase = PipelineTesterMixin.required_optional_params - {"latents"} def _lowerCAmelCase ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def _lowerCAmelCase ( self , _a , _a=0 ): """simple docstring""" if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _lowerCAmelCase ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_save_load_local() def _lowerCAmelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
543
'''simple docstring''' A_ = "Input must be a string of 8 numbers plus letter" A_ = "TRWAGMYFPDXBNJZSQVHLCKE" def _UpperCamelCase ( __UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) lowerCamelCase_ = spanish_id.replace('-' ,'' ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: lowerCamelCase_ = int(spanish_id_clean[0:8] ) lowerCamelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
42
0
import math import tensorflow as tf from packaging import version def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Any: SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = tf.cast(math.pi , x.dtype ) SCREAMING_SNAKE_CASE_ = tf.cast(0.0_4_4_7_1_5 , x.dtype ) SCREAMING_SNAKE_CASE_ = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> str: SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = tf.cast(0.0_4_4_7_1_5 , x.dtype ) SCREAMING_SNAKE_CASE_ = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> int: return tf.clip_by_value(_gelu(__UpperCamelCase ) , -10 , 10 ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : List[str]=-1 ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Dict: return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) lowerCamelCase__ : List[Any] = tf.keras.activations.gelu lowerCamelCase__ : Tuple = approximate_gelu_wrap else: lowerCamelCase__ : Optional[Any] = _gelu lowerCamelCase__ : Optional[Any] = _gelu_new lowerCamelCase__ : Optional[int] = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Tuple: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
31
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = {'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase_ = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowerCamelCase_ = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def UpperCamelCase( self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。 こんばんは、㔺界。' lowerCamelCase_ = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowerCamelCase_ = 'こんにちは、、、、世界。こんばんは、、、、世界。' lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。こんばんは、世界。😀' lowerCamelCase_ = tokenizer.encode(prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode('' , prefix_text=prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = [1] + [0] * (len_prefix + len_text + 1) lowerCamelCase_ = [1] * (len_prefix + len_text + 1) + [0] lowerCamelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCamelCase_ = tokenizer(prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = tokenizer.encode('あンいワ' ) lowerCamelCase_ = tokenizer.encode('' , prefix_text='あンいワ' ) lowerCamelCase_ = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off lowerCamelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowerCamelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCamelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass
42
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase : Optional[int] = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> List[str]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) # get prompt text embeddings lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCamelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = text_embeddings.shape lowerCamelCase_ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = 42 if negative_prompt is None: lowerCamelCase_ = [''] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowerCamelCase_ = negative_prompt lowerCamelCase_ = text_input_ids.shape[-1] lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ = uncond_embeddings.shape[1] lowerCamelCase_ = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase_ = latents_reference.to(self.device ) lowerCamelCase_ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCamelCase_ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCamelCase_ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCamelCase_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCamelCase_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCamelCase_ = 0 if dx < 0 else dx lowerCamelCase_ = 0 if dy < 0 else dy lowerCamelCase_ = max(-dx , 0 ) lowerCamelCase_ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCamelCase_ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual lowerCamelCase_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase_ ,lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 1 / 0.18_215 * latents lowerCamelCase_ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCamelCase_ = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='pt' ).to( self.device ) lowerCamelCase_ ,lowerCamelCase_ = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCamelCase_ = None if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
42
0
from math import pow def A ( lowercase__ : int , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCamelCase__ :List[Any] = int(pow(__UpperCamelCase , __UpperCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = backtrack( __UpperCamelCase , __UpperCamelCase , current_number + 1 , __UpperCamelCase , __UpperCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCamelCase__ , UpperCamelCase__ :int = backtrack( __UpperCamelCase , __UpperCamelCase , current_number + 1 , __UpperCamelCase , __UpperCamelCase ) return current_sum, solutions_count def A ( lowercase__ : Union[str, Any] , lowercase__ : int ) -> int: if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(__UpperCamelCase , __UpperCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
45
'''simple docstring''' import pprint import requests A_ = "https://zenquotes.io/api" def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": A_ = random_quotes() pprint.pprint(response)
42
0
import argparse import datetime def SCREAMING_SNAKE_CASE ( snake_case ) -> str: __lowercase = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } __lowercase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__UpperCamelCase ) < 11: raise ValueError('Must be 10 characters long' ) # Get month __lowercase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) __lowercase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day __lowercase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator __lowercase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year __lowercase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation __lowercase = datetime.date(int(__UpperCamelCase ) , int(__UpperCamelCase ) , int(__UpperCamelCase ) ) # Start math if m <= 2: __lowercase = y - 1 __lowercase = m + 12 # maths var __lowercase = int(str(__UpperCamelCase )[:2] ) __lowercase = int(str(__UpperCamelCase )[2:] ) __lowercase = int(2.6 * m - 5.39 ) __lowercase = int(c / 4 ) __lowercase = int(k / 4 ) __lowercase = int(d + k ) __lowercase = int(t + u + v + x ) __lowercase = int(z - (2 * c) ) __lowercase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response __lowercase = F"Your date {date_input}, is a {days[str(__UpperCamelCase )]}!" return response if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ : List[Any] = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) SCREAMING_SNAKE_CASE_ : int = parser.parse_args() zeller(args.date_input)
375
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=33 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> int: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = EsmModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = EsmForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = EsmForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = () SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = EsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = EsmModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCamelCase_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCamelCase_ = create_position_ids_from_input_ids(SCREAMING_SNAKE_CASE_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.empty(2 , 4 , 30 ) lowerCamelCase_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCamelCase_ = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCamelCase_ = embeddings.create_position_ids_from_inputs_embeds(SCREAMING_SNAKE_CASE_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass @require_torch class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase_ = 33 lowerCamelCase_ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> Tuple: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. lowerCamelCase_ = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
42
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , )-> Optional[Any]: if config_name_or_path is None: __UpperCAmelCase = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __UpperCAmelCase = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __UpperCAmelCase = question_encoder_name_or_path __UpperCAmelCase = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __UpperCAmelCase = RagConfig.from_pretrained(__UpperCamelCase ) __UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) __UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) __UpperCAmelCase = gen_config __UpperCAmelCase = question_encoder_config __UpperCAmelCase = model_class.from_pretrained_question_encoder_generator( __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) rag_model.save_pretrained(__UpperCamelCase ) # Sanity check. model_class.from_pretrained(__UpperCamelCase ) # Save tokenizers. __UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": _A: Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) _A: Dict = parser.parse_args() _A: Optional[Any] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
126
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
42
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Dict: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCamelCase__: Dict = nn.Parameter(__UpperCamelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCamelCase__: Any = nn.Parameter(__UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] = np.asarray(weights[0] ) lowerCamelCase__: Tuple = np.asarray(weights[1] ) lowerCamelCase__: Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __UpperCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __UpperCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__UpperCamelCase ).view(-1 , __UpperCamelCase ).contiguous().transpose(0 , 1 ) , ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: '''simple docstring''' lowerCamelCase__: List[str] = np.asarray(weights[0] ) lowerCamelCase__: List[str] = np.asarray(weights[1] ) lowerCamelCase__: Optional[Any] = np.asarray(weights[2] ) lowerCamelCase__: Union[str, Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __UpperCamelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __UpperCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __UpperCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__UpperCamelCase ).view(-1 , __UpperCamelCase ).contiguous().transpose(0 , 1 ) , ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] = weights[0][0][0] lowerCamelCase__: str = np.asarray(layer_norm_a[0] ) lowerCamelCase__: Any = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__UpperCamelCase ) , torch.tensor(__UpperCamelCase ) , ) # lsh weights + output lowerCamelCase__: Optional[int] = weights[0][1] if len(__UpperCamelCase ) < 4: set_layer_weights_in_torch_lsh(__UpperCamelCase , torch_block.attention , __UpperCamelCase ) else: set_layer_weights_in_torch_local(__UpperCamelCase , torch_block.attention , __UpperCamelCase ) # intermediate weighs lowerCamelCase__: Dict = weights[2][0][1][2] # Chunked Feed Forward if len(__UpperCamelCase ) == 4: lowerCamelCase__: str = intermediate_weights[2] # layernorm 2 lowerCamelCase__: List[str] = np.asarray(intermediate_weights[0][0] ) lowerCamelCase__: Any = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__UpperCamelCase ) , torch.tensor(__UpperCamelCase ) , ) # intermediate dense lowerCamelCase__: Dict = np.asarray(intermediate_weights[1][0] ) lowerCamelCase__: Dict = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__UpperCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__UpperCamelCase ) , ) # intermediate out lowerCamelCase__: List[str] = np.asarray(intermediate_weights[4][0] ) lowerCamelCase__: List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__UpperCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__UpperCamelCase ) , ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: '''simple docstring''' lowerCamelCase__: List[str] = torch_model.reformer # word embeds lowerCamelCase__: List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__UpperCamelCase ) , ) if isinstance(weights[3] , __UpperCamelCase ): lowerCamelCase__: List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCamelCase__: Optional[int] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCamelCase__: Optional[int] = nn.Parameter(torch.tensor(__UpperCamelCase ) ) lowerCamelCase__: Optional[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __UpperCamelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCamelCase__: Union[str, Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # output layer norm lowerCamelCase__: str = np.asarray(weights[7][0] ) lowerCamelCase__: str = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__UpperCamelCase ) , torch.tensor(__UpperCamelCase ) , ) # output embeddings lowerCamelCase__: str = np.asarray(weights[9][0] ) lowerCamelCase__: Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__UpperCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__UpperCamelCase ) , ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: '''simple docstring''' lowerCamelCase__: Tuple = ReformerConfig.from_json_file(__UpperCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCamelCase__: int = ReformerModelWithLMHead(__UpperCamelCase ) with open(__UpperCamelCase , """rb""" ) as f: lowerCamelCase__: Optional[Any] = pickle.load(__UpperCamelCase )["""weights"""] set_model_weights_in_torch(__UpperCamelCase , __UpperCamelCase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowercase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'xlm-prophetnet' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 30522 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 128 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = num_encoder_layers lowerCamelCase_ = num_encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = num_decoder_layers lowerCamelCase_ = num_decoder_attention_heads lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = init_std # Normal(0, this parameter) lowerCamelCase_ = activation_function # parameters for xlmprophetnet lowerCamelCase_ = ngram lowerCamelCase_ = num_buckets lowerCamelCase_ = relative_max_distance lowerCamelCase_ = disable_ngram_loss lowerCamelCase_ = eps # 3 Types of Dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = dropout lowerCamelCase_ = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
42
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ = (DDPMScheduler,) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : int) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Dict ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[str]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]: '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: str =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.scheduler_classes[0] lowerCamelCase__: List[str] =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**SCREAMING_SNAKE_CASE_) lowerCamelCase__: List[str] =len(SCREAMING_SNAKE_CASE_) lowerCamelCase__: Optional[Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: str =scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase__: Union[str, Any] =pred_prev_sample lowerCamelCase__: Tuple =torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowerCamelCase__: str =torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Dict =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: int =scheduler_class(**SCREAMING_SNAKE_CASE_) lowerCamelCase__: Tuple =len(SCREAMING_SNAKE_CASE_) lowerCamelCase__: Any =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: List[str] =torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowerCamelCase__: Any =model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: List[Any] =scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: List[str] =torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowerCamelCase__: str =torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Dict =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**SCREAMING_SNAKE_CASE_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowerCamelCase__: Any =-1 else: lowerCamelCase__: List[Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowerCamelCase__: int =prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.scheduler_classes[0] lowerCamelCase__: Optional[int] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**SCREAMING_SNAKE_CASE_) lowerCamelCase__: Dict =[100, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**SCREAMING_SNAKE_CASE_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] lowerCamelCase__: Optional[int] =len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =self.scheduler_classes[0] lowerCamelCase__: str =self.get_scheduler_config() lowerCamelCase__: List[Any] =scheduler_class(**SCREAMING_SNAKE_CASE_) lowerCamelCase__: List[str] =[scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
59
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float: lowerCamelCase_ = x lowerCamelCase_ = y for step in range(__UpperCamelCase ): # noqa: B007 lowerCamelCase_ = a * a - b * b + x lowerCamelCase_ = 2 * a * b + y lowerCamelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( __UpperCamelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _UpperCamelCase ( __UpperCamelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase ,1 ,1 ) ) def _UpperCamelCase ( __UpperCamelCase = 8_00 ,__UpperCamelCase = 6_00 ,__UpperCamelCase = -0.6 ,__UpperCamelCase = 0 ,__UpperCamelCase = 3.2 ,__UpperCamelCase = 50 ,__UpperCamelCase = True ,) -> Image.Image: lowerCamelCase_ = Image.new('RGB' ,(image_width, image_height) ) lowerCamelCase_ = img.load() # loop through the image-coordinates for image_x in range(__UpperCamelCase ): for image_y in range(__UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase_ = figure_width / image_width * image_height lowerCamelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase_ = get_distance(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase_ = get_color_coded_rgb(__UpperCamelCase ) else: lowerCamelCase_ = get_black_and_white_rgb(__UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure A_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
42
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCAmelCase ( UpperCAmelCase__ ): UpperCAmelCase = "perceiver" def __init__( self : Optional[Any] , __lowerCamelCase : Dict=2_5_6 , __lowerCamelCase : Optional[Any]=1_2_8_0 , __lowerCamelCase : Optional[int]=7_6_8 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=2_6 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=8 , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Dict="kv" , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : int="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=2_6_2 , __lowerCamelCase : Any=2_0_4_8 , __lowerCamelCase : List[str]=5_6 , __lowerCamelCase : Tuple=[3_6_8, 4_9_6] , __lowerCamelCase : List[Any]=1_6 , __lowerCamelCase : List[str]=1_9_2_0 , __lowerCamelCase : Optional[int]=1_6 , __lowerCamelCase : List[str]=[1, 1_6, 2_2_4, 2_2_4] , **__lowerCamelCase : Optional[Any] , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ :Optional[Any] = num_latents UpperCAmelCase__ :List[Any] = d_latents UpperCAmelCase__ :Tuple = d_model UpperCAmelCase__ :List[str] = num_blocks UpperCAmelCase__ :Dict = num_self_attends_per_block UpperCAmelCase__ :Dict = num_self_attention_heads UpperCAmelCase__ :Any = num_cross_attention_heads UpperCAmelCase__ :Optional[Any] = qk_channels UpperCAmelCase__ :str = v_channels UpperCAmelCase__ :int = cross_attention_shape_for_attention UpperCAmelCase__ :Optional[int] = self_attention_widening_factor UpperCAmelCase__ :int = cross_attention_widening_factor UpperCAmelCase__ :Any = hidden_act UpperCAmelCase__ :str = attention_probs_dropout_prob UpperCAmelCase__ :Union[str, Any] = initializer_range UpperCAmelCase__ :Dict = layer_norm_eps UpperCAmelCase__ :List[Any] = use_query_residual # masked language modeling attributes UpperCAmelCase__ :List[str] = vocab_size UpperCAmelCase__ :Optional[Any] = max_position_embeddings # image classification attributes UpperCAmelCase__ :List[str] = image_size # flow attributes UpperCAmelCase__ :Dict = train_size # multimodal autoencoding attributes UpperCAmelCase__ :Tuple = num_frames UpperCAmelCase__ :int = audio_samples_per_frame UpperCAmelCase__ :List[str] = samples_per_patch UpperCAmelCase__ :Optional[Any] = output_shape class UpperCAmelCase ( UpperCAmelCase__ ): @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): if self.task == "multiple-choice": UpperCAmelCase__ :int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase__ :Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): return 1e-4 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] = -1 , __lowerCamelCase : Optional[int] = -1 , __lowerCamelCase : str = -1 , __lowerCamelCase : List[Any] = False , __lowerCamelCase : str = None , __lowerCamelCase : Union[str, Any] = 3 , __lowerCamelCase : Union[str, Any] = 4_0 , __lowerCamelCase : Optional[int] = 4_0 , ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ :Any = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ :Union[str, Any] = preprocessor.num_special_tokens_to_add(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ :int = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ :Optional[int] = [''' '''.join(['''a'''] ) * seq_length] * batch_size UpperCAmelCase__ :Dict = dict(preprocessor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase__ :int = inputs.pop('''input_ids''' ) return inputs elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ :Dict = compute_effective_axis_dimension(SCREAMING_SNAKE_CASE_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase__ :int = self._generate_dummy_images(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ :Any = dict(preprocessor(images=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase__ :Optional[Any] = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
467
'''simple docstring''' from math import isclose, sqrt def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> tuple[float, float, float]: lowerCamelCase_ = point_y / 4 / point_x lowerCamelCase_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCamelCase_ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCamelCase_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCamelCase_ = outgoing_gradient**2 + 4 lowerCamelCase_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCamelCase_ = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 lowerCamelCase_ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCamelCase_ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCamelCase_ = x_minus if isclose(__UpperCamelCase ,__UpperCamelCase ) else x_plus lowerCamelCase_ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _UpperCamelCase ( __UpperCamelCase = 1.4 ,__UpperCamelCase = -9.6 ) -> int: lowerCamelCase_ = 0 lowerCamelCase_ = first_x_coord lowerCamelCase_ = first_y_coord lowerCamelCase_ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = next_point(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
42
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
474
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis lowerCamelCase_ = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] lowerCamelCase_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__UpperCamelCase ,1 ): if n < _p: # then we have our last prime to check lowerCamelCase_ = primes[:idx] break lowerCamelCase_ ,lowerCamelCase_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase_ = False for r in range(__UpperCamelCase ): lowerCamelCase_ = pow(__UpperCamelCase ,d * 2**r ,__UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _UpperCamelCase ( ) -> None: assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
42
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class _lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' a_ : int =VOCAB_FILES_NAMES a_ : Optional[int] =PRETRAINED_VOCAB_FILES_MAP a_ : List[str] =["""input_ids""", """attention_mask"""] a_ : List[Any] =None def __init__( self : Tuple , UpperCamelCase : int=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : str="<unk>" , UpperCamelCase : Tuple="<s>" , UpperCamelCase : Dict="</s>" , UpperCamelCase : Dict="<pad>" , UpperCamelCase : List[Any]=False , UpperCamelCase : List[str]=False , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) _snake_case : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: _snake_case : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) _snake_case : Optional[int] = add_prefix_space _snake_case : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) _snake_case : Union[str, Any] = add_prefix_space def UpperCamelCase_ ( self : List[str] , *UpperCamelCase : Dict , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : Dict , *UpperCamelCase : Dict , **UpperCamelCase : Any ): '''simple docstring''' _snake_case : List[Any] = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: _snake_case : Tuple = input_ids[-self.model_max_length :] return input_ids
411
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ = 16 A_ = 32 def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 16 ,__UpperCamelCase = "bert-base-cased" ) -> List[Any]: lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = load_dataset('glue' ,'mrpc' ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets['train'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCamelCase_ = DataLoader( tokenized_datasets['validation'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: model.eval() lowerCamelCase_ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: lowerCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase ,references=__UpperCamelCase ,) lowerCamelCase_ = metric.compute() return eval_metric["accuracy"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]: # Initialize accelerator lowerCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config['lr'] lowerCamelCase_ = int(config['num_epochs'] ) lowerCamelCase_ = int(config['seed'] ) lowerCamelCase_ = int(config['batch_size'] ) lowerCamelCase_ = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCamelCase_ = 1 lowerCamelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCamelCase_ = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ = 0 lowerCamelCase_ = evaluate.load('glue' ,'mrpc' ) lowerCamelCase_ = num_epochs if args.partial_train_epoch is not None: lowerCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase_ = args.resume_from_checkpoint.split('epoch_' )[1] lowerCamelCase_ = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase_ = int(__UpperCamelCase ) + 1 lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) accelerator.print('resumed checkpoint performance:' ,__UpperCamelCase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,f'''state_{starting_epoch-1}.json''' ) ,'r' ) as f: lowerCamelCase_ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase_ = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.loss lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase_ = f'''epoch_{epoch}''' lowerCamelCase_ = os.path.join(args.output_dir ,__UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = accuracy lowerCamelCase_ = lr_scheduler.get_lr()[0] lowerCamelCase_ = optimizer.param_groups[0]['lr'] lowerCamelCase_ = epoch lowerCamelCase_ = overall_step accelerator.print(f'''epoch {epoch}:''' ,__UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f'''state_{epoch}.json''' ) ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> str: lowerCamelCase_ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=__UpperCamelCase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__UpperCamelCase ,) parser.add_argument( '--output_dir' ,type=__UpperCamelCase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=__UpperCamelCase ,default=2 ,help='Number of train epochs.' ,) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
42
0
"""simple docstring""" import pprint import requests lowerCAmelCase : List[str] = """https://zenquotes.io/api""" def a__ ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def a__ ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": lowerCAmelCase : Tuple = random_quotes() pprint.pprint(response)
543
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase_ = ksize + 1 lowerCamelCase_ = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__UpperCamelCase ): for x in range(__UpperCamelCase ): # distance from center lowerCamelCase_ = x - ksize // 2 lowerCamelCase_ = y - ksize // 2 # degree to radiant lowerCamelCase_ = theta / 1_80 * np.pi lowerCamelCase_ = np.cos(_theta ) lowerCamelCase_ = np.sin(_theta ) # get kernel x lowerCamelCase_ = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase_ = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A_ = imread("../image_data/lena.jpg") # turn image in gray scale value A_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A_ = out / out.max() * 255 A_ = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
42
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCamelCase__ : int = logging.get_logger(__name__) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = question_encoder SCREAMING_SNAKE_CASE_ = generator SCREAMING_SNAKE_CASE_ = self.question_encoder def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int ): if os.path.isfile(SCREAMING_SNAKE_CASE_ ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'question_encoder_tokenizer' ) SCREAMING_SNAKE_CASE_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE_ ) @classmethod def lowerCAmelCase_ ( cls : Any , _lowerCAmelCase : int , **_lowerCAmelCase : Optional[int] ): from ..auto.tokenization_auto import AutoTokenizer SCREAMING_SNAKE_CASE_ = kwargs.pop('config' , SCREAMING_SNAKE_CASE_ ) if config is None: SCREAMING_SNAKE_CASE_ = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE_ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE_ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : Tuple ): return self.current_tokenizer(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : Tuple , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Optional[Any] ): return self.generator.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : Dict , *_lowerCAmelCase : str , **_lowerCAmelCase : Tuple ): return self.generator.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.question_encoder def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.generator def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] = None , _lowerCAmelCase : Union[str, Any] = None , _lowerCAmelCase : List[str] = None , _lowerCAmelCase : Tuple = "longest" , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Optional[Any] = True , **_lowerCAmelCase : Optional[Any] , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE_ , ) if max_length is None: SCREAMING_SNAKE_CASE_ = self.current_tokenizer.model_max_length SCREAMING_SNAKE_CASE_ = self( SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: SCREAMING_SNAKE_CASE_ = self.current_tokenizer.model_max_length SCREAMING_SNAKE_CASE_ = self( text_target=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_ = labels['input_ids'] return model_inputs
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ['transformers', 'torch', 'note_seq'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
42
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def a_ ( __lowercase : int ) -> List[Tuple[int, ...]]: _snake_case = [] if isinstance(__UpperCamelCase , __UpperCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def a_ ( __lowercase : str , __lowercase : Optional[int] ) -> Tuple[int, ...]: _snake_case = [] for d in reversed(__UpperCamelCase ): idx.append(flat_idx % d ) _snake_case = flat_idx // d return tuple(reversed(__UpperCamelCase ) ) @torch.jit.ignore def a_ ( __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Any , __lowercase : Optional[Any] = None , __lowercase : List[Any] = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__lowercase : Tuple ) -> None: _snake_case = True for i in range(len(__UpperCamelCase ) ): _snake_case = -1 * (i + 1) l[reversed_idx] &= tally _snake_case = l[reversed_idx] if start_edges is None: _snake_case = [s == 0 for s in start] reduce_edge_list(__UpperCamelCase ) if end_edges is None: _snake_case = [e == (d - 1) for e, d in zip(__UpperCamelCase , __UpperCamelCase )] reduce_edge_list(__UpperCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCamelCase ) == 0: return [()] elif len(__UpperCamelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _snake_case = [] _snake_case = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCamelCase , __UpperCamelCase ): if s == e: path_list.append(slice(__UpperCamelCase , s + 1 ) ) else: break _snake_case = tuple(__UpperCamelCase ) _snake_case = len(__UpperCamelCase ) # start == end, and we're done if divergence_idx == len(__UpperCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _snake_case = start[divergence_idx] return tuple( path + (slice(__UpperCamelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _snake_case = end[divergence_idx] return tuple( path + (slice(__UpperCamelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _snake_case = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def a_ ( __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : Any ) -> torch.Tensor: _snake_case = t.shape[:no_batch_dims] _snake_case = list(_flat_idx_to_idx(__UpperCamelCase , __UpperCamelCase ) ) # _get_minimal_slice_set is inclusive _snake_case = list(_flat_idx_to_idx(flat_end - 1 , __UpperCamelCase ) ) # Get an ordered list of slices to perform _snake_case = _get_minimal_slice_set( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) _snake_case = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def a_ ( __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : Dict , __lowercase : List[str] , __lowercase : List[str] = False , __lowercase : int = None , __lowercase : int = False , ) -> Any: if not (len(__UpperCamelCase ) > 0): raise ValueError('Must provide at least one input' ) _snake_case = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCamelCase )] _snake_case = tuple([max(__UpperCamelCase ) for s in zip(*__UpperCamelCase )] ) def _prep_inputs(__lowercase : Tuple ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _snake_case = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _snake_case = tensor_tree_map(_prep_inputs , __UpperCamelCase ) _snake_case = None if _out is not None: _snake_case = tensor_tree_map(lambda __lowercase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _snake_case = 1 for d in orig_batch_dims: flat_batch_dim *= d _snake_case = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__lowercase : str ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _snake_case = 0 _snake_case = prepped_outputs for _ in range(__UpperCamelCase ): # Chunk the input if not low_mem: _snake_case = _select_chunk else: _snake_case = partial( _chunk_slice , flat_start=__UpperCamelCase , flat_end=min(__UpperCamelCase , i + chunk_size ) , no_batch_dims=len(__UpperCamelCase ) , ) _snake_case = tensor_tree_map(__UpperCamelCase , __UpperCamelCase ) # Run the layer on the chunk _snake_case = layer(**__UpperCamelCase ) # Allocate space for the output if out is None: _snake_case = tensor_tree_map(lambda __lowercase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __UpperCamelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCamelCase , __UpperCamelCase ): def assign(__lowercase : Tuple , __lowercase : str ) -> None: for k, v in da.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): assign(__UpperCamelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _snake_case = da[k] assign(__UpperCamelCase , __UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): for xa, xa in zip(__UpperCamelCase , __UpperCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: _snake_case = xa elif isinstance(__UpperCamelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _snake_case = output_chunk else: raise ValueError('Not supported' ) i += chunk_size _snake_case = tensor_tree_map(lambda __lowercase : t.view(orig_batch_dims + t.shape[1:] ) , __UpperCamelCase ) return out class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Any , lowercase : Any = 512 , ): '''simple docstring''' _snake_case = max_chunk_size _snake_case = None _snake_case = None def A ( self : Dict , lowercase : int , lowercase : Any , lowercase : Optional[Any] ): '''simple docstring''' logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _snake_case = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _snake_case = [c for c in candidates if c > min_chunk_size] _snake_case = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowercase : str ) -> bool: try: with torch.no_grad(): fn(*SCREAMING_SNAKE_CASE_ , chunk_size=SCREAMING_SNAKE_CASE_ ) return True except RuntimeError: return False _snake_case = 0 _snake_case = len(SCREAMING_SNAKE_CASE_ ) - 1 while i > min_viable_chunk_size_index: _snake_case = test_chunk_size(candidates[i] ) if not viable: _snake_case = (min_viable_chunk_size_index + i) // 2 else: _snake_case = i _snake_case = (i + len(SCREAMING_SNAKE_CASE_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def A ( self : Any , lowercase : Any , lowercase : Tuple ): '''simple docstring''' _snake_case = True for aa, aa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert type(SCREAMING_SNAKE_CASE_ ) == type(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _snake_case = [v for _, v in sorted(aa.items() , key=lambda lowercase : x[0] )] _snake_case = [v for _, v in sorted(aa.items() , key=lambda lowercase : x[0] )] consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: consistent &= aa == aa return consistent def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : List[str] , ): '''simple docstring''' _snake_case = True _snake_case = tree_map(lambda lowercase : a.shape if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) else a , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(SCREAMING_SNAKE_CASE_ ) _snake_case = self._compare_arg_caches(self.cached_arg_data , SCREAMING_SNAKE_CASE_ ) else: # Otherwise, we can reuse the precomputed value _snake_case = False if not consistent: _snake_case = self._determine_favorable_chunk_size( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) _snake_case = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
686
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCamelCase( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) lowerCamelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vqvae_and_unet lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 ) lowerCamelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = self.dummy_unet_condition lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = torch.rand((1, 1, 10) ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = torch_device lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
42
0
def A ( lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : str , lowercase__ : Any ) -> List[Any]: if height >= 1: move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) move_disk(__UpperCamelCase , __UpperCamelCase ) move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def A ( lowercase__ : Optional[Any] , lowercase__ : Dict ) -> Tuple: print("""moving disk from""" , __UpperCamelCase , """to""" , __UpperCamelCase ) def A ( ) -> Tuple: UpperCamelCase__ :Optional[int] = int(input("""Height of hanoi: """ ).strip() ) move_tower(__UpperCamelCase , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
45
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _UpperCamelCase ( __UpperCamelCase = 8 ) -> str: lowerCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCamelCase ) lowerCamelCase_ = i // 3 lowerCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCamelCase_ = ( chars_incl + random(__UpperCamelCase ,quotient + remainder ) + random(__UpperCamelCase ,__UpperCamelCase ) + random(__UpperCamelCase ,__UpperCamelCase ) ) lowerCamelCase_ = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 8 ) -> bool: if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCamelCase_ = any(char in ascii_uppercase for char in password ) lowerCamelCase_ = any(char in ascii_lowercase for char in password ) lowerCamelCase_ = any(char in digits for char in password ) lowerCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _UpperCamelCase ( ) -> Optional[int]: lowerCamelCase_ = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCamelCase_ = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' ,password_generator(__UpperCamelCase ) ) print( 'Alternative Password generated:' ,alternative_password_generator(__UpperCamelCase ,__UpperCamelCase ) ,) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
42
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case ) -> int: __lowercase = original_name.split('.' )[0] __lowercase = key.split('.' ) __lowercase = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) __lowercase = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) __lowercase = orig_block_num - offset __lowercase = key.replace(F"{orig_block_num}.{layer_num}.{original_name}" , F"block.{new_block_num}.{layer_num}.{new_name}" ) return key def SCREAMING_SNAKE_CASE ( snake_case ) -> Dict: __lowercase = OrderedDict() __lowercase , __lowercase = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __lowercase = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __lowercase = key[: key.find('proj' )] __lowercase = key.replace(__UpperCamelCase , F"patch_embeddings.{total_embed_found}." ) __lowercase = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __lowercase = 'poolformer.encoder.' + key if "mlp.fc1" in key: __lowercase = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __lowercase = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __lowercase = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , 'norm1' , 'before_norm' ) if "norm2" in key: __lowercase = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __lowercase = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __lowercase = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __lowercase = key.replace('head' , 'classifier' ) __lowercase = value return new_state_dict def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Tuple: __lowercase = PoolFormerConfig() # set attributes based on model_name __lowercase = 'huggingface/label-files' __lowercase = model_name[-3:] __lowercase = 1_000 __lowercase = 'imagenet-1k-id2label.json' __lowercase = (1, 1_000) # set config attributes __lowercase = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} if size == "s12": __lowercase = [2, 2, 6, 2] __lowercase = [64, 128, 320, 512] __lowercase = 4.0 __lowercase = 0.9 elif size == "s24": __lowercase = [4, 4, 12, 4] __lowercase = [64, 128, 320, 512] __lowercase = 4.0 __lowercase = 0.9 elif size == "s36": __lowercase = [6, 6, 18, 6] __lowercase = [64, 128, 320, 512] __lowercase = 4.0 __lowercase = 1E-6 __lowercase = 0.9 elif size == "m36": __lowercase = [6, 6, 18, 6] __lowercase = [96, 192, 384, 768] __lowercase = 4.0 __lowercase = 1E-6 __lowercase = 0.95 elif size == "m48": __lowercase = [8, 8, 24, 8] __lowercase = [96, 192, 384, 768] __lowercase = 4.0 __lowercase = 1E-6 __lowercase = 0.95 else: raise ValueError(F"Size {size} not supported" ) # load image processor __lowercase = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image __lowercase = prepare_img() __lowercase = image_processor(images=__UpperCamelCase , return_tensors='pt' ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict __lowercase = torch.load(__UpperCamelCase , map_location=torch.device('cpu' ) ) # rename keys __lowercase = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict __lowercase = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor __lowercase = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) __lowercase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __lowercase = model(__UpperCamelCase ) __lowercase = outputs.logits # define expected logit slices for different models if size == "s12": __lowercase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __lowercase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __lowercase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __lowercase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __lowercase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
375
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase_ = test_metrics @require_cpu def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase( self ) -> Tuple: '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) lowerCamelCase_ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
42
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): _A : Union[str, Any] = ["""transformers""", """torch""", """note_seq"""] def __init__( self , *__A , **__A ): requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def __lowerCamelCase ( cls , *__A , **__A ): requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def __lowerCamelCase ( cls , *__A , **__A ): requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
126
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: if hor == 1_28: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 64, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') lowerCamelCase_ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase_ = model.state_dict() lowerCamelCase_ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> Tuple: lowerCamelCase_ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } lowerCamelCase_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) lowerCamelCase_ = model lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : def __init__( self : List[str] , __a : Union[str, Any] , __a : int=13 , __a : Dict=32 , __a : str=3 , __a : Dict=4 , __a : List[Any]=[10, 20, 30, 40] , __a : List[str]=[2, 2, 3, 2] , __a : Union[str, Any]=True , __a : Dict=True , __a : Optional[Any]=37 , __a : Dict="gelu" , __a : int=10 , __a : List[Any]=0.02 , __a : Any=["stage2", "stage3", "stage4"] , __a : List[str]=[2, 3, 4] , __a : int=None , ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = parent lowerCamelCase__: Optional[int] = batch_size lowerCamelCase__: List[Any] = image_size lowerCamelCase__: Optional[Any] = num_channels lowerCamelCase__: str = num_stages lowerCamelCase__: List[str] = hidden_sizes lowerCamelCase__: int = depths lowerCamelCase__: List[str] = is_training lowerCamelCase__: Optional[int] = use_labels lowerCamelCase__: List[str] = intermediate_size lowerCamelCase__: Optional[int] = hidden_act lowerCamelCase__: List[Any] = num_labels lowerCamelCase__: Tuple = initializer_range lowerCamelCase__: Tuple = out_features lowerCamelCase__: int = out_indices lowerCamelCase__: str = scope def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__: Dict = None if self.use_labels: lowerCamelCase__: List[str] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__: Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase_ ( self : Union[str, Any] , __a : Union[str, Any] , __a : List[str] , __a : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: List[str] = ConvNextModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__: int = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[Any] , __a : Optional[Any] , __a : Tuple , __a : Any ): '''simple docstring''' lowerCamelCase__: str = ConvNextForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__: Optional[Any] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : List[str] , __a : Tuple , __a : Optional[int] , __a : Tuple ): '''simple docstring''' lowerCamelCase__: List[str] = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__: Tuple = None lowerCamelCase__: Dict = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Tuple = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: str = config_and_inputs lowerCamelCase__: Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCamelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __lowerCamelCase = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: List[str] = ConvNextModelTester(self ) lowerCamelCase__: Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : str ): '''simple docstring''' return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Tuple = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Any = [*signature.parameters.keys()] lowerCamelCase__: Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(__a : List[Any] , __a : List[Any] , __a : Optional[int] ): lowerCamelCase__: str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowerCamelCase__: Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase__: List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__: Dict = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase__ , lowerCamelCase__: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowerCamelCase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def lowerCamelCase_ ( self : int ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: str = ConvNextModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: List[str] = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: str = self.default_image_processor lowerCamelCase__: Union[str, Any] = prepare_img() lowerCamelCase__: List[Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase__: List[str] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowerCamelCase__: Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Tuple = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase , UpperCAmelCase__ ): __lowerCamelCase = (ConvNextBackbone,) if is_torch_available() else () __lowerCamelCase = ConvNextConfig __lowerCamelCase = False def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: str = ConvNextModelTester(self )
306
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ = 250_004 A_ = 250_020 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = MBartTokenizer SCREAMING_SNAKE_CASE_ = MBartTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase( self ) -> int: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'facebook/mbart-large-en-ro' SCREAMING_SNAKE_CASE_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE_ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def UpperCamelCase( cls ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase_ = 1 return cls def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) lowerCamelCase_ = targets['input_ids'] lowerCamelCase_ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
42
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ = ["pixel_values"] def __init__(self : Optional[int] , UpperCAmelCase_ : Union[str, Any] = True , UpperCAmelCase_ : List[Any] = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : Dict = PILImageResampling.BILINEAR , UpperCAmelCase_ : Optional[int] = True , UpperCAmelCase_ : Union[str, Any] = 1 / 255 , UpperCAmelCase_ : List[str] = True , UpperCAmelCase_ : Dict = None , UpperCAmelCase_ : Any = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowerCamelCase__: Union[str, Any] =size if size is not None else {"shortest_edge": 384} lowerCamelCase__: Union[str, Any] =get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_) lowerCamelCase__: Tuple =do_resize lowerCamelCase__: Any =size # Default value set here for backwards compatibility where the value in config is None lowerCamelCase__: Tuple =crop_pct if crop_pct is not None else 224 / 256 lowerCamelCase__: Dict =resample lowerCamelCase__: Optional[Any] =do_rescale lowerCamelCase__: Optional[Any] =rescale_factor lowerCamelCase__: List[Any] =do_normalize lowerCamelCase__: Dict =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__: int =image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any = PILImageResampling.BICUBIC , UpperCAmelCase_ : Union[str, Any] = None , **UpperCAmelCase_ : List[str] , ) ->np.ndarray: '''simple docstring''' lowerCamelCase__: int =get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}""") lowerCamelCase__: Union[str, Any] =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCamelCase__: Any =int(shortest_edge / crop_pct) lowerCamelCase__: Union[str, Any] =get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_) lowerCamelCase__: Union[str, Any] =resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE_ , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE_ , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] = None , **UpperCAmelCase_ : List[str] , ) ->Dict: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] = None , **UpperCAmelCase_ : Any , ) ->np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : List[str] = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Any] = ChannelDimension.FIRST , **UpperCAmelCase_ : int , ) ->PIL.Image.Image: '''simple docstring''' lowerCamelCase__: List[Any] =do_resize if do_resize is not None else self.do_resize lowerCamelCase__: Optional[int] =crop_pct if crop_pct is not None else self.crop_pct lowerCamelCase__: Union[str, Any] =resample if resample is not None else self.resample lowerCamelCase__: int =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__: Any =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__: Optional[Any] =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__: str =image_mean if image_mean is not None else self.image_mean lowerCamelCase__: List[str] =image_std if image_std is not None else self.image_std lowerCamelCase__: Optional[Any] =size if size is not None else self.size lowerCamelCase__: str =get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_) lowerCamelCase__: int =make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. lowerCamelCase__: int =[to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_resize: lowerCamelCase__: Tuple =[self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowerCamelCase__: int =[self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_normalize: lowerCamelCase__: Tuple =[self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_) for image in images] lowerCamelCase__: Union[str, Any] =[to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowerCamelCase__: Tuple ={"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
59
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'ylacombe/bark-small' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = 'en_speaker_1' lowerCamelCase_ = 'This is a test string' lowerCamelCase_ = 'speaker_embeddings_path.json' lowerCamelCase_ = 'speaker_embeddings' def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase_ = 35 lowerCamelCase_ = 2 lowerCamelCase_ = 8 lowerCamelCase_ = { 'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase_ = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string ) lowerCamelCase_ = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
42
0
'''simple docstring''' from math import pow, sqrt def a__ ( *UpperCamelCase_ : Tuple ): UpperCAmelCase__ :List[str] = len(__UpperCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def a__ ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any ): return ( round(sqrt(molar_mass_a / molar_mass_a ), 6 ) if validate(__UpperCamelCase, __UpperCamelCase ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def a__ ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : str, UpperCamelCase_ : Tuple ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ), 6 ) if validate(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a__ ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Dict ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ), 6 ) if validate(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a__ ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str] ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a, 2 ), 6 ) if validate(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a__ ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any] ): return ( round(pow(effusion_rate_a / effusion_rate_a, 2 ) / molar_mass, 6 ) if validate(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
467
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} A_ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } A_ = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase ,__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowerCamelCase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ ,lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowerCamelCase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = ' '.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = word return word def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) return bpe_tokens def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = ''.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) lowerCamelCase_ = 0 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs)
42
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {} class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ = """llama""" lowerCAmelCase__ = ["""past_key_values"""] def __init__( self : Dict , _lowerCAmelCase : Union[str, Any]=3_2_0_0_0 , _lowerCAmelCase : Dict=4_0_9_6 , _lowerCAmelCase : List[str]=1_1_0_0_8 , _lowerCAmelCase : Optional[int]=3_2 , _lowerCAmelCase : Tuple=3_2 , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]="silu" , _lowerCAmelCase : Optional[int]=2_0_4_8 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : List[Any]=1e-6 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[Any]=0 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Union[str, Any] , ): '''simple docstring''' __lowercase =vocab_size __lowercase =max_position_embeddings __lowercase =hidden_size __lowercase =intermediate_size __lowercase =num_hidden_layers __lowercase =num_attention_heads # for backward compatibility if num_key_value_heads is None: __lowercase =num_attention_heads __lowercase =num_key_value_heads __lowercase =hidden_act __lowercase =initializer_range __lowercase =rms_norm_eps __lowercase =pretraining_tp __lowercase =use_cache __lowercase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def __lowerCamelCase ( self : Any): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""") __lowercase =self.rope_scaling.get('type' , SCREAMING_SNAKE_CASE_) __lowercase =self.rope_scaling.get('factor' , SCREAMING_SNAKE_CASE_) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}""") if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}""")
474
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } A_ = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } A_ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = RealmTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = do_lower_case def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = PaddingStrategy.MAX_LENGTH lowerCamelCase_ = text lowerCamelCase_ = kwargs.pop('text_pair' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = kwargs.pop('return_tensors' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(SCREAMING_SNAKE_CASE_ ): if batch_text_pair is not None: lowerCamelCase_ = batch_text_pair[idx] else: lowerCamelCase_ = None lowerCamelCase_ = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = encoded_candidates.get('input_ids' ) lowerCamelCase_ = encoded_candidates.get('attention_mask' ) lowerCamelCase_ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(SCREAMING_SNAKE_CASE_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(SCREAMING_SNAKE_CASE_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {key: item for key, item in output_data.items() if len(SCREAMING_SNAKE_CASE_ ) != 0} return BatchEncoding(SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
42
0
from math import isclose, sqrt def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[str] , lowerCAmelCase: Tuple )-> tuple[float, float, float]: _snake_case : Dict = point_y / 4 / point_x _snake_case : Dict = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _snake_case : int = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _snake_case : str = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _snake_case : Union[str, Any] = outgoing_gradient**2 + 4 _snake_case : Optional[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _snake_case : int = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 _snake_case : List[Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _snake_case : Tuple = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _snake_case : Union[str, Any] = x_minus if isclose(__UpperCamelCase , __UpperCamelCase ) else x_plus _snake_case : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCamelCase_ ( lowerCAmelCase: str = 1.4 , lowerCAmelCase: Optional[Any] = -9.6 )-> int: _snake_case : Dict = 0 _snake_case : List[str] = first_x_coord _snake_case : List[str] = first_y_coord _snake_case : int = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): _snake_case , _snake_case , _snake_case : Optional[int] = next_point(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
411
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __UpperCamelCase ) -> bool: lowerCamelCase_ = str(__UpperCamelCase ) return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set('123456789' ) def _UpperCamelCase ( ) -> int | None: for base_num in range(99_99 ,49_99 ,-1 ): lowerCamelCase_ = 10_00_02 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate for base_num in range(3_33 ,99 ,-1 ): lowerCamelCase_ = 1_00_20_03 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
42
0
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def a__ ( snake_case__ ) -> List[str]: if hor == 1_28: lowerCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase = (32, 1_28, 2_56) lowerCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase = (32, 64, 1_28, 2_56) lowerCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) lowerCamelCase = model.state_dict() lowerCamelCase = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_55_36, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase = UNetaDModel(**__UpperCamelCase ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def a__ ( ) -> Tuple: lowerCamelCase = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 1_28, 2_56), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_55_36, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase = model lowerCamelCase = UNetaDModel(**__UpperCamelCase ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
543
'''simple docstring''' A_ = "Input must be a string of 8 numbers plus letter" A_ = "TRWAGMYFPDXBNJZSQVHLCKE" def _UpperCamelCase ( __UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) lowerCamelCase_ = spanish_id.replace('-' ,'' ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: lowerCamelCase_ = int(spanish_id_clean[0:8] ) lowerCamelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
42
0
lowerCamelCase__ : List[str] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowerCamelCase__ : Optional[int] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ) -> list[int]: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) order.append(__UpperCamelCase ) return order def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ) -> list[int]: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return component def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> list[list[int]]: SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ) * [False] SCREAMING_SNAKE_CASE_ = {vert: [] for vert in range(len(__UpperCamelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = [] for i, was_visited in enumerate(__UpperCamelCase ): if not was_visited: order += topology_sort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ) * [False] for i in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE_ = order[len(__UpperCamelCase ) - i - 1] if not visited[vert]: SCREAMING_SNAKE_CASE_ = find_components(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) components_list.append(__UpperCamelCase ) return components_list
31
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = {'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase_ = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowerCamelCase_ = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def UpperCamelCase( self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。 こんばんは、㔺界。' lowerCamelCase_ = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowerCamelCase_ = 'こんにちは、、、、世界。こんばんは、、、、世界。' lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。こんばんは、世界。😀' lowerCamelCase_ = tokenizer.encode(prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode('' , prefix_text=prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = [1] + [0] * (len_prefix + len_text + 1) lowerCamelCase_ = [1] * (len_prefix + len_text + 1) + [0] lowerCamelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCamelCase_ = tokenizer(prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = tokenizer.encode('あンいワ' ) lowerCamelCase_ = tokenizer.encode('' , prefix_text='あンいワ' ) lowerCamelCase_ = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off lowerCamelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowerCamelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCamelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass
42
0
from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): '''simple docstring''' _UpperCAmelCase : Dict = ["image_processor", "feature_extractor"] _UpperCAmelCase : List[Any] = "TvltImageProcessor" _UpperCAmelCase : Optional[Any] = "TvltFeatureExtractor" def __init__( self : int , lowercase : int , lowercase : int ): '''simple docstring''' super().__init__(image_processor=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ ) _snake_case = image_processor _snake_case = feature_extractor def __call__( self : Optional[int] , lowercase : int=None , lowercase : int=None , lowercase : str=None , lowercase : int=None , lowercase : Optional[int]=False , lowercase : Optional[Any]=False , *lowercase : Any , **lowercase : str , ): '''simple docstring''' if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) _snake_case = None if images is not None: _snake_case = self.image_processor(SCREAMING_SNAKE_CASE_ , mask_pixel=SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images_mixed is not None: _snake_case = self.image_processor(SCREAMING_SNAKE_CASE_ , is_mixed=SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if audio is not None: _snake_case = self.feature_extractor( SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , mask_audio=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _snake_case = {} if audio is not None: output_dict.update(SCREAMING_SNAKE_CASE_ ) if images is not None: output_dict.update(SCREAMING_SNAKE_CASE_ ) if images_mixed_dict is not None: output_dict.update(SCREAMING_SNAKE_CASE_ ) return output_dict @property def A ( self : str ): '''simple docstring''' _snake_case = self.image_processor.model_input_names _snake_case = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
686
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> List[str]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) # get prompt text embeddings lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCamelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = text_embeddings.shape lowerCamelCase_ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = 42 if negative_prompt is None: lowerCamelCase_ = [''] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowerCamelCase_ = negative_prompt lowerCamelCase_ = text_input_ids.shape[-1] lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ = uncond_embeddings.shape[1] lowerCamelCase_ = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase_ = latents_reference.to(self.device ) lowerCamelCase_ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCamelCase_ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCamelCase_ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCamelCase_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCamelCase_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCamelCase_ = 0 if dx < 0 else dx lowerCamelCase_ = 0 if dy < 0 else dy lowerCamelCase_ = max(-dx , 0 ) lowerCamelCase_ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCamelCase_ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual lowerCamelCase_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase_ ,lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 1 / 0.18_215 * latents lowerCamelCase_ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCamelCase_ = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='pt' ).to( self.device ) lowerCamelCase_ ,lowerCamelCase_ = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCamelCase_ = None if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
42
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCAmelCase_ : """simple docstring""" _snake_case : List[str] = None def __a ( self :Dict ): UpperCamelCase__ :Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase__ :Union[str, Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE_ ) def __a ( self :Dict ): UpperCamelCase__ :Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , """feat_extract.json""" ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Union[str, Any] = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __a ( self :List[str] ): UpperCamelCase__ :Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :Any = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE_ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Optional[Any] = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __a ( self :Any ): UpperCamelCase__ :Dict = self.feature_extraction_class() self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
45
'''simple docstring''' import pprint import requests A_ = "https://zenquotes.io/api" def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": A_ = random_quotes() pprint.pprint(response)
42
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Any = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class snake_case_ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = '''visual_bert''' def __init__( self : Optional[int] , __lowerCamelCase : int=30_522 , __lowerCamelCase : int=768 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : Optional[int]=3_072 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Union[str, Any]=512 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : int=1E-1_2 , __lowerCamelCase : str=False , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Any=2 , **__lowerCamelCase : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = visual_embedding_dim __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = bypass_transformer __lowercase = special_visual_initialize
375
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=33 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> int: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = EsmModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = EsmForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = EsmForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = () SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = EsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = EsmModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCamelCase_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCamelCase_ = create_position_ids_from_input_ids(SCREAMING_SNAKE_CASE_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.empty(2 , 4 , 30 ) lowerCamelCase_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCamelCase_ = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCamelCase_ = embeddings.create_position_ids_from_inputs_embeds(SCREAMING_SNAKE_CASE_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass @require_torch class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase_ = 33 lowerCamelCase_ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> Tuple: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. lowerCamelCase_ = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
42
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch _A: Tuple = random.Random() def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None )-> Dict: if rng is None: __UpperCAmelCase = global_rng __UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCAmelCase ( unittest.TestCase ): def __init__( self , __A , __A=7 , __A=400 , __A=2_000 , __A=1 , __A=0.0 , __A=16_000 , __A=True , __A=80 , __A=16 , __A=64 , __A="hann_window" , __A=80 , __A=7_600 , __A=1E-10 , __A=True , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = min_seq_length __UpperCAmelCase = max_seq_length __UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase = feature_size __UpperCAmelCase = padding_value __UpperCAmelCase = sampling_rate __UpperCAmelCase = do_normalize __UpperCAmelCase = num_mel_bins __UpperCAmelCase = hop_length __UpperCAmelCase = win_length __UpperCAmelCase = win_function __UpperCAmelCase = fmin __UpperCAmelCase = fmax __UpperCAmelCase = mel_floor __UpperCAmelCase = return_attention_mask def __lowerCamelCase ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __lowerCamelCase ( self , __A=False , __A=False ): def _flatten(__A ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: __UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs def __lowerCamelCase ( self , __A=False , __A=False ): if equal_length: __UpperCAmelCase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCAmelCase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs @require_torch class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): _A : Dict = SpeechTaFeatureExtractor def __lowerCamelCase ( self ): __UpperCAmelCase = SpeechTaFeatureExtractionTester(self ) def __lowerCamelCase ( self , __A ): self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_ , axis=0 ) - 1 ) < 1E-3 ) ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input __UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values __UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test batched __UpperCAmelCase = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values __UpperCAmelCase = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = ['longest', 'max_length', 'do_not_pad'] __UpperCAmelCase = [None, 1_600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase = feat_extract(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = range(800 , 1_400 , 200 ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in lengths] __UpperCAmelCase = ['longest', 'max_length', 'do_not_pad'] __UpperCAmelCase = [None, 1_600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase = feat_extract(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=1_000 , padding='max_length' , return_tensors='np' ) __UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=1_000 , padding='longest' , return_tensors='np' ) __UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=2_000 , padding='longest' , return_tensors='np' ) __UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = np.random.rand(100 ).astype(np.floataa ) __UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __UpperCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test feature size __UpperCAmelCase = feature_extractor(audio_target=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input __UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values __UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test batched __UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values __UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCAmelCase = np.asarray(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values __UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) for x, y in zip(SCREAMING_SNAKE_CASE_ , processed_features[input_name] ) ) ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) __UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowerCamelCase ( self ): __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) __UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowerCamelCase ( self ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) __UpperCAmelCase = feat_extract.num_mel_bins # hack! __UpperCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='np' )[input_name] __UpperCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.feat_extract_dict __UpperCAmelCase = True __UpperCAmelCase = self.feature_extraction_class(**SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() __UpperCAmelCase = [len(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) __UpperCAmelCase = feat_extract.num_mel_bins # hack! __UpperCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.feat_extract_dict __UpperCAmelCase = True __UpperCAmelCase = self.feature_extraction_class(**SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() __UpperCAmelCase = [len(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) __UpperCAmelCase = min(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = feat_extract.num_mel_bins # hack! __UpperCAmelCase = feat_extract.pad( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __lowerCamelCase ( self , __A ): from datasets import load_dataset __UpperCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCAmelCase = ds.sort('id' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __lowerCamelCase ( self ): __UpperCAmelCase = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on __UpperCAmelCase = self._load_datasamples(1 ) __UpperCAmelCase = SpeechTaFeatureExtractor() __UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , SCREAMING_SNAKE_CASE_ , atol=1E-6 ) ) def __lowerCamelCase ( self ): __UpperCAmelCase = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on __UpperCAmelCase = self._load_datasamples(1 ) __UpperCAmelCase = SpeechTaFeatureExtractor() __UpperCAmelCase = feature_extractor(audio_target=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
126
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
42
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCamelCase__ ( UpperCAmelCase__ ): __lowerCamelCase = """data2vec-audio""" def __init__( self : Tuple , __a : List[Any]=32 , __a : List[str]=768 , __a : List[Any]=12 , __a : str=12 , __a : Optional[Any]=3072 , __a : List[str]="gelu" , __a : Dict=0.1 , __a : Union[str, Any]=0.1 , __a : List[str]=0.1 , __a : Optional[Any]=0.0 , __a : Dict=0.1 , __a : Optional[int]=0.1 , __a : str=0.02 , __a : Tuple=1e-5 , __a : int="gelu" , __a : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __a : Dict=(5, 2, 2, 2, 2, 2, 2) , __a : int=(10, 3, 3, 3, 3, 2, 2) , __a : Dict=False , __a : Tuple=16 , __a : List[str]=19 , __a : int=5 , __a : Optional[int]=0.05 , __a : List[Any]=10 , __a : Union[str, Any]=2 , __a : Optional[int]=0.0 , __a : Optional[Any]=10 , __a : List[Any]=0 , __a : Union[str, Any]="sum" , __a : List[Any]=False , __a : List[Any]=False , __a : Any=256 , __a : Optional[Any]=(512, 512, 512, 512, 1500) , __a : List[Any]=(5, 3, 3, 1, 1) , __a : Optional[Any]=(1, 2, 3, 1, 1) , __a : Union[str, Any]=512 , __a : List[str]=0 , __a : List[Any]=1 , __a : Any=2 , __a : List[Any]=False , __a : int=3 , __a : Union[str, Any]=2 , __a : List[str]=3 , __a : List[Any]=None , **__a : str , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: List[Any] = hidden_size lowerCamelCase__: str = feat_extract_activation lowerCamelCase__: Tuple = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: str = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: List[str] = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Any = conv_bias lowerCamelCase__: Tuple = num_conv_pos_embeddings lowerCamelCase__: List[str] = num_conv_pos_embedding_groups lowerCamelCase__: int = conv_pos_kernel_size lowerCamelCase__: Any = len(self.conv_dim ) lowerCamelCase__: Union[str, Any] = num_hidden_layers lowerCamelCase__: List[str] = intermediate_size lowerCamelCase__: int = hidden_act lowerCamelCase__: List[Any] = num_attention_heads lowerCamelCase__: List[Any] = hidden_dropout lowerCamelCase__: Tuple = attention_dropout lowerCamelCase__: int = activation_dropout lowerCamelCase__: List[str] = feat_proj_dropout lowerCamelCase__: List[Any] = final_dropout lowerCamelCase__: Any = layerdrop lowerCamelCase__: Dict = layer_norm_eps lowerCamelCase__: str = initializer_range lowerCamelCase__: List[Any] = vocab_size lowerCamelCase__: Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: Any = mask_time_prob lowerCamelCase__: str = mask_time_length lowerCamelCase__: int = mask_time_min_masks lowerCamelCase__: Dict = mask_feature_prob lowerCamelCase__: List[Any] = mask_feature_length lowerCamelCase__: Tuple = mask_feature_min_masks # ctc loss lowerCamelCase__: Optional[Any] = ctc_loss_reduction lowerCamelCase__: Union[str, Any] = ctc_zero_infinity # adapter lowerCamelCase__: Dict = add_adapter lowerCamelCase__: Dict = adapter_kernel_size lowerCamelCase__: Optional[Any] = adapter_stride lowerCamelCase__: Tuple = num_adapter_layers lowerCamelCase__: Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase__: Union[str, Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase__: List[Any] = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: int = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Dict = xvector_output_dim @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return math.prod(self.conv_stride )
306
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'xlm-prophetnet' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 30522 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 128 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = num_encoder_layers lowerCamelCase_ = num_encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = num_decoder_layers lowerCamelCase_ = num_decoder_attention_heads lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = init_std # Normal(0, this parameter) lowerCamelCase_ = activation_function # parameters for xlmprophetnet lowerCamelCase_ = ngram lowerCamelCase_ = num_buckets lowerCamelCase_ = relative_max_distance lowerCamelCase_ = disable_ngram_loss lowerCamelCase_ = eps # 3 Types of Dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = dropout lowerCamelCase_ = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
42
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __A = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __A = 12_8022 __A = 12_8028 @require_sentencepiece class _SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowercase_ = MaMaaaTokenizer lowercase_ = False lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' super().setUp() lowerCamelCase__: int =["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] lowerCamelCase__: Dict =dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_)))) lowerCamelCase__: Optional[Any] =Path(self.tmpdirname) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["vocab_file"]) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["spm_file"]) lowerCamelCase__: List[Any] =MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : List[str] , **UpperCAmelCase_ : Optional[Any]) ->List[str]: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : int) ->str: '''simple docstring''' return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str ="</s>" lowerCamelCase__: Union[str, Any] =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =self.get_tokenizer() lowerCamelCase__: Tuple =list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , "</s>") self.assertEqual(vocab_keys[1] , "<unk>") self.assertEqual(vocab_keys[-1] , "<s>") self.assertEqual(len(SCREAMING_SNAKE_CASE_) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip("Skip this test while all models are still to be uploaded.") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' lowerCamelCase__: Dict =self.get_tokenizer() lowerCamelCase__: Optional[Any] =tokenizer.tokenize("This is a test") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [2, 3, 4, 5, 6] , ) lowerCamelCase__: int =tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["▁This", "▁is", "▁a", "▁t", "est"]) lowerCamelCase__: Union[str, Any] =tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , "This is a test") @slow def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Any ={"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = "facebook/m2m100_418M" lowercase_ = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] lowercase_ = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L\'affaire NSA souligne l\'absence totale de débat sur le renseignement", ] # fmt: off lowercase_ = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict) ->int: '''simple docstring''' lowerCamelCase__: Any =MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr") lowerCamelCase__: Any =1 return cls def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar") , 128_006) self.assertEqual(self.tokenizer.get_lang_id("en") , 128_022) self.assertEqual(self.tokenizer.get_lang_id("ro") , 128_076) self.assertEqual(self.tokenizer.get_lang_id("mr") , 128_063) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: str =self.tokenizer.get_vocab() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , self.tokenizer.vocab_size) self.assertEqual(vocab["<unk>"] , 3) self.assertIn(self.tokenizer.get_lang_token("en") , SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="en" lowerCamelCase__: Any =self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids) # fmt: off lowerCamelCase__: Tuple =[FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on lowerCamelCase__: Dict =self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowerCamelCase__: int =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =tempfile.mkdtemp() lowerCamelCase__: Optional[int] =self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_) lowerCamelCase__: Dict =MaMaaaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertDictEqual(new_tok.lang_token_to_id , SCREAMING_SNAKE_CASE_) @require_torch def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' lowerCamelCase__: str ="en" lowerCamelCase__: Any ="fr" lowerCamelCase__: Dict =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors="pt") lowerCamelCase__: Optional[int] =shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: lowerCamelCase__: List[Any] =batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] ="mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr")]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) lowerCamelCase__: List[str] ="zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh")]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr")]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) lowerCamelCase__: Union[str, Any] ="zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh")]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar") self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
59
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float: lowerCamelCase_ = x lowerCamelCase_ = y for step in range(__UpperCamelCase ): # noqa: B007 lowerCamelCase_ = a * a - b * b + x lowerCamelCase_ = 2 * a * b + y lowerCamelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( __UpperCamelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _UpperCamelCase ( __UpperCamelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase ,1 ,1 ) ) def _UpperCamelCase ( __UpperCamelCase = 8_00 ,__UpperCamelCase = 6_00 ,__UpperCamelCase = -0.6 ,__UpperCamelCase = 0 ,__UpperCamelCase = 3.2 ,__UpperCamelCase = 50 ,__UpperCamelCase = True ,) -> Image.Image: lowerCamelCase_ = Image.new('RGB' ,(image_width, image_height) ) lowerCamelCase_ = img.load() # loop through the image-coordinates for image_x in range(__UpperCamelCase ): for image_y in range(__UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase_ = figure_width / image_width * image_height lowerCamelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase_ = get_distance(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase_ = get_color_coded_rgb(__UpperCamelCase ) else: lowerCamelCase_ = get_black_and_white_rgb(__UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure A_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
42
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCamelCase = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
467
'''simple docstring''' from math import isclose, sqrt def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> tuple[float, float, float]: lowerCamelCase_ = point_y / 4 / point_x lowerCamelCase_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCamelCase_ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCamelCase_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCamelCase_ = outgoing_gradient**2 + 4 lowerCamelCase_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCamelCase_ = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 lowerCamelCase_ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCamelCase_ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCamelCase_ = x_minus if isclose(__UpperCamelCase ,__UpperCamelCase ) else x_plus lowerCamelCase_ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _UpperCamelCase ( __UpperCamelCase = 1.4 ,__UpperCamelCase = -9.6 ) -> int: lowerCamelCase_ = 0 lowerCamelCase_ = first_x_coord lowerCamelCase_ = first_y_coord lowerCamelCase_ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = next_point(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
42
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
474
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis lowerCamelCase_ = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] lowerCamelCase_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__UpperCamelCase ,1 ): if n < _p: # then we have our last prime to check lowerCamelCase_ = primes[:idx] break lowerCamelCase_ ,lowerCamelCase_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase_ = False for r in range(__UpperCamelCase ): lowerCamelCase_ = pow(__UpperCamelCase ,d * 2**r ,__UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _UpperCamelCase ( ) -> None: assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
42
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' a_ : int =["""input_features""", """is_longer"""] def __init__( self : int , UpperCamelCase : Union[str, Any]=64 , UpperCamelCase : int=4_80_00 , UpperCamelCase : Dict=4_80 , UpperCamelCase : List[Any]=10 , UpperCamelCase : List[Any]=10_24 , UpperCamelCase : Any=0.0 , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Optional[Any] = 0 , UpperCamelCase : Dict = 1_40_00 , UpperCamelCase : Optional[int] = None , UpperCamelCase : Any = "fusion" , UpperCamelCase : Union[str, Any] = "repeatpad" , **UpperCamelCase : Tuple , ): '''simple docstring''' super().__init__( feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) _snake_case : List[str] = top_db _snake_case : Union[str, Any] = truncation _snake_case : Optional[int] = padding _snake_case : Tuple = fft_window_size _snake_case : Any = (fft_window_size >> 1) + 1 _snake_case : Optional[Any] = hop_length _snake_case : int = max_length_s _snake_case : Optional[Any] = max_length_s * sampling_rate _snake_case : int = sampling_rate _snake_case : Tuple = frequency_min _snake_case : str = frequency_max _snake_case : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=SCREAMING_SNAKE_CASE_ , min_frequency=SCREAMING_SNAKE_CASE_ , max_frequency=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , norm=SCREAMING_SNAKE_CASE_ , mel_scale='htk' , ) _snake_case : str = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=SCREAMING_SNAKE_CASE_ , min_frequency=SCREAMING_SNAKE_CASE_ , max_frequency=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , norm='slaney' , mel_scale='slaney' , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = copy.deepcopy(self.__dict__ ) _snake_case : Any = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] = None ): '''simple docstring''' _snake_case : int = spectrogram( SCREAMING_SNAKE_CASE_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=SCREAMING_SNAKE_CASE_ , log_mel='dB' , ) return log_mel_spectrogram.T def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _snake_case : Optional[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _snake_case : str = [0] # randomly choose index for each part _snake_case : List[Any] = np.random.choice(ranges[0] ) _snake_case : str = np.random.choice(ranges[1] ) _snake_case : str = np.random.choice(ranges[2] ) _snake_case : str = mel[idx_front : idx_front + chunk_frames, :] _snake_case : int = mel[idx_middle : idx_middle + chunk_frames, :] _snake_case : Any = mel[idx_back : idx_back + chunk_frames, :] _snake_case : List[Any] = torch.tensor(mel[None, None, :] ) _snake_case : Tuple = torch.nn.functional.interpolate( SCREAMING_SNAKE_CASE_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = mel_shrink[0][0].numpy() _snake_case : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCamelCase_ ( self : Any , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _snake_case : Optional[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _snake_case : Any = len(SCREAMING_SNAKE_CASE_ ) - max_length _snake_case : Dict = np.random.randint(0 , overflow + 1 ) _snake_case : List[str] = waveform[idx : idx + max_length] _snake_case : int = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _snake_case : List[Any] = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters ) _snake_case : Optional[int] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _snake_case : Tuple = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _snake_case : int = np.stack([mel, mel, mel, mel] , axis=0 ) _snake_case : Optional[int] = False else: _snake_case : Union[str, Any] = self._random_mel_fusion(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[int] = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: _snake_case : List[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _snake_case : Dict = int(max_length / len(SCREAMING_SNAKE_CASE_ ) ) _snake_case : List[str] = np.stack(np.tile(SCREAMING_SNAKE_CASE_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _snake_case : Optional[Any] = int(max_length / len(SCREAMING_SNAKE_CASE_ ) ) _snake_case : int = np.stack(np.tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _snake_case : Optional[int] = np.pad(SCREAMING_SNAKE_CASE_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _snake_case : Optional[int] = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters ) _snake_case : List[str] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _snake_case : Optional[int] = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[str] , UpperCamelCase : Any , UpperCamelCase : Tuple = None , UpperCamelCase : List[str] = None , UpperCamelCase : int = None , UpperCamelCase : Optional[Any] = None , UpperCamelCase : Optional[Any] = None , **UpperCamelCase : Optional[int] , ): '''simple docstring''' _snake_case : Optional[int] = truncation if truncation is not None else self.truncation _snake_case : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _snake_case : Dict = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _snake_case : str = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _snake_case : int = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): _snake_case : List[str] = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _snake_case : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _snake_case : str = [np.asarray(SCREAMING_SNAKE_CASE_ )] # convert to mel spectrogram, truncate and pad if needed. _snake_case : Tuple = [ self._get_input_mel(SCREAMING_SNAKE_CASE_ , max_length if max_length else self.nb_max_samples , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech ] _snake_case : Dict = [] _snake_case : int = [] for mel, longer in padded_inputs: input_mel.append(SCREAMING_SNAKE_CASE_ ) is_longer.append(SCREAMING_SNAKE_CASE_ ) if truncation == "fusion" and sum(SCREAMING_SNAKE_CASE_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _snake_case : Optional[int] = np.random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) ) _snake_case : List[str] = True if isinstance(input_mel[0] , SCREAMING_SNAKE_CASE_ ): _snake_case : Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _snake_case : Union[str, Any] = [[longer] for longer in is_longer] _snake_case : Any = {'input_features': input_mel, 'is_longer': is_longer} _snake_case : Optional[Any] = BatchFeature(SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: _snake_case : int = input_features.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return input_features
411
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ = 16 A_ = 32 def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 16 ,__UpperCamelCase = "bert-base-cased" ) -> List[Any]: lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = load_dataset('glue' ,'mrpc' ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets['train'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCamelCase_ = DataLoader( tokenized_datasets['validation'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: model.eval() lowerCamelCase_ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: lowerCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase ,references=__UpperCamelCase ,) lowerCamelCase_ = metric.compute() return eval_metric["accuracy"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]: # Initialize accelerator lowerCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config['lr'] lowerCamelCase_ = int(config['num_epochs'] ) lowerCamelCase_ = int(config['seed'] ) lowerCamelCase_ = int(config['batch_size'] ) lowerCamelCase_ = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCamelCase_ = 1 lowerCamelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCamelCase_ = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ = 0 lowerCamelCase_ = evaluate.load('glue' ,'mrpc' ) lowerCamelCase_ = num_epochs if args.partial_train_epoch is not None: lowerCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase_ = args.resume_from_checkpoint.split('epoch_' )[1] lowerCamelCase_ = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase_ = int(__UpperCamelCase ) + 1 lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) accelerator.print('resumed checkpoint performance:' ,__UpperCamelCase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,f'''state_{starting_epoch-1}.json''' ) ,'r' ) as f: lowerCamelCase_ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase_ = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.loss lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase_ = f'''epoch_{epoch}''' lowerCamelCase_ = os.path.join(args.output_dir ,__UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = accuracy lowerCamelCase_ = lr_scheduler.get_lr()[0] lowerCamelCase_ = optimizer.param_groups[0]['lr'] lowerCamelCase_ = epoch lowerCamelCase_ = overall_step accelerator.print(f'''epoch {epoch}:''' ,__UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f'''state_{epoch}.json''' ) ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> str: lowerCamelCase_ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=__UpperCamelCase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__UpperCamelCase ,) parser.add_argument( '--output_dir' ,type=__UpperCamelCase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=__UpperCamelCase ,default=2 ,help='Number of train epochs.' ,) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
42
0
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowerCAmelCase : List[str] = 0 lowerCAmelCase : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase : Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowerCAmelCase : Union[str, Any] = tuple[int, int] class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): """simple docstring""" lowerCamelCase = pos_x lowerCamelCase = pos_y lowerCamelCase = (pos_y, pos_x) lowerCamelCase = goal_x lowerCamelCase = goal_y lowerCamelCase = g_cost lowerCamelCase = parent lowerCamelCase = self.calculate_heuristic() lowerCamelCase = self.g_cost + self.h_cost def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.pos_x - self.goal_x lowerCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(SCREAMING_SNAKE_CASE_ ) + abs(SCREAMING_SNAKE_CASE_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , _a ): """simple docstring""" return self.f_cost < other.f_cost class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a ): """simple docstring""" lowerCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_ ) lowerCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , SCREAMING_SNAKE_CASE_ ) lowerCamelCase = [self.start] lowerCamelCase = [] lowerCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(SCREAMING_SNAKE_CASE_ ) self.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = self.get_successors(SCREAMING_SNAKE_CASE_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path lowerCamelCase = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) return [self.start.pos] def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = [] for action in delta: lowerCamelCase = parent.pos_x + action[1] lowerCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , ) ) return successors def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = node lowerCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase = current_node.parent path.reverse() return path class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a ): """simple docstring""" lowerCamelCase = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowerCamelCase = self.fwd_astar.open_nodes.pop(0 ) lowerCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = current_bwd_node lowerCamelCase = current_fwd_node lowerCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ), self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path lowerCamelCase = astar.open_nodes.pop( astar.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) return [self.fwd_astar.start.pos] def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ ) bwd_path.pop() bwd_path.reverse() lowerCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowerCAmelCase : Union[str, Any] = (0, 0) lowerCAmelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Union[str, Any] = AStar(init, goal) lowerCAmelCase : int = a_star.search() lowerCAmelCase : Any = time.time() - start_time print(F"""AStar execution time = {end_time:f} seconds""") lowerCAmelCase : Tuple = time.time() lowerCAmelCase : Optional[Any] = BidirectionalAStar(init, goal) lowerCAmelCase : Any = time.time() - bd_start_time print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
543
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase_ = ksize + 1 lowerCamelCase_ = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__UpperCamelCase ): for x in range(__UpperCamelCase ): # distance from center lowerCamelCase_ = x - ksize // 2 lowerCamelCase_ = y - ksize // 2 # degree to radiant lowerCamelCase_ = theta / 1_80 * np.pi lowerCamelCase_ = np.cos(_theta ) lowerCamelCase_ = np.sin(_theta ) # get kernel x lowerCamelCase_ = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase_ = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A_ = imread("../image_data/lena.jpg") # turn image in gray scale value A_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A_ = out / out.max() * 255 A_ = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
42
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ : Optional[int] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = ['OwlViTFeatureExtractor'] lowerCamelCase__ : Union[str, Any] = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ['transformers', 'torch', 'note_seq'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
42
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): '''simple docstring''' _UpperCAmelCase : Any = 4_2 class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ,UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , lowercase : List[Any] = 16 , lowercase : List[str] = 88 , lowercase : Union[str, Any] = None , lowercase : Union[str, Any] = None , lowercase : Optional[int] = 1 , lowercase : Dict = 0.0 , lowercase : Tuple = 32 , lowercase : Dict = None , lowercase : Optional[int] = False , lowercase : Tuple = None , lowercase : Any = "geglu" , lowercase : List[str] = True , lowercase : int = True , ): '''simple docstring''' super().__init__() _snake_case = num_attention_heads _snake_case = attention_head_dim _snake_case = num_attention_heads * attention_head_dim _snake_case = in_channels _snake_case = torch.nn.GroupNorm(num_groups=SCREAMING_SNAKE_CASE_ , num_channels=SCREAMING_SNAKE_CASE_ , eps=1E-6 , affine=SCREAMING_SNAKE_CASE_ ) _snake_case = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. Define transformers blocks _snake_case = nn.ModuleList( [ BasicTransformerBlock( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , double_self_attention=SCREAMING_SNAKE_CASE_ , norm_elementwise_affine=SCREAMING_SNAKE_CASE_ , ) for d in range(SCREAMING_SNAKE_CASE_ ) ] ) _snake_case = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A ( self : List[Any] , lowercase : Tuple , lowercase : List[str]=None , lowercase : Optional[int]=None , lowercase : Any=None , lowercase : Tuple=1 , lowercase : Tuple=None , lowercase : List[Any] = True , ): '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case = hidden_states.shape _snake_case = batch_frames // num_frames _snake_case = hidden_states _snake_case = hidden_states[None, :].reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _snake_case = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) _snake_case = self.norm(SCREAMING_SNAKE_CASE_ ) _snake_case = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _snake_case = self.proj_in(SCREAMING_SNAKE_CASE_ ) # 2. Blocks for block in self.transformer_blocks: _snake_case = block( SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ , ) # 3. Output _snake_case = self.proj_out(SCREAMING_SNAKE_CASE_ ) _snake_case = ( hidden_states[None, None, :] .reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) _snake_case = hidden_states.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _snake_case = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=SCREAMING_SNAKE_CASE_ )
686
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCamelCase( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) lowerCamelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vqvae_and_unet lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 ) lowerCamelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = self.dummy_unet_condition lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = torch.rand((1, 1, 10) ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = torch_device lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
42
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated UpperCamelCase = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ UpperCamelCase = "https://storage.googleapis.com/cvdf-datasets/mnist/" def A ( lowercase__ : Dict ) -> int: UpperCamelCase__ :int = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__UpperCamelCase )[0] @deprecated(__UpperCamelCase , """Please use tf.data to implement this functionality.""" ) def A ( lowercase__ : Optional[int] ) -> Any: print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=__UpperCamelCase ) as bytestream: UpperCamelCase__ :Tuple = _readaa(__UpperCamelCase ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) UpperCamelCase__ :str = _readaa(__UpperCamelCase ) UpperCamelCase__ :Dict = _readaa(__UpperCamelCase ) UpperCamelCase__ :Union[str, Any] = _readaa(__UpperCamelCase ) UpperCamelCase__ :Tuple = bytestream.read(rows * cols * num_images ) UpperCamelCase__ :int = numpy.frombuffer(__UpperCamelCase , dtype=numpy.uinta ) UpperCamelCase__ :List[Any] = data.reshape(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , 1 ) return data @deprecated(__UpperCamelCase , """Please use tf.one_hot on tensors.""" ) def A ( lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] ) -> Tuple: UpperCamelCase__ :Union[str, Any] = labels_dense.shape[0] UpperCamelCase__ :Optional[Any] = numpy.arange(__UpperCamelCase ) * num_classes UpperCamelCase__ :str = numpy.zeros((num_labels, num_classes) ) UpperCamelCase__ :List[str] = 1 return labels_one_hot @deprecated(__UpperCamelCase , """Please use tf.data to implement this functionality.""" ) def A ( lowercase__ : List[str] , lowercase__ : Optional[int]=False , lowercase__ : Optional[Any]=10 ) -> Union[str, Any]: print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=__UpperCamelCase ) as bytestream: UpperCamelCase__ :List[Any] = _readaa(__UpperCamelCase ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) UpperCamelCase__ :Any = _readaa(__UpperCamelCase ) UpperCamelCase__ :int = bytestream.read(__UpperCamelCase ) UpperCamelCase__ :List[Any] = numpy.frombuffer(__UpperCamelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__UpperCamelCase , __UpperCamelCase ) return labels class lowerCAmelCase_ : """simple docstring""" @deprecated( SCREAMING_SNAKE_CASE_ , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=False , lowerCamelCase__ :Tuple=False , lowerCamelCase__ :Optional[int]=dtypes.floataa , lowerCamelCase__ :str=True , lowerCamelCase__ :List[str]=None , ): UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = random_seed.get_seed(SCREAMING_SNAKE_CASE_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) UpperCamelCase__ :Optional[int] = dtypes.as_dtype(SCREAMING_SNAKE_CASE_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: UpperCamelCase__ :List[str] = 1_00_00 UpperCamelCase__ :Optional[int] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" UpperCamelCase__ :Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCamelCase__ :int = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCamelCase__ :List[str] = images.astype(numpy.floataa ) UpperCamelCase__ :Tuple = numpy.multiply(SCREAMING_SNAKE_CASE_ , 1.0 / 255.0 ) UpperCamelCase__ :str = images UpperCamelCase__ :Union[str, Any] = labels UpperCamelCase__ :int = 0 UpperCamelCase__ :Optional[int] = 0 @property def __a ( self :Optional[Any] ): return self._images @property def __a ( self :List[Any] ): return self._labels @property def __a ( self :Dict ): return self._num_examples @property def __a ( self :List[str] ): return self._epochs_completed def __a ( self :Dict , lowerCamelCase__ :Any , lowerCamelCase__ :Any=False , lowerCamelCase__ :Union[str, Any]=True ): if fake_data: UpperCamelCase__ :Tuple = [1] * 7_84 UpperCamelCase__ :Optional[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE_ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE_ )], ) UpperCamelCase__ :int = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCamelCase__ :Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :str = self.images[perma] UpperCamelCase__ :Any = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCamelCase__ :Dict = self._num_examples - start UpperCamelCase__ :Optional[int] = self._images[start : self._num_examples] UpperCamelCase__ :Any = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCamelCase__ :List[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Union[str, Any] = self.images[perm] UpperCamelCase__ :int = self.labels[perm] # Start next epoch UpperCamelCase__ :Dict = 0 UpperCamelCase__ :Dict = batch_size - rest_num_examples UpperCamelCase__ :List[str] = self._index_in_epoch UpperCamelCase__ :str = self._images[start:end] UpperCamelCase__ :Tuple = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size UpperCamelCase__ :Tuple = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__UpperCamelCase , """Please write your own downloading logic.""" ) def A ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Any ) -> int: if not gfile.Exists(__UpperCamelCase ): gfile.MakeDirs(__UpperCamelCase ) UpperCamelCase__ :Union[str, Any] = os.path.join(__UpperCamelCase , __UpperCamelCase ) if not gfile.Exists(__UpperCamelCase ): urllib.request.urlretrieve(__UpperCamelCase , __UpperCamelCase ) # noqa: S310 with gfile.GFile(__UpperCamelCase ) as f: UpperCamelCase__ :Optional[Any] = f.size() print("""Successfully downloaded""" , __UpperCamelCase , __UpperCamelCase , """bytes.""" ) return filepath @deprecated( __UpperCamelCase , """Please use alternatives such as:""" """ tensorflow_datasets.load(\'mnist\')""" ) def A ( lowercase__ : List[Any] , lowercase__ : Tuple=False , lowercase__ : int=False , lowercase__ : int=dtypes.floataa , lowercase__ : Optional[int]=True , lowercase__ : str=5000 , lowercase__ : Any=None , lowercase__ : Tuple=DEFAULT_SOURCE_URL , ) -> Union[str, Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__UpperCamelCase , one_hot=__UpperCamelCase , dtype=__UpperCamelCase , seed=__UpperCamelCase ) UpperCamelCase__ :int = fake() UpperCamelCase__ :Union[str, Any] = fake() UpperCamelCase__ :List[Any] = fake() return _Datasets(train=__UpperCamelCase , validation=__UpperCamelCase , test=__UpperCamelCase ) if not source_url: # empty string check UpperCamelCase__ :List[Any] = DEFAULT_SOURCE_URL UpperCamelCase__ :Optional[Any] = """train-images-idx3-ubyte.gz""" UpperCamelCase__ :List[Any] = """train-labels-idx1-ubyte.gz""" UpperCamelCase__ :List[Any] = """t10k-images-idx3-ubyte.gz""" UpperCamelCase__ :str = """t10k-labels-idx1-ubyte.gz""" UpperCamelCase__ :int = _maybe_download( __UpperCamelCase , __UpperCamelCase , source_url + train_images_file ) with gfile.Open(__UpperCamelCase , """rb""" ) as f: UpperCamelCase__ :Optional[Any] = _extract_images(__UpperCamelCase ) UpperCamelCase__ :Dict = _maybe_download( __UpperCamelCase , __UpperCamelCase , source_url + train_labels_file ) with gfile.Open(__UpperCamelCase , """rb""" ) as f: UpperCamelCase__ :Any = _extract_labels(__UpperCamelCase , one_hot=__UpperCamelCase ) UpperCamelCase__ :Optional[int] = _maybe_download( __UpperCamelCase , __UpperCamelCase , source_url + test_images_file ) with gfile.Open(__UpperCamelCase , """rb""" ) as f: UpperCamelCase__ :List[Any] = _extract_images(__UpperCamelCase ) UpperCamelCase__ :Any = _maybe_download( __UpperCamelCase , __UpperCamelCase , source_url + test_labels_file ) with gfile.Open(__UpperCamelCase , """rb""" ) as f: UpperCamelCase__ :List[Any] = _extract_labels(__UpperCamelCase , one_hot=__UpperCamelCase ) if not 0 <= validation_size <= len(__UpperCamelCase ): UpperCamelCase__ :Tuple = ( """Validation size should be between 0 and """ f"""{len(__UpperCamelCase )}. Received: {validation_size}.""" ) raise ValueError(__UpperCamelCase ) UpperCamelCase__ :List[str] = train_images[:validation_size] UpperCamelCase__ :List[Any] = train_labels[:validation_size] UpperCamelCase__ :Tuple = train_images[validation_size:] UpperCamelCase__ :Dict = train_labels[validation_size:] UpperCamelCase__ :Tuple = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} UpperCamelCase__ :int = _DataSet(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) UpperCamelCase__ :Union[str, Any] = _DataSet(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) UpperCamelCase__ :List[str] = _DataSet(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) return _Datasets(train=__UpperCamelCase , validation=__UpperCamelCase , test=__UpperCamelCase )
45
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _UpperCamelCase ( __UpperCamelCase = 8 ) -> str: lowerCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCamelCase ) lowerCamelCase_ = i // 3 lowerCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCamelCase_ = ( chars_incl + random(__UpperCamelCase ,quotient + remainder ) + random(__UpperCamelCase ,__UpperCamelCase ) + random(__UpperCamelCase ,__UpperCamelCase ) ) lowerCamelCase_ = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 8 ) -> bool: if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCamelCase_ = any(char in ascii_uppercase for char in password ) lowerCamelCase_ = any(char in ascii_lowercase for char in password ) lowerCamelCase_ = any(char in digits for char in password ) lowerCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _UpperCamelCase ( ) -> Optional[int]: lowerCamelCase_ = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCamelCase_ = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' ,password_generator(__UpperCamelCase ) ) print( 'Alternative Password generated:' ,alternative_password_generator(__UpperCamelCase ,__UpperCamelCase ) ,) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
42
0
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : List[str] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Any , *__lowerCamelCase : Tuple , **__lowerCamelCase : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Tuple , *__lowerCamelCase : Dict , **__lowerCamelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : int , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : int , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : int ) -> Any: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Any , *__lowerCamelCase : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : Optional[int] , *__lowerCamelCase : Dict , **__lowerCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Tuple , *__lowerCamelCase : int , **__lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Any ) -> str: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : List[Any] , *__lowerCamelCase : int , **__lowerCamelCase : Optional[int] ) -> str: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Dict , *__lowerCamelCase : Any , **__lowerCamelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : Tuple , *__lowerCamelCase : Any , **__lowerCamelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : str , *__lowerCamelCase : str , **__lowerCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : str , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Dict ) -> Any: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : str , *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : List[Any] , *__lowerCamelCase : Any , **__lowerCamelCase : str ) -> int: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : str , *__lowerCamelCase : Any , **__lowerCamelCase : Tuple ) -> Tuple: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Any , *__lowerCamelCase : str , **__lowerCamelCase : str ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Any , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Optional[int] ) -> int: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : List[str] , *__lowerCamelCase : str , **__lowerCamelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Dict , *__lowerCamelCase : int , **__lowerCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : str , *__lowerCamelCase : Any , **__lowerCamelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : Any , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[str] ) -> Dict: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Dict , *__lowerCamelCase : Any , **__lowerCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Tuple , *__lowerCamelCase : int , **__lowerCamelCase : List[str] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : Dict , *__lowerCamelCase : int , **__lowerCamelCase : Dict ) -> int: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Any , *__lowerCamelCase : Any , **__lowerCamelCase : Dict ) -> Any: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Optional[int] , *__lowerCamelCase : int , **__lowerCamelCase : Tuple ) -> str: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : List[Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : str , *__lowerCamelCase : Dict , **__lowerCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Tuple , *__lowerCamelCase : Any , **__lowerCamelCase : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : Optional[int] , *__lowerCamelCase : Dict , **__lowerCamelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : Any , *__lowerCamelCase : Any , **__lowerCamelCase : int ) -> int: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : str , *__lowerCamelCase : str , **__lowerCamelCase : Tuple ) -> Tuple: '''simple docstring''' requires_backends(cls , ['flax'] ) class snake_case_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ['''flax'''] def __init__( self : Dict , *__lowerCamelCase : Dict , **__lowerCamelCase : Optional[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def UpperCAmelCase ( cls : List[str] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Optional[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def UpperCAmelCase ( cls : str , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : str ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['flax'] )
375
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase_ = test_metrics @require_cpu def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase( self ) -> Tuple: '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) lowerCamelCase_ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
42
0
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , )-> List[Any]: if attention_mask is None: __UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __UpperCAmelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__UpperCamelCase ) if decoder_head_mask is None: __UpperCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__UpperCamelCase ) if cross_attn_head_mask is None: __UpperCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class UpperCAmelCase : def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=False , __A=99 , __A=16 , __A=2 , __A=4 , __A=4 , __A="relu" , __A=0.1 , __A=0.1 , __A=0.0 , __A=0.0 , __A=20 , __A=2 , __A=1 , __A=0 , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = bos_token_id def __lowerCamelCase ( self ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = self.eos_token_id # Eos Token __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) __UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __UpperCAmelCase = self.get_config() __UpperCAmelCase = prepare_mam_aaa_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return config, inputs_dict def __lowerCamelCase ( self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __lowerCamelCase ( self ): __UpperCAmelCase , __UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCamelCase ( self , __A , __A ): __UpperCAmelCase = MaMaaaModel(config=SCREAMING_SNAKE_CASE_ ).get_decoder().to(SCREAMING_SNAKE_CASE_ ).eval() __UpperCAmelCase = inputs_dict['input_ids'] __UpperCAmelCase = inputs_dict['attention_mask'] __UpperCAmelCase = inputs_dict['head_mask'] # first forward pass __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase , __UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )['last_hidden_state'] __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )[ 'last_hidden_state' ] # select random slice __UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) ) def __lowerCamelCase ( self , __A , __A ): __UpperCAmelCase = MaMaaaModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval() __UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = outputs.encoder_last_hidden_state __UpperCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase = model.get_encoder() encoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = MaMaaaEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase = model.get_decoder() decoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = MaMaaaDecoder.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): _A : Any = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _A : List[Any] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _A : List[str] = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _A : Union[str, Any] = True _A : Union[str, Any] = True _A : int = False _A : Optional[Any] = False def __lowerCamelCase ( self , __A , __A , __A , __A , __A ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __lowerCamelCase ( self ): __UpperCAmelCase = MaMaaaModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase , __UpperCAmelCase = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertEqual(info['missing_keys'] , [] ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __UpperCAmelCase = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = copy.deepcopy(self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not self.is_encoder_decoder: __UpperCAmelCase = inputs['input_ids'] del inputs["input_ids"] else: __UpperCAmelCase = inputs['input_ids'] __UpperCAmelCase = inputs.get('decoder_input_ids' , SCREAMING_SNAKE_CASE_ ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = model.get_input_embeddings() if not self.is_encoder_decoder: __UpperCAmelCase = wte(SCREAMING_SNAKE_CASE_ ) else: __UpperCAmelCase = wte(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = wte(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): model(**SCREAMING_SNAKE_CASE_ )[0] def __lowerCamelCase ( self ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = input_dict['input_ids'] __UpperCAmelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval().to(SCREAMING_SNAKE_CASE_ ) if torch_device == "cuda": model.half() model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) model.generate(num_beams=4 , do_sample=SCREAMING_SNAKE_CASE_ , early_stopping=SCREAMING_SNAKE_CASE_ , num_return_sequences=3 ) def _lowerCAmelCase ( _lowerCAmelCase )-> List[str]: return torch.tensor(__UpperCamelCase , dtype=torch.long , device=__UpperCamelCase ) _A: str = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class UpperCAmelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def __lowerCamelCase ( self ): __UpperCAmelCase = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) __UpperCAmelCase = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) __UpperCAmelCase = prepare_mam_aaa_inputs_dict(model.config , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )[0] __UpperCAmelCase = torch.Size((1, 11, 1_024) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # change to expected output here __UpperCAmelCase = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def __lowerCamelCase ( self ): __UpperCAmelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(SCREAMING_SNAKE_CASE_ ) # change to intended input __UpperCAmelCase = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) __UpperCAmelCase = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) __UpperCAmelCase = prepare_mam_aaa_inputs_dict(model.config , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )[0] __UpperCAmelCase = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # change to expected output here __UpperCAmelCase = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def __lowerCamelCase ( self ): __UpperCAmelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) __UpperCAmelCase = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __UpperCAmelCase = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) __UpperCAmelCase = model.generate( input_ids=dct['input_ids'].to(SCREAMING_SNAKE_CASE_ ) , attention_mask=dct['attention_mask'].to(SCREAMING_SNAKE_CASE_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) __UpperCAmelCase = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] __UpperCAmelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) assert generated == expected_en
126
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: if hor == 1_28: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 64, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') lowerCamelCase_ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase_ = model.state_dict() lowerCamelCase_ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> Tuple: lowerCamelCase_ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } lowerCamelCase_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) lowerCamelCase_ = model lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
0
from __future__ import annotations _lowercase = 10 def __lowerCAmelCase ( _UpperCamelCase ) -> list[int]: '''simple docstring''' lowerCamelCase__: int = 1 lowerCamelCase__: Union[str, Any] = max(__UpperCamelCase ) while placement <= max_digit: # declare and initialize empty buckets lowerCamelCase__: str = [[] for _ in range(__UpperCamelCase )] # split list_of_ints between the buckets for i in list_of_ints: lowerCamelCase__: str = int((i / placement) % RADIX ) buckets[tmp].append(__UpperCamelCase ) # put each buckets' contents into list_of_ints lowerCamelCase__: List[str] = 0 for b in range(__UpperCamelCase ): for i in buckets[b]: lowerCamelCase__: Dict = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
306
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ = 250_004 A_ = 250_020 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = MBartTokenizer SCREAMING_SNAKE_CASE_ = MBartTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase( self ) -> int: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'facebook/mbart-large-en-ro' SCREAMING_SNAKE_CASE_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE_ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def UpperCamelCase( cls ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase_ = 1 return cls def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) lowerCamelCase_ = targets['input_ids'] lowerCamelCase_ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
42
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class _SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' lowercase_ = "nat" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self : Dict , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Any=64 , UpperCAmelCase_ : Dict=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=3.0 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : int=1E-5 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : List[Any] , ) ->Optional[Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowerCamelCase__: Union[str, Any] =patch_size lowerCamelCase__: Dict =num_channels lowerCamelCase__: Dict =embed_dim lowerCamelCase__: str =depths lowerCamelCase__: str =len(SCREAMING_SNAKE_CASE_) lowerCamelCase__: Tuple =num_heads lowerCamelCase__: Dict =kernel_size lowerCamelCase__: Optional[int] =mlp_ratio lowerCamelCase__: Any =qkv_bias lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: Optional[int] =attention_probs_dropout_prob lowerCamelCase__: Tuple =drop_path_rate lowerCamelCase__: int =hidden_act lowerCamelCase__: str =layer_norm_eps lowerCamelCase__: Tuple =initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__: Dict =int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_) - 1)) lowerCamelCase__: Tuple =layer_scale_init_value lowerCamelCase__: str =["stem"] + [F"""stage{idx}""" for idx in range(1 , len(SCREAMING_SNAKE_CASE_) + 1)] lowerCamelCase__ , lowerCamelCase__: Any =get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names)
59
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'ylacombe/bark-small' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = 'en_speaker_1' lowerCamelCase_ = 'This is a test string' lowerCamelCase_ = 'speaker_embeddings_path.json' lowerCamelCase_ = 'speaker_embeddings' def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase_ = 35 lowerCamelCase_ = 2 lowerCamelCase_ = 8 lowerCamelCase_ = { 'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase_ = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string ) lowerCamelCase_ = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
42
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __lowerCamelCase = False @skip_mps class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCAmelCase = StableDiffusionAttendAndExcitePipeline UpperCAmelCase = False UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __SCREAMING_SNAKE_CASE ( cls : Dict ): super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE_ ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[str] ): super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase__ :Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase__ :Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) UpperCAmelCase__ :int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) UpperCAmelCase__ :Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCAmelCase__ :Tuple = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ :Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase__ :int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict=0 ): if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): UpperCAmelCase__ :Any = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase__ :Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ :Optional[Any] = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :int = '''cpu''' UpperCAmelCase__ :Any = self.get_dummy_components() UpperCAmelCase__ :str = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ :int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ :List[Any] = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCAmelCase__ :List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) UpperCAmelCase__ :Optional[int] = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) UpperCAmelCase__ :List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 ) def __SCREAMING_SNAKE_CASE ( self : str ): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __SCREAMING_SNAKE_CASE ( self : Any ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : int ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __SCREAMING_SNAKE_CASE ( self : str ): super().test_save_load_local(expected_max_difference=5e-4 ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE_ ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[str] ): super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): UpperCAmelCase__ :Any = torch.manual_seed(5_1 ) UpperCAmelCase__ :Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) UpperCAmelCase__ :Dict = '''a painting of an elephant with glasses''' UpperCAmelCase__ :str = [5, 7] UpperCAmelCase__ :Union[str, Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ , token_indices=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] UpperCAmelCase__ :List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-1
467
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} A_ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } A_ = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase ,__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowerCamelCase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ ,lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowerCamelCase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = ' '.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = word return word def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) return bpe_tokens def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = ''.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) lowerCamelCase_ = 0 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs)
42
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCAmelCase__ = Features({"""text""": Value("""string""" )} ) lowerCAmelCase__ = Features({"""labels""": ClassLabel} ) lowerCAmelCase__ = """text""" lowerCAmelCase__ = """labels""" def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Optional[int]): '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , SCREAMING_SNAKE_CASE_): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""") __lowercase =copy.deepcopy(self) __lowercase =self.label_schema.copy() __lowercase =features[self.label_column] __lowercase =label_schema return task_template @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
474
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } A_ = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } A_ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = RealmTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = do_lower_case def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = PaddingStrategy.MAX_LENGTH lowerCamelCase_ = text lowerCamelCase_ = kwargs.pop('text_pair' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = kwargs.pop('return_tensors' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(SCREAMING_SNAKE_CASE_ ): if batch_text_pair is not None: lowerCamelCase_ = batch_text_pair[idx] else: lowerCamelCase_ = None lowerCamelCase_ = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = encoded_candidates.get('input_ids' ) lowerCamelCase_ = encoded_candidates.get('attention_mask' ) lowerCamelCase_ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(SCREAMING_SNAKE_CASE_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(SCREAMING_SNAKE_CASE_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {key: item for key, item in output_data.items() if len(SCREAMING_SNAKE_CASE_ ) != 0} return BatchEncoding(SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
42
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any]=13 , UpperCamelCase : Union[str, Any]=30 , UpperCamelCase : List[Any]=2 , UpperCamelCase : int=3 , UpperCamelCase : Tuple=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=32 , UpperCamelCase : Dict=5 , UpperCamelCase : Dict=4 , UpperCamelCase : List[str]=37 , UpperCamelCase : str="gelu" , UpperCamelCase : Dict=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : str=10 , UpperCamelCase : int=0.02 , UpperCamelCase : Tuple=3 , UpperCamelCase : Tuple=0.6 , UpperCamelCase : Union[str, Any]=None , ): '''simple docstring''' _snake_case : int = parent _snake_case : Dict = batch_size _snake_case : int = image_size _snake_case : List[str] = patch_size _snake_case : Optional[int] = num_channels _snake_case : List[Any] = is_training _snake_case : Dict = use_labels _snake_case : Union[str, Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : int = type_sequence_label_size _snake_case : Dict = initializer_range _snake_case : Optional[Any] = mask_ratio _snake_case : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _snake_case : Any = (image_size // patch_size) ** 2 _snake_case : Tuple = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Any = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Any ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCamelCase_ ( self : str , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Any = ViTMAEModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _snake_case : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Any , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Tuple = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[int] = (self.image_size // self.patch_size) ** 2 _snake_case : List[str] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _snake_case : Any = 1 _snake_case : str = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _snake_case : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Tuple = model(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : int = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[Any] = config_and_inputs _snake_case : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =(ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a_ : Any ={"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} a_ : Optional[int] =False a_ : Dict =False a_ : Optional[Any] =False a_ : List[str] =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Any = ViTMAEModelTester(self ) _snake_case : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Optional[Any] = [*signature.parameters.keys()] _snake_case : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' np.random.seed(2 ) _snake_case : List[str] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _snake_case : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _snake_case : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _snake_case : Optional[int] = pt_noise super().check_pt_tf_models(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _snake_case : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _snake_case : Any = outputs[0].cpu().numpy() _snake_case : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) _snake_case : Union[str, Any] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _snake_case : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Make sure we don't have nans _snake_case : List[str] = after_outputs[0].cpu().numpy() _snake_case : int = 0 _snake_case : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = ViTMAEModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( )-> Optional[int]: _snake_case : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' np.random.seed(2 ) _snake_case : List[Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(SCREAMING_SNAKE_CASE_ ) _snake_case : str = self.default_image_processor _snake_case : Union[str, Any] = prepare_img() _snake_case : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _snake_case : Any = ViTMAEConfig() _snake_case : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _snake_case : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ , noise=torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) ) # verify the logits _snake_case : Optional[int] = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[int] = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(SCREAMING_SNAKE_CASE_ ) , atol=1e-4 ) )
411
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __UpperCamelCase ) -> bool: lowerCamelCase_ = str(__UpperCamelCase ) return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set('123456789' ) def _UpperCamelCase ( ) -> int | None: for base_num in range(99_99 ,49_99 ,-1 ): lowerCamelCase_ = 10_00_02 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate for base_num in range(3_33 ,99 ,-1 ): lowerCamelCase_ = 1_00_20_03 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
42
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : List[str] = {"""vocab_file""": """vocab.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } lowerCAmelCase : Tuple = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } lowerCAmelCase : List[str] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ConvBertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ): """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): lowerCamelCase = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop("""type""" ) ) lowerCamelCase = do_lower_case lowerCamelCase = strip_accents lowerCamelCase = tokenize_chinese_chars lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase = do_lower_case def _lowerCAmelCase ( self , _a , _a=None ): """simple docstring""" lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
543
'''simple docstring''' A_ = "Input must be a string of 8 numbers plus letter" A_ = "TRWAGMYFPDXBNJZSQVHLCKE" def _UpperCamelCase ( __UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) lowerCamelCase_ = spanish_id.replace('-' ,'' ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: lowerCamelCase_ = int(spanish_id_clean[0:8] ) lowerCamelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
42
0