code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE_ = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE_ = image[None].transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(__UpperCamelCase ) return 2.0 * image - 1.0 class lowerCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , ): super().__init__() self.register_modules(vqvae=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Dict = 1 , _lowerCAmelCase : List[str] = 100 , _lowerCAmelCase : Optional[Any] = 0.0 , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Union[str, Any] = "pil" , _lowerCAmelCase : Optional[Any] = True , ): if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): SCREAMING_SNAKE_CASE_ = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE_ )}" ) if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = preprocess(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image SCREAMING_SNAKE_CASE_ = (batch_size, self.unet.config.in_channels // 2, height, width) SCREAMING_SNAKE_CASE_ = next(self.unet.parameters() ).dtype SCREAMING_SNAKE_CASE_ = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = image.to(device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE_ = {} if accepts_eta: SCREAMING_SNAKE_CASE_ = eta for t in self.progress_bar(SCREAMING_SNAKE_CASE_ ): # concat latents and low resolution image in the channel dimension. SCREAMING_SNAKE_CASE_ = torch.cat([latents, image] , dim=1 ) SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual SCREAMING_SNAKE_CASE_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # decode the image latents with the VQVAE SCREAMING_SNAKE_CASE_ = self.vqvae.decode(SCREAMING_SNAKE_CASE_ ).sample SCREAMING_SNAKE_CASE_ = torch.clamp(SCREAMING_SNAKE_CASE_ , -1.0 , 1.0 ) SCREAMING_SNAKE_CASE_ = image / 2 + 0.5 SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
31
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = {'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase_ = ['ใ“ใ‚“', 'ใ“ใ‚“ใซ', 'ใซใกใฏ', 'ใฐใ‚“ใฏ', 'ไธ–็•Œ,ใ”บ็•Œ', 'ใ€', 'ใ€‚', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowerCamelCase_ = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # ๐Ÿ˜€ lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' lowerCamelCase_ = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€' return input_text, output_text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def UpperCamelCase( self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ€€ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚' lowerCamelCase_ = ['ใ“ใ‚“', 'ใซใกใฏ', 'ใ€', 'ไธ–็•Œ', 'ใ€‚', '<SP>', 'ใ“ใ‚“', 'ใฐใ‚“ใฏ', 'ใ€', 'ใ”บ็•Œ', 'ใ€‚'] lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'ใ“ใ‚“ใซใกใฏใ€<|bagoftoken|>ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€<|bagoftoken|>ใ”บ็•Œใ€‚' lowerCamelCase_ = 'ใ“ใ‚“ใซใกใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚' lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚' lowerCamelCase_ = 'ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' lowerCamelCase_ = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€' lowerCamelCase_ = tokenizer.encode(prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode('' , prefix_text=prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚' lowerCamelCase_ = 'ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = [1] + [0] * (len_prefix + len_text + 1) lowerCamelCase_ = [1] * (len_prefix + len_text + 1) + [0] lowerCamelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCamelCase_ = tokenizer(prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = tokenizer.encode('ใ‚ใƒณใ„ใƒฏ' ) lowerCamelCase_ = tokenizer.encode('' , prefix_text='ใ‚ใƒณใ„ใƒฏ' ) lowerCamelCase_ = tokenizer.encode('ใ„ใƒฏ' , prefix_text='ใ‚ใƒณ' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = [['ๆญฆ็”ฐไฟก็Ž„', 'ใฏใ€'], ['็น”็”ฐไฟก้•ท', 'ใฎ้…ไธ‹ใฎใ€']] lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off lowerCamelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowerCamelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCamelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass
42
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): '''simple docstring''' _UpperCAmelCase : List[Any] = "summarization" _UpperCAmelCase : str = ["loss"] _UpperCAmelCase : Optional[int] = ROUGE_KEYS _UpperCAmelCase : Dict = "rouge2" def __init__( self : Tuple , lowercase : Any , **lowercase : Any ): '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: _snake_case = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(SCREAMING_SNAKE_CASE_ , num_labels=SCREAMING_SNAKE_CASE_ , mode=self.mode , **SCREAMING_SNAKE_CASE_ ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) _snake_case = Path(self.output_dir ) / 'metrics.json' _snake_case = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) _snake_case = 0 _snake_case = defaultdict(SCREAMING_SNAKE_CASE_ ) _snake_case = self.config.model_type _snake_case = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size _snake_case = { 'data_dir': self.hparams.data_dir, 'max_source_length': self.hparams.max_source_length, 'prefix': self.model.config.prefix or '', } _snake_case = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } _snake_case = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _snake_case = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _snake_case = get_git_info()['repo_sha'] _snake_case = hparams.num_workers _snake_case = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , SCREAMING_SNAKE_CASE_ ): _snake_case = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _snake_case = self.decoder_start_token_id _snake_case = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) _snake_case = False _snake_case = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _snake_case = self.hparams.eval_max_gen_length else: _snake_case = self.model.config.max_length _snake_case = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def A ( self : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(SCREAMING_SNAKE_CASE_ , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) _snake_case = True return readable_batch def A ( self : int , lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' return self.model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' _snake_case = self.tokenizer.batch_decode( SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return lmap(str.strip , SCREAMING_SNAKE_CASE_ ) def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' _snake_case = self.tokenizer.pad_token_id _snake_case , _snake_case = batch['input_ids'], batch['attention_mask'] _snake_case = batch['labels'] if isinstance(self.model , SCREAMING_SNAKE_CASE_ ): _snake_case = self.model._shift_right(SCREAMING_SNAKE_CASE_ ) else: _snake_case = shift_tokens_right(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _snake_case = decoder_input_ids self.save_readable_batch(SCREAMING_SNAKE_CASE_ ) _snake_case = self(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) _snake_case = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _snake_case = nn.CrossEntropyLoss(ignore_index=SCREAMING_SNAKE_CASE_ ) assert lm_logits.shape[-1] == self.vocab_size _snake_case = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _snake_case = nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=-1 ) _snake_case , _snake_case = label_smoothed_nll_loss( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.hparams.label_smoothing , ignore_index=SCREAMING_SNAKE_CASE_ ) return (loss,) @property def A ( self : Dict ): '''simple docstring''' return self.tokenizer.pad_token_id def A ( self : Tuple , lowercase : Tuple , lowercase : str ): '''simple docstring''' _snake_case = self._step(SCREAMING_SNAKE_CASE_ ) _snake_case = dict(zip(self.loss_names , SCREAMING_SNAKE_CASE_ ) ) # tokens per batch _snake_case = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() _snake_case = batch['input_ids'].shape[0] _snake_case = batch['input_ids'].eq(self.pad ).sum() _snake_case = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def A ( self : str , lowercase : str , lowercase : Tuple ): '''simple docstring''' return self._generative_step(SCREAMING_SNAKE_CASE_ ) def A ( self : Optional[int] , lowercase : str , lowercase : Tuple="val" ): '''simple docstring''' self.step_count += 1 _snake_case = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _snake_case = losses['loss'] _snake_case = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } _snake_case = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ).type_as(SCREAMING_SNAKE_CASE_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(SCREAMING_SNAKE_CASE_ ) _snake_case = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} _snake_case = self.step_count self.metrics[prefix].append(SCREAMING_SNAKE_CASE_ ) # callback writes this to self.metrics_save_path _snake_case = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def A ( self : Optional[Any] , lowercase : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' return calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A ( self : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _snake_case = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _snake_case = (time.time() - ta) / batch['input_ids'].shape[0] _snake_case = self.ids_to_clean_text(SCREAMING_SNAKE_CASE_ ) _snake_case = self.ids_to_clean_text(batch['labels'] ) _snake_case = self._step(SCREAMING_SNAKE_CASE_ ) _snake_case = dict(zip(self.loss_names , SCREAMING_SNAKE_CASE_ ) ) _snake_case = self.calc_generative_metrics(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _snake_case = np.mean(lmap(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) base_metrics.update(gen_time=SCREAMING_SNAKE_CASE_ , gen_len=SCREAMING_SNAKE_CASE_ , preds=SCREAMING_SNAKE_CASE_ , target=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return base_metrics def A ( self : Any , lowercase : Union[str, Any] , lowercase : Dict ): '''simple docstring''' return self._generative_step(SCREAMING_SNAKE_CASE_ ) def A ( self : int , lowercase : int ): '''simple docstring''' return self.validation_epoch_end(SCREAMING_SNAKE_CASE_ , prefix='test' ) def A ( self : List[str] , lowercase : int ): '''simple docstring''' _snake_case = self.n_obs[type_path] _snake_case = self.target_lens[type_path] _snake_case = self.dataset_class( self.tokenizer , type_path=SCREAMING_SNAKE_CASE_ , n_obs=SCREAMING_SNAKE_CASE_ , max_target_length=SCREAMING_SNAKE_CASE_ , **self.dataset_kwargs , ) return dataset def A ( self : List[str] , lowercase : Optional[int] , lowercase : Any , lowercase : str = False ): '''simple docstring''' _snake_case = self.get_dataset(SCREAMING_SNAKE_CASE_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _snake_case = dataset.make_sortish_sampler(SCREAMING_SNAKE_CASE_ , distributed=self.hparams.gpus > 1 ) return DataLoader( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , collate_fn=dataset.collate_fn , shuffle=SCREAMING_SNAKE_CASE_ , num_workers=self.num_workers , sampler=SCREAMING_SNAKE_CASE_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _snake_case = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( SCREAMING_SNAKE_CASE_ , batch_sampler=SCREAMING_SNAKE_CASE_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , collate_fn=dataset.collate_fn , shuffle=SCREAMING_SNAKE_CASE_ , num_workers=self.num_workers , sampler=SCREAMING_SNAKE_CASE_ , ) def A ( self : Any ): '''simple docstring''' _snake_case = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=SCREAMING_SNAKE_CASE_ ) return dataloader def A ( self : Union[str, Any] ): '''simple docstring''' return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def A ( self : Dict ): '''simple docstring''' return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def A ( lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' BaseTransformer.add_model_specific_args(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) add_generic_args(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) parser.add_argument( '--max_source_length' , default=1_024 , type=SCREAMING_SNAKE_CASE_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=SCREAMING_SNAKE_CASE_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=SCREAMING_SNAKE_CASE_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=SCREAMING_SNAKE_CASE_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--max_tokens_per_batch' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--logger_name' , type=SCREAMING_SNAKE_CASE_ , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=SCREAMING_SNAKE_CASE_ , default=-1 , required=SCREAMING_SNAKE_CASE_ , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=SCREAMING_SNAKE_CASE_ , default=500 , required=SCREAMING_SNAKE_CASE_ , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=SCREAMING_SNAKE_CASE_ , default=-1 , required=SCREAMING_SNAKE_CASE_ , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=SCREAMING_SNAKE_CASE_ , default='summarization' , required=SCREAMING_SNAKE_CASE_ , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=SCREAMING_SNAKE_CASE_ , default=0.0 , required=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--src_lang' , type=SCREAMING_SNAKE_CASE_ , default='' , required=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--tgt_lang' , type=SCREAMING_SNAKE_CASE_ , default='' , required=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--eval_beams' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ ) parser.add_argument( '--val_metric' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=SCREAMING_SNAKE_CASE_ , default=1 , required=SCREAMING_SNAKE_CASE_ , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=SCREAMING_SNAKE_CASE_ , default=-1 , required=SCREAMING_SNAKE_CASE_ , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): '''simple docstring''' _UpperCAmelCase : str = "translation" _UpperCAmelCase : int = ["loss"] _UpperCAmelCase : Any = ["bleu"] _UpperCAmelCase : str = "bleu" def __init__( self : Any , lowercase : Optional[int] , **lowercase : int ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _snake_case = hparams.src_lang _snake_case = hparams.tgt_lang def A ( self : Optional[int] , lowercase : Optional[Any] , lowercase : Tuple ): '''simple docstring''' return calculate_bleu(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[Any]=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=__UpperCamelCase ) check_output_dir(__UpperCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: _snake_case = SummarizationModule(__UpperCamelCase ) else: _snake_case = TranslationModule(__UpperCamelCase ) _snake_case = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): _snake_case = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _snake_case = os.environ.get('WANDB_PROJECT' , __UpperCamelCase ) _snake_case = WandbLogger(name=model.output_dir.name , project=__UpperCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _snake_case = WandbLogger(name=model.output_dir.name , project=f'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: _snake_case = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _snake_case = False _snake_case = args.val_metric == 'loss' _snake_case = generic_train( __UpperCamelCase , __UpperCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __UpperCamelCase ) , early_stopping_callback=__UpperCamelCase , logger=__UpperCamelCase , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model _snake_case = '' _snake_case = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=__UpperCamelCase ) ) if checkpoints: _snake_case = checkpoints[-1] _snake_case = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() _lowerCamelCase : int = pl.Trainer.add_argparse_args(parser) _lowerCamelCase : Optional[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _lowerCamelCase : Tuple = parser.parse_args() main(args)
686
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> List[str]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) # get prompt text embeddings lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCamelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = text_embeddings.shape lowerCamelCase_ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = 42 if negative_prompt is None: lowerCamelCase_ = [''] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowerCamelCase_ = negative_prompt lowerCamelCase_ = text_input_ids.shape[-1] lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ = uncond_embeddings.shape[1] lowerCamelCase_ = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase_ = latents_reference.to(self.device ) lowerCamelCase_ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCamelCase_ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCamelCase_ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCamelCase_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCamelCase_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCamelCase_ = 0 if dx < 0 else dx lowerCamelCase_ = 0 if dy < 0 else dy lowerCamelCase_ = max(-dx , 0 ) lowerCamelCase_ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCamelCase_ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual lowerCamelCase_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase_ ,lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 1 / 0.18_215 * latents lowerCamelCase_ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCamelCase_ = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='pt' ).to( self.device ) lowerCamelCase_ ,lowerCamelCase_ = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCamelCase_ = None if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
42
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :int , lowerCamelCase__ :Any , lowerCamelCase__ :List[Any]=13 , lowerCamelCase__ :Any=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :Optional[int]=16 , lowerCamelCase__ :List[str]=[32, 64, 1_28] , lowerCamelCase__ :int=[1, 2, 1] , lowerCamelCase__ :Union[str, Any]=[2, 2, 4] , lowerCamelCase__ :str=2 , lowerCamelCase__ :Union[str, Any]=2.0 , lowerCamelCase__ :Tuple=True , lowerCamelCase__ :int=0.0 , lowerCamelCase__ :Tuple=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :List[str]="gelu" , lowerCamelCase__ :Optional[Any]=False , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :int=1e-5 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=None , lowerCamelCase__ :List[str]=True , lowerCamelCase__ :Optional[int]=10 , lowerCamelCase__ :Dict=8 , lowerCamelCase__ :int=["stage1", "stage2"] , lowerCamelCase__ :List[str]=[1, 2] , ): UpperCamelCase__ :List[str] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :List[Any] = image_size UpperCamelCase__ :Optional[int] = patch_size UpperCamelCase__ :Optional[int] = num_channels UpperCamelCase__ :Optional[Any] = embed_dim UpperCamelCase__ :int = hidden_sizes UpperCamelCase__ :str = depths UpperCamelCase__ :Any = num_heads UpperCamelCase__ :Optional[int] = window_size UpperCamelCase__ :int = mlp_ratio UpperCamelCase__ :str = qkv_bias UpperCamelCase__ :Tuple = hidden_dropout_prob UpperCamelCase__ :Union[str, Any] = attention_probs_dropout_prob UpperCamelCase__ :Optional[Any] = drop_path_rate UpperCamelCase__ :Union[str, Any] = hidden_act UpperCamelCase__ :Optional[int] = use_absolute_embeddings UpperCamelCase__ :Tuple = patch_norm UpperCamelCase__ :Optional[int] = layer_norm_eps UpperCamelCase__ :Dict = initializer_range UpperCamelCase__ :str = is_training UpperCamelCase__ :Tuple = scope UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :str = encoder_stride UpperCamelCase__ :int = out_features UpperCamelCase__ :int = out_indices def __a ( self :Tuple ): UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Tuple = None if self.use_labels: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Dict = self.get_config() return config, pixel_values, labels def __a ( self :Union[str, Any] ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __a ( self :Optional[int] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Dict ): UpperCamelCase__ :str = FocalNetModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase__ :Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __a ( self :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :str , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Any = FocalNetBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ :Tuple = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase__ :List[Any] = None UpperCamelCase__ :Tuple = FocalNetBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ :List[Any] = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __a ( self :Any , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :str ): UpperCamelCase__ :str = FocalNetForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ :int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase__ :Union[str, Any] = 1 UpperCamelCase__ :List[str] = FocalNetForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ :Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ :List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :Tuple , lowerCamelCase__ :Union[str, Any] ): UpperCamelCase__ :Any = self.type_sequence_label_size UpperCamelCase__ :List[Any] = FocalNetForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ :Tuple = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ :Optional[Any] = 1 UpperCamelCase__ :Optional[int] = FocalNetForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ :int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ :int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :str ): UpperCamelCase__ :List[Any] = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = config_and_inputs UpperCamelCase__ :int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _snake_case : Dict = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : List[str] = False _snake_case : List[str] = False _snake_case : List[str] = False _snake_case : Union[str, Any] = False def __a ( self :Tuple ): UpperCamelCase__ :List[Any] = FocalNetModelTester(self ) UpperCamelCase__ :Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 , has_text_modality=SCREAMING_SNAKE_CASE_ ) def __a ( self :Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self :int ): return def __a ( self :Dict ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) def __a ( self :Tuple ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def __a ( self :List[str] ): UpperCamelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __a ( self :Optional[int] ): pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __a ( self :Optional[Any] ): pass def __a ( self :Optional[Any] ): UpperCamelCase__ , UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def __a ( self :Tuple ): UpperCamelCase__ , UpperCamelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :Optional[Any] = [*signature.parameters.keys()] UpperCamelCase__ :str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def __a ( self :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase__ :int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ :Optional[int] = outputs.hidden_states UpperCamelCase__ :List[str] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # FocalNet has a different seq_length UpperCamelCase__ :Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase__ :int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase__ :Any = outputs.reshaped_hidden_states self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = reshaped_hidden_states[0].shape UpperCamelCase__ :Any = ( reshaped_hidden_states[0].view(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __a ( self :str ): UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :List[Any] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a ( self :Dict ): UpperCamelCase__ , UpperCamelCase__ :Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :int = 3 UpperCamelCase__ :Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase__ :str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase__ :Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase__ :Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :List[str] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @slow def __a ( self :List[str] ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :List[Any] = FocalNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __a ( self :Tuple ): UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Any = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase__ :str = model_class(config=SCREAMING_SNAKE_CASE_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :List[Any] ): return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Dict = self.default_image_processor UpperCamelCase__ :Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase__ :Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase__ :Dict = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase__ :Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ :Tuple = torch.tensor([0.2166, -0.4368, 0.2191] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class lowerCAmelCase_ ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" _snake_case : int = (FocalNetBackbone,) if is_torch_available() else () _snake_case : str = FocalNetConfig _snake_case : Any = False def __a ( self :List[str] ): UpperCamelCase__ :Tuple = FocalNetModelTester(self )
45
'''simple docstring''' import pprint import requests A_ = "https://zenquotes.io/api" def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": A_ = random_quotes() pprint.pprint(response)
42
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_ : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int=3 , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : List[str]=10 , __lowerCamelCase : List[Any]=[10, 20, 30, 40] , __lowerCamelCase : List[Any]=[1, 1, 2, 1] , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple="relu" , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Union[str, Any]=None , ) -> str: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = embeddings_size __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = hidden_act __lowercase = num_labels __lowercase = scope __lowercase = len(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : str ) -> str: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : List[str] ) -> Tuple: '''simple docstring''' __lowercase = TFResNetModel(config=SCREAMING_SNAKE_CASE_ ) __lowercase = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase ( self : str , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ) -> List[Any]: '''simple docstring''' __lowercase = self.num_labels __lowercase = TFResNetForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowercase = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class snake_case_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __UpperCamelCase = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def UpperCAmelCase ( self : Any ) -> str: '''simple docstring''' __lowercase = TFResNetModelTester(self ) __lowercase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(SCREAMING_SNAKE_CASE_ ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ): __lowercase = model_class(SCREAMING_SNAKE_CASE_ ) __lowercase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowercase = layer_type __lowercase = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __lowercase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='tf' ) # forward pass __lowercase = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __lowercase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __lowercase = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
375
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=33 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> int: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = EsmModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = EsmForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = EsmForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = () SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = EsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = EsmModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCamelCase_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCamelCase_ = create_position_ids_from_input_ids(SCREAMING_SNAKE_CASE_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.empty(2 , 4 , 30 ) lowerCamelCase_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCamelCase_ = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCamelCase_ = embeddings.create_position_ids_from_inputs_embeds(SCREAMING_SNAKE_CASE_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass @require_torch class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase_ = 33 lowerCamelCase_ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> Tuple: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. lowerCamelCase_ = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
42
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( _lowerCAmelCase )-> bool: __UpperCAmelCase = str(__UpperCamelCase ) return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set('123456789' ) def _lowerCAmelCase ( )-> int | None: for base_num in range(99_99 , 49_99 , -1 ): __UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate for base_num in range(3_33 , 99 , -1 ): __UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
126
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
42
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: Optional[int] = tempfile.mkdtemp() lowerCamelCase__: Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """็š„""", """ไปท""", """ๆ ผ""", """ๆ˜ฏ""", """15""", """ไพฟ""", """alex""", """##andra""", """๏ผŒ""", """ใ€‚""", """-""", """t""", """shirt""", ] lowerCamelCase__: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase__: Optional[Any] = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], """do_convert_rgb""": True, } lowerCamelCase__: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Union[str, Any] , **__a : str ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : List[Any] , **__a : Union[str, Any] ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : str , **__a : List[Any] ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__: Union[str, Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: Optional[Any] = self.get_tokenizer() lowerCamelCase__: int = self.get_rust_tokenizer() lowerCamelCase__: Dict = self.get_image_processor() lowerCamelCase__: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__: List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: int = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__: List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: Optional[int] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__: List[Any] = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) lowerCamelCase__: Optional[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: List[Any] = self.get_image_processor() lowerCamelCase__: Optional[int] = self.get_tokenizer() lowerCamelCase__: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Tuple = self.prepare_image_inputs() lowerCamelCase__: Optional[Any] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) lowerCamelCase__: str = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: Tuple = self.get_image_processor() lowerCamelCase__: Optional[int] = self.get_tokenizer() lowerCamelCase__: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Optional[Any] = """Alexandra๏ผŒT-shirt็š„ไปทๆ ผๆ˜ฏ15ไพฟๅฃซใ€‚""" lowerCamelCase__: List[Any] = processor(text=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: List[Any] = self.get_image_processor() lowerCamelCase__: Tuple = self.get_tokenizer() lowerCamelCase__: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Optional[int] = """Alexandra๏ผŒT-shirt็š„ไปทๆ ผๆ˜ฏ15ไพฟๅฃซใ€‚""" lowerCamelCase__: Union[str, Any] = self.prepare_image_inputs() lowerCamelCase__: Dict = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: str = self.get_image_processor() lowerCamelCase__: List[str] = self.get_tokenizer() lowerCamelCase__: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__: Optional[Any] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Optional[int] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Optional[int] = self.get_image_processor() lowerCamelCase__: Optional[int] = self.get_tokenizer() lowerCamelCase__: Dict = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Dict = """Alexandra๏ผŒT-shirt็š„ไปทๆ ผๆ˜ฏ15ไพฟๅฃซใ€‚""" lowerCamelCase__: List[str] = self.prepare_image_inputs() lowerCamelCase__: Optional[Any] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
306
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'xlm-prophetnet' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 30522 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 128 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = num_encoder_layers lowerCamelCase_ = num_encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = num_decoder_layers lowerCamelCase_ = num_decoder_attention_heads lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = init_std # Normal(0, this parameter) lowerCamelCase_ = activation_function # parameters for xlmprophetnet lowerCamelCase_ = ngram lowerCamelCase_ = num_buckets lowerCamelCase_ = relative_max_distance lowerCamelCase_ = disable_ngram_loss lowerCamelCase_ = eps # 3 Types of Dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = dropout lowerCamelCase_ = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
42
0
def lowerCAmelCase_ ( __a ) -> list: """simple docstring""" if len(__UpperCamelCase ) <= 1: return [tuple(__UpperCamelCase )] lowerCamelCase__: List[Any] =[] def generate(__a , __a ): lowerCamelCase__: Union[str, Any] =[0] * n res.append(tuple(__UpperCamelCase ) ) lowerCamelCase__: int =0 while i < n: if c[i] < i: if i % 2 == 0: lowerCamelCase__ , lowerCamelCase__: Optional[Any] =arr[i], arr[0] else: lowerCamelCase__ , lowerCamelCase__: List[Any] =arr[i], arr[c[i]] res.append(tuple(__UpperCamelCase ) ) c[i] += 1 lowerCamelCase__: Any =0 else: lowerCamelCase__: Optional[Any] =0 i += 1 generate(len(__UpperCamelCase ) , __UpperCamelCase ) return res if __name__ == "__main__": __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(heaps(arr))
59
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float: lowerCamelCase_ = x lowerCamelCase_ = y for step in range(__UpperCamelCase ): # noqa: B007 lowerCamelCase_ = a * a - b * b + x lowerCamelCase_ = 2 * a * b + y lowerCamelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( __UpperCamelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _UpperCamelCase ( __UpperCamelCase ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase ,1 ,1 ) ) def _UpperCamelCase ( __UpperCamelCase = 8_00 ,__UpperCamelCase = 6_00 ,__UpperCamelCase = -0.6 ,__UpperCamelCase = 0 ,__UpperCamelCase = 3.2 ,__UpperCamelCase = 50 ,__UpperCamelCase = True ,) -> Image.Image: lowerCamelCase_ = Image.new('RGB' ,(image_width, image_height) ) lowerCamelCase_ = img.load() # loop through the image-coordinates for image_x in range(__UpperCamelCase ): for image_y in range(__UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase_ = figure_width / image_width * image_height lowerCamelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase_ = get_distance(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase_ = get_color_coded_rgb(__UpperCamelCase ) else: lowerCamelCase_ = get_black_and_white_rgb(__UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure A_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
42
0
'''simple docstring''' from collections import deque class UpperCAmelCase : def __init__( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): UpperCAmelCase__ :int = process_name # process name UpperCAmelCase__ :Any = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase__ :int = arrival_time UpperCAmelCase__ :Any = burst_time # remaining burst time UpperCAmelCase__ :Union[str, Any] = 0 # total time of the process wait in ready queue UpperCAmelCase__ :Dict = 0 # time from arrival time to completion time class UpperCAmelCase : def __init__( self : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any , ): UpperCAmelCase__ :List[str] = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase__ :Optional[int] = time_slices # unfinished process is in this ready_queue UpperCAmelCase__ :int = queue # current time UpperCAmelCase__ :Any = current_time # finished process is in this sequence queue UpperCAmelCase__ :Dict = deque() def __SCREAMING_SNAKE_CASE ( self : Tuple ): UpperCAmelCase__ :List[str] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCamelCase : int ): UpperCAmelCase__ :Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCamelCase : int ): UpperCAmelCase__ :int = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __SCREAMING_SNAKE_CASE ( self : int , __lowerCamelCase : str ): UpperCAmelCase__ :str = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __SCREAMING_SNAKE_CASE ( self : str , __lowerCamelCase : Optional[int] ): return [q.burst_time for q in queue] def __SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCamelCase : Optional[Any] ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __SCREAMING_SNAKE_CASE ( self : Any , __lowerCamelCase : Optional[Any] ): UpperCAmelCase__ :Union[str, Any] = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCAmelCase__ :Union[str, Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase__ :int = 0 # set the process's turnaround time because it is finished UpperCAmelCase__ :int = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase__ :str = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any ): UpperCAmelCase__ :List[str] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCAmelCase__ :List[str] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase__ :Union[str, Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase__ :Optional[int] = 0 # set the finish time UpperCAmelCase__ :Tuple = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase__ :Dict = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __SCREAMING_SNAKE_CASE ( self : Tuple ): for i in range(self.number_of_queues - 1 ): UpperCAmelCase__ , UpperCAmelCase__ :Any = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __lowerCamelCase = Process('''P1''', 0, 53) __lowerCamelCase = Process('''P2''', 0, 17) __lowerCamelCase = Process('''P3''', 0, 68) __lowerCamelCase = Process('''P4''', 0, 24) __lowerCamelCase = 3 __lowerCamelCase = [17, 25] __lowerCamelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) __lowerCamelCase = Process('''P1''', 0, 53) __lowerCamelCase = Process('''P2''', 0, 17) __lowerCamelCase = Process('''P3''', 0, 68) __lowerCamelCase = Process('''P4''', 0, 24) __lowerCamelCase = 3 __lowerCamelCase = [17, 25] __lowerCamelCase = deque([Pa, Pa, Pa, Pa]) __lowerCamelCase = MLFQ(number_of_queues, time_slices, queue, 0) __lowerCamelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
467
'''simple docstring''' from math import isclose, sqrt def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> tuple[float, float, float]: lowerCamelCase_ = point_y / 4 / point_x lowerCamelCase_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCamelCase_ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCamelCase_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCamelCase_ = outgoing_gradient**2 + 4 lowerCamelCase_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCamelCase_ = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 lowerCamelCase_ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCamelCase_ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCamelCase_ = x_minus if isclose(__UpperCamelCase ,__UpperCamelCase ) else x_plus lowerCamelCase_ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _UpperCamelCase ( __UpperCamelCase = 1.4 ,__UpperCamelCase = -9.6 ) -> int: lowerCamelCase_ = 0 lowerCamelCase_ = first_x_coord lowerCamelCase_ = first_y_coord lowerCamelCase_ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = next_point(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
42
0
'''simple docstring''' import fcntl import os import socket import torch import torch.distributed as dist def _A ( *_lowerCAmelCase ): """simple docstring""" with open(__UpperCamelCase , 'r' ) as fh: fcntl.flock(__UpperCamelCase , fcntl.LOCK_EX ) try: print(*__UpperCamelCase ) finally: fcntl.flock(__UpperCamelCase , fcntl.LOCK_UN ) lowerCamelCase = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) lowerCamelCase = torch.device("""cuda""", local_rank) lowerCamelCase = socket.gethostname() lowerCamelCase = f"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCamelCase = dist.get_rank() lowerCamelCase = dist.get_world_size() printflock(f"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(f"{gpu} is broken") raise
474
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis lowerCamelCase_ = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] lowerCamelCase_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__UpperCamelCase ,1 ): if n < _p: # then we have our last prime to check lowerCamelCase_ = primes[:idx] break lowerCamelCase_ ,lowerCamelCase_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase_ = False for r in range(__UpperCamelCase ): lowerCamelCase_ = pow(__UpperCamelCase ,d * 2**r ,__UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _UpperCamelCase ( ) -> None: assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
42
0
from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
411
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ = 16 A_ = 32 def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 16 ,__UpperCamelCase = "bert-base-cased" ) -> List[Any]: lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = load_dataset('glue' ,'mrpc' ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets['train'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCamelCase_ = DataLoader( tokenized_datasets['validation'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: model.eval() lowerCamelCase_ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: lowerCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase ,references=__UpperCamelCase ,) lowerCamelCase_ = metric.compute() return eval_metric["accuracy"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]: # Initialize accelerator lowerCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config['lr'] lowerCamelCase_ = int(config['num_epochs'] ) lowerCamelCase_ = int(config['seed'] ) lowerCamelCase_ = int(config['batch_size'] ) lowerCamelCase_ = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCamelCase_ = 1 lowerCamelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCamelCase_ = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ = 0 lowerCamelCase_ = evaluate.load('glue' ,'mrpc' ) lowerCamelCase_ = num_epochs if args.partial_train_epoch is not None: lowerCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase_ = args.resume_from_checkpoint.split('epoch_' )[1] lowerCamelCase_ = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase_ = int(__UpperCamelCase ) + 1 lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) accelerator.print('resumed checkpoint performance:' ,__UpperCamelCase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,f'''state_{starting_epoch-1}.json''' ) ,'r' ) as f: lowerCamelCase_ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase_ = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.loss lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase_ = f'''epoch_{epoch}''' lowerCamelCase_ = os.path.join(args.output_dir ,__UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = accuracy lowerCamelCase_ = lr_scheduler.get_lr()[0] lowerCamelCase_ = optimizer.param_groups[0]['lr'] lowerCamelCase_ = epoch lowerCamelCase_ = overall_step accelerator.print(f'''epoch {epoch}:''' ,__UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f'''state_{epoch}.json''' ) ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> str: lowerCamelCase_ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=__UpperCamelCase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__UpperCamelCase ,) parser.add_argument( '--output_dir' ,type=__UpperCamelCase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=__UpperCamelCase ,default=2 ,help='Number of train epochs.' ,) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
42
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCAmelCase : Any = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = ["""BeitFeatureExtractor"""] lowerCAmelCase : List[Any] = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
543
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase_ = ksize + 1 lowerCamelCase_ = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__UpperCamelCase ): for x in range(__UpperCamelCase ): # distance from center lowerCamelCase_ = x - ksize // 2 lowerCamelCase_ = y - ksize // 2 # degree to radiant lowerCamelCase_ = theta / 1_80 * np.pi lowerCamelCase_ = np.cos(_theta ) lowerCamelCase_ = np.sin(_theta ) # get kernel x lowerCamelCase_ = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase_ = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A_ = imread("../image_data/lena.jpg") # turn image in gray scale value A_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A_ = out / out.max() * 255 A_ = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
42
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) class lowerCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ = ["input_features", "attention_mask"] def __init__( self : List[Any] , _lowerCAmelCase : List[str]=80 , _lowerCAmelCase : int=16_000 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Tuple=10 , _lowerCAmelCase : Optional[int]=25 , _lowerCAmelCase : List[Any]="hamming_window" , _lowerCAmelCase : List[str]=32_768.0 , _lowerCAmelCase : Union[str, Any]=0.97 , _lowerCAmelCase : Union[str, Any]=1.0 , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , **_lowerCAmelCase : str , ): super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = frame_signal_scale SCREAMING_SNAKE_CASE_ = preemphasis_coeff SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = normalize_means SCREAMING_SNAKE_CASE_ = normalize_vars SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = return_attention_mask SCREAMING_SNAKE_CASE_ = win_length * sampling_rate // 1_000 SCREAMING_SNAKE_CASE_ = hop_length * sampling_rate // 1_000 SCREAMING_SNAKE_CASE_ = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE_ = (self.n_fft // 2) + 1 def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[str] ): if self.win_function == "hamming_window": SCREAMING_SNAKE_CASE_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE_ = window_function(window_length=self.sample_size , name=self.win_function ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) SCREAMING_SNAKE_CASE_ = spectrogram( one_waveform * self.frame_signal_scale , window=SCREAMING_SNAKE_CASE_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=SCREAMING_SNAKE_CASE_ , preemphasis=self.preemphasis_coeff , mel_filters=SCREAMING_SNAKE_CASE_ , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ): if self.normalize_means: SCREAMING_SNAKE_CASE_ = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE_ = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.normalize_vars: SCREAMING_SNAKE_CASE_ = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE_ = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE_ = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE_ = x.astype(np.floataa ) return x def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] = None ): SCREAMING_SNAKE_CASE_ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] def __call__( self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict = False , _lowerCAmelCase : Tuple = None , _lowerCAmelCase : str = False , _lowerCAmelCase : Tuple = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : List[str] = None , _lowerCAmelCase : Optional[Any] = None , **_lowerCAmelCase : List[str] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE_ = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE_ = [self._extract_mfsc_features(SCREAMING_SNAKE_CASE_ ) for one_waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE_ = BatchFeature({'input_features': features} ) SCREAMING_SNAKE_CASE_ = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format SCREAMING_SNAKE_CASE_ = padded_inputs.get('input_features' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE_ = padded_inputs.get('attention_mask' ) if attention_mask is not None: SCREAMING_SNAKE_CASE_ = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: SCREAMING_SNAKE_CASE_ = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) SCREAMING_SNAKE_CASE_ = self.normalize( padded_inputs['input_features'] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ['transformers', 'torch', 'note_seq'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
42
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a_ ( __lowercase : Optional[Any] ) -> Optional[Any]: return EnvironmentCommand() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def A ( lowercase : List[str] ): '''simple docstring''' _snake_case = parser.add_parser('env' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = huggingface_hub.__version__ _snake_case = 'not installed' _snake_case = 'NA' if is_torch_available(): import torch _snake_case = torch.__version__ _snake_case = torch.cuda.is_available() _snake_case = 'not installed' if is_transformers_available(): import transformers _snake_case = transformers.__version__ _snake_case = 'not installed' if is_accelerate_available(): import accelerate _snake_case = accelerate.__version__ _snake_case = 'not installed' if is_xformers_available(): import xformers _snake_case = xformers.__version__ _snake_case = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f'''{pt_version} ({pt_cuda_available})''', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(SCREAMING_SNAKE_CASE_ ) ) return info @staticmethod def A ( lowercase : str ): '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
686
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCamelCase( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) lowerCamelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vqvae_and_unet lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 ) lowerCamelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = self.dummy_unet_condition lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = torch.rand((1, 1, 10) ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = torch_device lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
42
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase = [0, 25, 50] UpperCamelCase = [25, 50, 75] UpperCamelCase = fuzz.membership.trimf(X, abca) UpperCamelCase = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase = np.ones(75) UpperCamelCase = np.zeros((75,)) # 1. Union = max(ยตA(x), ยตB(x)) UpperCamelCase = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(ยตA(x), ยตB(x)) UpperCamelCase = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(ยตA(x)) UpperCamelCase = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(ยตA(x),(1- ยตB(x))) UpperCamelCase = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [ยตA(x) + ยตB(x) โ€“ (ยตA(x) * ยตB(x))] UpperCamelCase = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (ยตA(x) * ยตB(x)) UpperCamelCase = young * middle_aged # 7. Bounded Sum = min[1,(ยตA(x), ยตB(x))] UpperCamelCase = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(ยตA(x), ยตB(x))] UpperCamelCase = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
45
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _UpperCamelCase ( __UpperCamelCase = 8 ) -> str: lowerCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCamelCase ) lowerCamelCase_ = i // 3 lowerCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCamelCase_ = ( chars_incl + random(__UpperCamelCase ,quotient + remainder ) + random(__UpperCamelCase ,__UpperCamelCase ) + random(__UpperCamelCase ,__UpperCamelCase ) ) lowerCamelCase_ = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 8 ) -> bool: if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCamelCase_ = any(char in ascii_uppercase for char in password ) lowerCamelCase_ = any(char in ascii_lowercase for char in password ) lowerCamelCase_ = any(char in digits for char in password ) lowerCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _UpperCamelCase ( ) -> Optional[int]: lowerCamelCase_ = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCamelCase_ = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' ,password_generator(__UpperCamelCase ) ) print( 'Alternative Password generated:' ,alternative_password_generator(__UpperCamelCase ,__UpperCamelCase ) ,) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
42
0
def SCREAMING_SNAKE_CASE ( snake_case = 4_000_000 ) -> int: __lowercase = [0, 1] __lowercase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __lowercase = 0 for j in range(len(__UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
375
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase_ = test_metrics @require_cpu def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase( self ) -> Tuple: '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) lowerCamelCase_ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
42
0
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=128 , __A=32 , __A=16 , __A=2 , __A=0.0_2 , __A=3 , __A=4 , __A=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope def __lowerCamelCase ( self ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self ): ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = self.prepare_config_and_inputs() __UpperCAmelCase = True __UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = NezhaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ): __UpperCAmelCase = True __UpperCAmelCase = NezhaModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , ) __UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , ) __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = NezhaForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = NezhaForNextSentencePrediction(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = NezhaForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , next_sentence_label=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = NezhaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = NezhaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = NezhaForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = self.num_choices __UpperCAmelCase = NezhaForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): _A : List[str] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _A : int = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) _A : int = True def __lowerCamelCase ( self , __A , __A , __A=False ): __UpperCAmelCase = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = NezhaModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCAmelCase = None self.model_tester.create_and_check_model_as_decoder( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __lowerCamelCase ( self ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = NezhaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def __lowerCamelCase ( self ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __UpperCAmelCase = True __UpperCAmelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , 'bert.pt' ) ) __UpperCAmelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , 'bert.pt' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['input_ids'].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['attention_mask'].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): __UpperCAmelCase = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) __UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCAmelCase = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def __lowerCamelCase ( self ): __UpperCAmelCase = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) __UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCAmelCase = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
126
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: if hor == 1_28: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') lowerCamelCase_ = (32, 64, 1_28, 2_56) lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') lowerCamelCase_ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase_ = model.state_dict() lowerCamelCase_ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> Tuple: lowerCamelCase_ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } lowerCamelCase_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) lowerCamelCase_ = model lowerCamelCase_ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase_ = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase__ : @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.get_dummy_input() @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"""\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.""" ) def lowerCamelCase_ ( self : Optional[int] , __a : Union[str, Any]=True , __a : Optional[Any]=False , __a : str=False , __a : Optional[Any]=False , ): '''simple docstring''' lowerCamelCase__: Tuple = 4 lowerCamelCase__: Optional[int] = 32 lowerCamelCase__: int = (32, 32) lowerCamelCase__: Dict = torch.manual_seed(0 ) lowerCamelCase__: Union[str, Any] = torch.device(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Tuple = (batch_size, num_channels) + sizes lowerCamelCase__: List[str] = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Optional[Any] = {"""hidden_states""": hidden_states} if include_temb: lowerCamelCase__: str = 128 lowerCamelCase__: Dict = randn_tensor((batch_size, temb_channels) , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) if include_res_hidden_states_tuple: lowerCamelCase__: int = torch.manual_seed(1 ) lowerCamelCase__: Optional[Any] = (randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ),) if include_encoder_hidden_states: lowerCamelCase__: Tuple = floats_tensor((batch_size, 32, 32) ).to(SCREAMING_SNAKE_CASE_ ) if include_skip_sample: lowerCamelCase__: Optional[int] = randn_tensor(((batch_size, 3) + sizes) , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) return dummy_input def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: Any = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": lowerCamelCase__: Any = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) lowerCamelCase__: Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self : Optional[Any] , __a : int ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] = self.prepare_init_args_and_inputs_for_common() lowerCamelCase__: str = self.block_class(**SCREAMING_SNAKE_CASE_ ) unet_block.to(SCREAMING_SNAKE_CASE_ ) unet_block.eval() with torch.no_grad(): lowerCamelCase__: Tuple = unet_block(**SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase__: Union[str, Any] = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCamelCase__: str = output[0, -1, -3:, -3:] lowerCamelCase__: Any = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(output_slice.flatten() , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Optional[int] = self.prepare_init_args_and_inputs_for_common() lowerCamelCase__: List[Any] = self.block_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() lowerCamelCase__: Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase__: List[str] = output[0] lowerCamelCase__: Dict = torch.device(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: List[Any] = randn_tensor(output.shape , device=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Union[str, Any] = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) loss.backward()
306
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ = 250_004 A_ = 250_020 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = MBartTokenizer SCREAMING_SNAKE_CASE_ = MBartTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['โ–This', 'โ–is', 'โ–a', 'โ–t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'รฉ', '.', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase( self ) -> int: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'facebook/mbart-large-en-ro' SCREAMING_SNAKE_CASE_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE_ = [ 'ลžeful ONU declarฤƒ cฤƒ nu existฤƒ o soluลฃie militarฤƒ รฎn Siria', 'Secretarul General Ban Ki-moon declarฤƒ cฤƒ rฤƒspunsul sฤƒu la intensificarea sprijinului militar al Rusiei' ' pentru Siria este cฤƒ "nu existฤƒ o soluลฃie militarฤƒ" la conflictul de aproape cinci ani ลŸi cฤƒ noi arme nu vor' ' face decรขt sฤƒ รฎnrฤƒutฤƒลฃeascฤƒ violenลฃele ลŸi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE_ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def UpperCamelCase( cls ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase_ = 1 return cls def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) lowerCamelCase_ = targets['input_ids'] lowerCamelCase_ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
42
0
import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( __a , __a , __a ) -> float: """simple docstring""" lowerCamelCase__: List[str] =x lowerCamelCase__: Tuple =y for step in range(__UpperCamelCase ): # noqa: B007 lowerCamelCase__: Optional[int] =a * a - b * b + x lowerCamelCase__: Tuple =2 * a * b + y lowerCamelCase__: Tuple =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( __a ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCAmelCase_ ( __a ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase , 1 , 1 ) ) def lowerCAmelCase_ ( __a = 800 , __a = 600 , __a = -0.6 , __a = 0 , __a = 3.2 , __a = 50 , __a = True , ) -> Image.Image: """simple docstring""" lowerCamelCase__: str =Image.new("RGB" , (image_width, image_height) ) lowerCamelCase__: Union[str, Any] =img.load() # loop through the image-coordinates for image_x in range(__UpperCamelCase ): for image_y in range(__UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase__: List[Any] =figure_width / image_width * image_height lowerCamelCase__: Union[str, Any] =figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase__: Any =figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase__: Optional[int] =get_distance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase__: Optional[Any] =get_color_coded_rgb(__UpperCamelCase ) else: lowerCamelCase__: str =get_black_and_white_rgb(__UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __A = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
59
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'ylacombe/bark-small' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = 'en_speaker_1' lowerCamelCase_ = 'This is a test string' lowerCamelCase_ = 'speaker_embeddings_path.json' lowerCamelCase_ = 'speaker_embeddings' def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase_ = 35 lowerCamelCase_ = 2 lowerCamelCase_ = 8 lowerCamelCase_ = { 'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase_ = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string ) lowerCamelCase_ = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
42
0
'''simple docstring''' def a__ ( UpperCamelCase_ : int ): assert column_title.isupper() UpperCAmelCase__ :Union[str, Any] = 0 UpperCAmelCase__ :Optional[Any] = len(__UpperCamelCase ) - 1 UpperCAmelCase__ :Any = 0 while index >= 0: UpperCAmelCase__ :List[Any] = (ord(column_title[index] ) - 64) * pow(26, __UpperCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
467
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} A_ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } A_ = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('ยก' ) ,ord('ยฌ' ) + 1 ) ) + list(range(ord('ยฎ' ) ,ord('รฟ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase ,__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowerCamelCase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ ,lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowerCamelCase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = ' '.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = word return word def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) return bpe_tokens def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = ''.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) lowerCamelCase_ = 0 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs)
42
0
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'hidden_sizes')) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'num_attention_heads')) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'num_encoder_blocks')) class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str=1_3 , _lowerCAmelCase : Dict=6_4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Optional[int]=[2, 2, 2, 2] , _lowerCAmelCase : Any=[8, 4, 2, 1] , _lowerCAmelCase : int=[1_6, 3_2, 6_4, 1_2_8] , _lowerCAmelCase : int=[1, 4, 8, 1_6] , _lowerCAmelCase : int=[1, 2, 4, 8] , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Optional[Any]=None , ): '''simple docstring''' __lowercase =parent __lowercase =batch_size __lowercase =image_size __lowercase =num_channels __lowercase =num_encoder_blocks __lowercase =sr_ratios __lowercase =depths __lowercase =hidden_sizes __lowercase =downsampling_rates __lowercase =num_attention_heads __lowercase =is_training __lowercase =use_labels __lowercase =hidden_act __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =initializer_range __lowercase =num_labels __lowercase =scope def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowercase =None if self.use_labels: __lowercase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __lowercase =self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self : Tuple): '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase =SegformerModel(config=SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() __lowercase =model(SCREAMING_SNAKE_CASE_) __lowercase =__lowercase =self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def __lowerCamelCase ( self : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : int): '''simple docstring''' __lowercase =self.num_labels __lowercase =SegformerForSemanticSegmentation(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() __lowercase =model(SCREAMING_SNAKE_CASE_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) __lowercase =model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def __lowerCamelCase ( self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' __lowercase =1 __lowercase =SegformerForSemanticSegmentation(config=SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() __lowercase =torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(SCREAMING_SNAKE_CASE_) __lowercase =model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_) self.parent.assertGreater(result.loss , 0.0) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase =config_and_inputs __lowercase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =SegformerModelTester(self) __lowercase =SegformerConfigTester(self , config_class=SCREAMING_SNAKE_CASE_) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*SCREAMING_SNAKE_CASE_) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*SCREAMING_SNAKE_CASE_) @unittest.skip('SegFormer does not use inputs_embeds') def __lowerCamelCase ( self : Dict): '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def __lowerCamelCase ( self : Tuple): '''simple docstring''' pass def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase =model_class(SCREAMING_SNAKE_CASE_) __lowercase =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase =[*signature.parameters.keys()] __lowercase =['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() __lowercase =True for model_class in self.all_model_classes: __lowercase =True __lowercase =False __lowercase =True __lowercase =model_class(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() with torch.no_grad(): __lowercase =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)) __lowercase =outputs.attentions __lowercase =sum(self.model_tester.depths) self.assertEqual(len(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase =True __lowercase =model_class(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() with torch.no_grad(): __lowercase =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)) __lowercase =outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) # verify the first attentions (first block, first layer) __lowercase =(self.model_tester.image_size // 4) ** 2 __lowercase =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __lowercase =(self.model_tester.image_size // 3_2) ** 2 __lowercase =(self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __lowercase =len(SCREAMING_SNAKE_CASE_) # Check attention is always last and order is fine __lowercase =True __lowercase =True __lowercase =model_class(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() with torch.no_grad(): __lowercase =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE_)) __lowercase =outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) # verify the first attentions (first block, first layer) __lowercase =(self.model_tester.image_size // 4) ** 2 __lowercase =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __lowerCamelCase ( self : Dict): '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Any): __lowercase =model_class(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() with torch.no_grad(): __lowercase =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)) __lowercase =outputs.hidden_states __lowercase =self.model_tester.num_encoder_blocks self.assertEqual(len(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase =True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase =True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' if not self.model_tester.is_training: return __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() __lowercase =True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE_): continue __lowercase =model_class(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.train() __lowercase =self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_) __lowercase =model(**SCREAMING_SNAKE_CASE_).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' pass @slow def __lowerCamelCase ( self : List[str]): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase =SegformerModel.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsNotNone(SCREAMING_SNAKE_CASE_) def _A ( ): """simple docstring""" __lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=SCREAMING_SNAKE_CASE_ , align=SCREAMING_SNAKE_CASE_ , do_random_crop=SCREAMING_SNAKE_CASE_) __lowercase =SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( SCREAMING_SNAKE_CASE_) __lowercase =prepare_img() __lowercase =image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt') __lowercase =encoded_inputs.pixel_values.to(SCREAMING_SNAKE_CASE_) with torch.no_grad(): __lowercase =model(SCREAMING_SNAKE_CASE_) __lowercase =torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_) __lowercase =torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ]).to(SCREAMING_SNAKE_CASE_) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4)) @slow def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=SCREAMING_SNAKE_CASE_ , align=SCREAMING_SNAKE_CASE_ , do_random_crop=SCREAMING_SNAKE_CASE_) __lowercase =SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(SCREAMING_SNAKE_CASE_) __lowercase =prepare_img() __lowercase =image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt') __lowercase =encoded_inputs.pixel_values.to(SCREAMING_SNAKE_CASE_) with torch.no_grad(): __lowercase =model(SCREAMING_SNAKE_CASE_) __lowercase =torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_) __lowercase =torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ]).to(SCREAMING_SNAKE_CASE_) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-1)) @slow def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=SCREAMING_SNAKE_CASE_ , align=SCREAMING_SNAKE_CASE_ , do_random_crop=SCREAMING_SNAKE_CASE_) __lowercase =SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( SCREAMING_SNAKE_CASE_) __lowercase =prepare_img() __lowercase =image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt') __lowercase =encoded_inputs.pixel_values.to(SCREAMING_SNAKE_CASE_) with torch.no_grad(): __lowercase =model(SCREAMING_SNAKE_CASE_) __lowercase =outputs.logits.detach().cpu() __lowercase =image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ , target_sizes=[(5_0_0, 3_0_0)]) __lowercase =torch.Size((5_0_0, 3_0_0)) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_) __lowercase =image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_) __lowercase =torch.Size((1_2_8, 1_2_8)) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_)
474
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } A_ = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } A_ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = RealmTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = do_lower_case def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = PaddingStrategy.MAX_LENGTH lowerCamelCase_ = text lowerCamelCase_ = kwargs.pop('text_pair' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = kwargs.pop('return_tensors' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(SCREAMING_SNAKE_CASE_ ): if batch_text_pair is not None: lowerCamelCase_ = batch_text_pair[idx] else: lowerCamelCase_ = None lowerCamelCase_ = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = encoded_candidates.get('input_ids' ) lowerCamelCase_ = encoded_candidates.get('attention_mask' ) lowerCamelCase_ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(SCREAMING_SNAKE_CASE_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(SCREAMING_SNAKE_CASE_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {key: item for key, item in output_data.items() if len(SCREAMING_SNAKE_CASE_ ) != 0} return BatchEncoding(SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
42
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase__ = {} for old_key in state_dict.keys(): lowercase__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowercase__ = key.replace('''moe_layer.experts.0''' , f'ffn.experts.expert_{expert_idx}' ) else: lowercase__ = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowercase__ = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowercase__ = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowercase__ = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowercase__ = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowercase__ = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowercase__ = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowercase__ = state_dict[old_key] return new_dict def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = WEIGHTS_NAME ): """simple docstring""" lowercase__ = [] lowercase__ = 0 os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) for expert in range(SCREAMING_SNAKE_CASE ): lowercase__ = switch_checkpoint_path + f'-rank-{expert}.pt' if os.path.isfile(SCREAMING_SNAKE_CASE ): lowercase__ = torch.load(SCREAMING_SNAKE_CASE )['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) lowercase__ = rename_fairseq_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = os.path.join( SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(SCREAMING_SNAKE_CASE )[0]].dtype ) # Add the last block lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) lowercase__ = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) lowercase__ = rename_fairseq_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(SCREAMING_SNAKE_CASE ) == 1: lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Otherwise, let's build the index lowercase__ = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin' ) lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) for key in shard: lowercase__ = shard_file # Add the metadata lowercase__ = {'''total_size''': total_size} lowercase__ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' , encoding='''utf-8''' ) as f: lowercase__ = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '''\n''' f.write(SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) lowerCAmelCase = parser.parse_args() lowerCAmelCase, lowerCAmelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
43
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
1
lowerCAmelCase = [0, 2, 4, 6, 8] lowerCAmelCase = [1, 3, 5, 7, 9] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase__ = 0 for digit in range(10 ): lowercase__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return result lowercase__ = 0 for digita in range(10 ): lowercase__ = digita if (remainder + digita) % 2 == 0: lowercase__ = ODD_DIGITS else: lowercase__ = EVEN_DIGITS for digita in other_parity_digits: lowercase__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return result def _a ( SCREAMING_SNAKE_CASE = 9 ): """simple docstring""" lowercase__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(SCREAMING_SNAKE_CASE , 0 , [0] * length , SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(f"""{solution() = }""")
43
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'โ–' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
1
from collections.abc import Callable def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = a lowercase__ = b if function(SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(SCREAMING_SNAKE_CASE ) * function(SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: lowercase__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(SCREAMING_SNAKE_CASE ) == 0: return mid elif function(SCREAMING_SNAKE_CASE ) * function(SCREAMING_SNAKE_CASE ) < 0: lowercase__ = mid else: lowercase__ = mid lowercase__ = start + (end - start) / 2.0 return mid def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
43
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
1
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" lowercase__ = length or len(SCREAMING_SNAKE_CASE ) lowercase__ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowercase__ , lowercase__ = list_data[i + 1], list_data[i] lowercase__ = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
43
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCAmelCase = False @skip_mps class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = StableDiffusionAttendAndExcitePipeline _lowercase : Tuple = False _lowercase : Dict = TEXT_TO_IMAGE_PARAMS _lowercase : str = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) _lowercase : str = TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase : str = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCamelCase_ ( cls: Optional[int] ) -> Tuple: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase_ ) @classmethod def lowerCamelCase_ ( cls: int ) -> Optional[int]: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) lowercase__ = CLIPTextModel(UpperCamelCase_ ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self: str , UpperCamelCase_: str , UpperCamelCase_: Optional[int]=0 ) -> List[str]: """simple docstring""" if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = lowercase__ = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) lowercase__ = pipe(**UpperCamelCase_ ).images lowercase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowercase__ = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def lowerCamelCase_ ( self: Any ) -> List[str]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase_ ( self: Optional[Any] ) -> int: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def lowerCamelCase_ ( self: Optional[Any] ) -> List[str]: """simple docstring""" super().test_save_load_local(expected_max_difference=5E-4 ) def lowerCamelCase_ ( self: Optional[int] ) -> List[Any]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): @classmethod def lowerCamelCase_ ( cls: Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase_ ) @classmethod def lowerCamelCase_ ( cls: Dict ) -> Dict: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = torch.manual_seed(51 ) lowercase__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) lowercase__ = '''a painting of an elephant with glasses''' lowercase__ = [5, 7] lowercase__ = pipe( prompt=UpperCamelCase_ , token_indices=UpperCamelCase_ , guidance_scale=7.5 , generator=UpperCamelCase_ , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-1
43
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
1
def _a ( SCREAMING_SNAKE_CASE = 1_00 ): """simple docstring""" lowercase__ = n * (n + 1) * (2 * n + 1) / 6 lowercase__ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
43
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCAmelCase = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCAmelCase = '</w>' lowerCAmelCase = '@@ ' def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char return pairs # Speech2Text2 has no max input length lowerCAmelCase = {'facebook/s2t-wav2vec2-large-en-de': 1024} class _a ( UpperCamelCase__ ): _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : int = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]="<s>" , UpperCamelCase_: Dict="<pad>" , UpperCamelCase_: Tuple="</s>" , UpperCamelCase_: Any="<unk>" , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: str=None , **UpperCamelCase_: Dict , ) -> Dict: """simple docstring""" super().__init__( unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = do_lower_case with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowercase__ = json.load(UpperCamelCase_ ) lowercase__ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'No merges files provided. {self.__class__.__name__} can only be used for decoding.' ) lowercase__ = None lowercase__ = None else: with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowercase__ = merges_handle.read().split('''\n''' )[:-1] lowercase__ = [tuple(merge.split()[:2] ) for merge in merges] lowercase__ = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowercase__ = {} @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return len(self.decoder ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Optional[int] ) -> str: """simple docstring""" lowercase__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase__ = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: lowercase__ = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(UpperCamelCase_ ): try: lowercase__ = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ = tuple(UpperCamelCase_ ) lowercase__ = new_word if len(UpperCamelCase_ ) == 1: break else: lowercase__ = get_pairs(UpperCamelCase_ ) lowercase__ = ''' '''.join(UpperCamelCase_ ) if word == "\n " + BPE_TOKEN_MERGES: lowercase__ = '''\n''' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase_ ): lowercase__ = word.replace(UpperCamelCase_ , '''''' ) lowercase__ = word.replace(''' ''' , UpperCamelCase_ ) lowercase__ = word return word def lowerCamelCase_ ( self: str , UpperCamelCase_: str ) -> Optional[int]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: lowercase__ = text.lower() lowercase__ = text.split() lowercase__ = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(''' ''' ) ) ) return split_tokens def lowerCamelCase_ ( self: Dict , UpperCamelCase_: str ) -> int: """simple docstring""" return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> str: """simple docstring""" lowercase__ = self.decoder.get(UpperCamelCase_ , self.unk_token ) return result def lowerCamelCase_ ( self: int , UpperCamelCase_: List[str] ) -> str: """simple docstring""" lowercase__ = ''' '''.join(UpperCamelCase_ ) # make sure @@ tokens are concatenated lowercase__ = ''''''.join(string.split(UpperCamelCase_ ) ) return string def lowerCamelCase_ ( self: str , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) lowercase__ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase__ = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
43
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _a ( UpperCamelCase__ ): def __init__( self: Tuple , UpperCamelCase_: UNetaDModel , UpperCamelCase_: UNetaDModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: str , ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ = value_function lowercase__ = unet lowercase__ = scheduler lowercase__ = env lowercase__ = env.get_dataset() lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].mean() except: # noqa: E722 pass lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].std() except: # noqa: E722 pass lowercase__ = env.observation_space.shape[0] lowercase__ = env.action_space.shape[0] def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] ) -> Dict: """simple docstring""" return x_in * self.stds[key] + self.means[key] def lowerCamelCase_ ( self: int , UpperCamelCase_: Union[str, Any] ) -> Any: """simple docstring""" if type(UpperCamelCase_ ) is dict: return {k: self.to_torch(UpperCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(UpperCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(UpperCamelCase_ , device=self.unet.device ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any] ) -> Optional[int]: """simple docstring""" for key, val in cond.items(): lowercase__ = val.clone() return x_in def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ = x.shape[0] lowercase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ = torch.full((batch_size,) , UpperCamelCase_ , device=self.unet.device , dtype=torch.long ) for _ in range(UpperCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ = self.value_function(x.permute(0 , 2 , 1 ) , UpperCamelCase_ ).sample lowercase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowercase__ = self.scheduler._get_variance(UpperCamelCase_ ) lowercase__ = torch.exp(0.5 * posterior_variance ) lowercase__ = model_std * grad lowercase__ = 0 lowercase__ = x.detach() lowercase__ = x + scale * grad lowercase__ = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) lowercase__ = self.unet(x.permute(0 , 2 , 1 ) , UpperCamelCase_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase__ = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , predict_epsilon=UpperCamelCase_ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) lowercase__ = self.to_torch(UpperCamelCase_ ) return x, y def __call__( self: Any , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[int]=64 , UpperCamelCase_: Any=32 , UpperCamelCase_: Any=2 , UpperCamelCase_: Any=0.1 ) -> Optional[Any]: """simple docstring""" lowercase__ = self.normalize(UpperCamelCase_ , '''observations''' ) lowercase__ = obs[None].repeat(UpperCamelCase_ , axis=0 ) lowercase__ = {0: self.to_torch(UpperCamelCase_ )} lowercase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ = randn_tensor(UpperCamelCase_ , device=self.unet.device ) lowercase__ = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) lowercase__ = self.to_torch(UpperCamelCase_ ) # run the diffusion process lowercase__ , lowercase__ = self.run_diffusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # sort output trajectories by value lowercase__ = y.argsort(0 , descending=UpperCamelCase_ ).squeeze() lowercase__ = x[sorted_idx] lowercase__ = sorted_values[:, :, : self.action_dim] lowercase__ = actions.detach().cpu().numpy() lowercase__ = self.de_normalize(UpperCamelCase_ , key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ = 0 else: # if we didn't run value guiding, select a random action lowercase__ = np.random.randint(0 , UpperCamelCase_ ) lowercase__ = denorm_actions[selected_index, 0] return denorm_actions
43
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Any ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModel.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = AutoModel.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForPreTraining.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = AutoModelForPreTraining.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Tuple: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForCausalLM.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) lowercase__ , lowercase__ = TFAutoModelForCausalLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = AutoModelForCausalLM.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) lowercase__ , lowercase__ = AutoModelForCausalLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Dict ) -> Union[str, Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = AutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForMaskedLM.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) lowercase__ , lowercase__ = TFAutoModelForMaskedLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = AutoModelForMaskedLM.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) lowercase__ , lowercase__ = AutoModelForMaskedLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) lowercase__ , lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) lowercase__ , lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForSequenceClassification.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForQuestionAnswering.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = AutoModelForQuestionAnswering.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ) , 14_410 ) lowercase__ = AutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ) , 14_410 ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ) , 14_410 ) lowercase__ = AutoModelWithLMHead.from_pretrained(UpperCamelCase_ , from_tf=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ) , 14_410 )
43
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) lowerCAmelCase = parser.parse_args() lowerCAmelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
43
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and ลukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: Any , *UpperCamelCase_: Tuple , UpperCamelCase_: Any=None , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function lowercase__ = quant_trainer_args lowercase__ = 128 # default number of calibration samples def lowerCamelCase_ ( self: Any , UpperCamelCase_: int=None ) -> Optional[Any]: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) lowercase__ = calib_dataset if calib_dataset is not None else self.calib_dataset lowercase__ = self._remove_unused_columns(UpperCamelCase_ , description='''Calibration''' ) return DataLoader( UpperCamelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: List[Any]=None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.train_dataset if calib_dataset is None else calib_dataset lowercase__ = self.get_calib_dataloader(UpperCamelCase_ ) lowercase__ = self.model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args , calib=UpperCamelCase_ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase_ ) logger.info('''***** Running calibration *****''' ) logger.info(f' Num examples = {self.calib_num}' ) logger.info(f' Batch size = {calib_dataloader.batch_size}' ) for step, inputs in enumerate(UpperCamelCase_ ): # Prediction step lowercase__ , lowercase__ , lowercase__ = self.prediction_step(UpperCamelCase_ , UpperCamelCase_ , prediction_loss_only=UpperCamelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase_ , self.quant_trainer_args ) lowercase__ = model def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: str=None , UpperCamelCase_: str=None , UpperCamelCase_: str = "eval" ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) self.log(UpperCamelCase_ ) else: lowercase__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str = "test" ) -> Tuple: """simple docstring""" lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Union[str, Any]="./" ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = next(iter(UpperCamelCase_ ) ) # saving device - to make it consistent lowercase__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple lowercase__ = tuple(v.to(UpperCamelCase_ ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer lowercase__ = True lowercase__ = self.model.to(UpperCamelCase_ ) model.eval() model.float() lowercase__ = model.module if hasattr(UpperCamelCase_ , '''module''' ) else model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args ) lowercase__ = os.path.join(UpperCamelCase_ , '''model.onnx''' ) logger.info(f'exporting model to {output_model_file}' ) lowercase__ = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , export_params=UpperCamelCase_ , opset_version=13 , do_constant_folding=UpperCamelCase_ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=UpperCamelCase_ , ) logger.info('''onnx export finished''' )
43
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , ): """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): """simple docstring""" lowercase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase__ = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase__ = '''cpu''' lowercase__ = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER lowercase__ = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) lowercase__ = vae_decoder.config.latent_channels # forward only through the decoder part lowercase__ = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') lowerCAmelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
43
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger() @dataclass class _a : _lowercase : nn.Module _lowercase : List[nn.Module] = field(default_factory=UpperCamelCase__ ) _lowercase : list = field(default_factory=UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Tensor , UpperCamelCase_: Tensor ) -> List[str]: """simple docstring""" lowercase__ = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase_ , nn.Convad ) or isinstance(UpperCamelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase_ ) def __call__( self: Optional[Any] , UpperCamelCase_: Tensor ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase_ ) [x.remove() for x in self.handles] return self @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return list(filter(lambda UpperCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _a : _lowercase : nn.Module _lowercase : nn.Module _lowercase : int = 1 _lowercase : List = field(default_factory=UpperCamelCase__ ) _lowercase : List = field(default_factory=UpperCamelCase__ ) _lowercase : bool = True def __call__( self: int , UpperCamelCase_: Tensor ) -> Union[str, Any]: """simple docstring""" lowercase__ = Tracker(self.dest )(UpperCamelCase_ ).parametrized lowercase__ = Tracker(self.src )(UpperCamelCase_ ).parametrized lowercase__ = list(filter(lambda UpperCamelCase_ : type(UpperCamelCase_ ) not in self.src_skip , UpperCamelCase_ ) ) lowercase__ = list(filter(lambda UpperCamelCase_ : type(UpperCamelCase_ ) not in self.dest_skip , UpperCamelCase_ ) ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(UpperCamelCase_ )} operations while' f' destination module has {len(UpperCamelCase_ )}.' ) for dest_m, src_m in zip(UpperCamelCase_ , UpperCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class _a ( nn.Module ): def __init__( self: List[str] , UpperCamelCase_: nn.Module ) -> str: """simple docstring""" super().__init__() lowercase__ = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f'Unexpected layer name {k}' lowercase__ = len(UpperCamelCase_ ) + 1 feature_blocks.append((f'res{block_index}', v) ) lowercase__ = nn.ModuleDict(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Tensor ) -> Dict: """simple docstring""" return get_trunk_forward_outputs( UpperCamelCase_ , out_feat_keys=UpperCamelCase_ , feature_blocks=self._feature_blocks , ) class _a ( UpperCamelCase__ ): def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self: Optional[Any] , UpperCamelCase_: str ) -> Callable[[], Tuple[nn.Module, Dict]]: """simple docstring""" if x not in self: lowercase__ = self.convert_name_to_timm(UpperCamelCase_ ) lowercase__ = partial(lambda: (timm.create_model(UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval(), None) ) else: lowercase__ = super().__getitem__(UpperCamelCase_ ) return val class _a ( UpperCamelCase__ ): def __getitem__( self: List[Any] , UpperCamelCase_: str ) -> Callable[[], nn.Module]: """simple docstring""" if "seer" in x and "in1k" not in x: lowercase__ = RegNetModel else: lowercase__ = RegNetForImageClassification return val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for from_key, to_key in keys: lowercase__ = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , ): """simple docstring""" print(f'Converting {name}...' ) with torch.no_grad(): lowercase__ , lowercase__ = from_model_func() lowercase__ = our_model_func(SCREAMING_SNAKE_CASE ).eval() lowercase__ = ModuleTransfer(src=SCREAMING_SNAKE_CASE , dest=SCREAMING_SNAKE_CASE , raise_if_mismatch=SCREAMING_SNAKE_CASE ) lowercase__ = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(SCREAMING_SNAKE_CASE ) if from_state_dict is not None: lowercase__ = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: lowercase__ = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] lowercase__ = manually_copy_vissl_head(SCREAMING_SNAKE_CASE , our_model.state_dict() , SCREAMING_SNAKE_CASE ) our_model.load_state_dict(SCREAMING_SNAKE_CASE ) lowercase__ = our_model(SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE ) lowercase__ = ( our_outputs.logits if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else our_outputs.last_hidden_state ) lowercase__ = from_model(SCREAMING_SNAKE_CASE ) lowercase__ = from_output[-1] if type(SCREAMING_SNAKE_CASE ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: lowercase__ = our_outputs.hidden_states[-1] assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) lowercase__ = 2_24 if '''seer''' not in name else 3_84 # we can use the convnext one lowercase__ = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=SCREAMING_SNAKE_CASE ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) print(f'Pushed {name}' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True ): """simple docstring""" lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = 10_00 lowercase__ = (1, num_labels) lowercase__ = '''huggingface/label-files''' lowercase__ = num_labels lowercase__ = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) lowercase__ = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 1_60, 3_84] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 2_40, 5_28] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 1_28, 2_88, 6_72] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 1_68, 4_08, 9_12] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 1_92, 4_32, 10_08] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 2_40, 5_60, 13_60] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 3_92, 7_84, 16_24] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 2_40, 7_20, 19_20] , groups_width=1_20 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[2_56, 5_12, 8_96, 20_48] , groups_width=1_28 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[3_36, 6_72, 13_44, 25_20] , groups_width=1_68 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 1_04, 2_08, 4_40] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 1_12, 2_56, 6_08] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 1_28, 3_20, 7_68] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 1_20, 3_36, 8_88] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 2_16, 5_76, 15_12] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[1_28, 1_92, 5_12, 10_88] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[1_44, 2_88, 5_76, 12_96] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 4_48, 8_96, 20_16] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[2_24, 4_48, 12_32, 30_24] , groups_width=1_12 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), } lowercase__ = NameToOurModelFuncMap() lowercase__ = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple[nn.Module, Dict]: lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , model_dir=str(SCREAMING_SNAKE_CASE ) , map_location='''cpu''' ) lowercase__ = model_func() # check if we have a head, if yes add it lowercase__ = files['''classy_state_dict''']['''base_model''']['''model'''] lowercase__ = model_state_dict['''trunk'''] model.load_state_dict(SCREAMING_SNAKE_CASE ) return model.eval(), model_state_dict["heads"] # pretrained lowercase__ = partial( SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ = partial( SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ = partial( SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowercase__ = partial( SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned lowercase__ = partial( SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ = partial( SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ = partial( SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowercase__ = partial( SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
43
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase = logging.getLogger(__name__) class _a ( UpperCamelCase__ ): def lowerCamelCase_ ( self: str , UpperCamelCase_: str , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: Dict=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.layer[current_layer](UpperCamelCase_ , UpperCamelCase_ , head_mask[current_layer] ) lowercase__ = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , UpperCamelCase__ , ) class _a ( UpperCamelCase__ ): def __init__( self: List[Any] , UpperCamelCase_: Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__(UpperCamelCase_ ) lowercase__ = BertEncoderWithPabee(UpperCamelCase_ ) self.init_weights() lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: str ) -> Tuple: """simple docstring""" lowercase__ = threshold def lowerCamelCase_ ( self: int , UpperCamelCase_: Dict ) -> Any: """simple docstring""" lowercase__ = patience def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 def lowerCamelCase_ ( self: List[Any] ) -> int: """simple docstring""" lowercase__ = self.inference_layers_num / self.inference_instances_num lowercase__ = ( f'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =' f' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***' ) print(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: str=None , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: Tuple=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str=None , UpperCamelCase_: str=False , ) -> List[Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: lowercase__ = input_ids.size() elif inputs_embeds is not None: lowercase__ = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) lowercase__ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase__ = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: lowercase__ = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase__ = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase__ , lowercase__ , lowercase__ = encoder_hidden_states.size() lowercase__ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase__ = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.invert_attention_mask(UpperCamelCase_ ) else: lowercase__ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase__ = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) lowercase__ = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) lowercase__ = embedding_output if self.training: lowercase__ = [] for i in range(self.config.num_hidden_layers ): lowercase__ = self.encoder.adaptive_forward( UpperCamelCase_ , current_layer=UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ ) lowercase__ = self.pooler(UpperCamelCase_ ) lowercase__ = output_layers[i](output_dropout(UpperCamelCase_ ) ) res.append(UpperCamelCase_ ) elif self.patience == 0: # Use all layers for inference lowercase__ = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) lowercase__ = self.pooler(encoder_outputs[0] ) lowercase__ = [output_layers[self.config.num_hidden_layers - 1](UpperCamelCase_ )] else: lowercase__ = 0 lowercase__ = None lowercase__ = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowercase__ = self.encoder.adaptive_forward( UpperCamelCase_ , current_layer=UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ ) lowercase__ = self.pooler(UpperCamelCase_ ) lowercase__ = output_layers[i](UpperCamelCase_ ) if regression: lowercase__ = logits.detach() if patient_result is not None: lowercase__ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowercase__ = 0 else: lowercase__ = logits.detach().argmax(dim=1 ) if patient_result is not None: lowercase__ = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCamelCase_ ) ): patient_counter += 1 else: lowercase__ = 0 lowercase__ = logits if patient_counter == self.patience: break lowercase__ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''' , UpperCamelCase__ , ) class _a ( UpperCamelCase__ ): def __init__( self: Optional[int] , UpperCamelCase_: int ) -> int: """simple docstring""" super().__init__(UpperCamelCase_ ) lowercase__ = config.num_labels lowercase__ = BertModelWithPabee(UpperCamelCase_ ) lowercase__ = nn.Dropout(config.hidden_dropout_prob ) lowercase__ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: int=None , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: Any=None , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: List[str]=None , ) -> List[str]: """simple docstring""" lowercase__ = self.bert( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase__ = (logits[-1],) if labels is not None: lowercase__ = None lowercase__ = 0 for ix, logits_item in enumerate(UpperCamelCase_ ): if self.num_labels == 1: # We are doing regression lowercase__ = MSELoss() lowercase__ = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowercase__ = CrossEntropyLoss() lowercase__ = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowercase__ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase__ = (total_loss / total_weights,) + outputs return outputs
43
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
1
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(SCREAMING_SNAKE_CASE ) for i in range(length - 1 ): lowercase__ = i for k in range(i + 1 , SCREAMING_SNAKE_CASE ): if collection[k] < collection[least]: lowercase__ = k if least != i: lowercase__ , lowercase__ = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCAmelCase = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
43
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase = float('nan') class _a : def __init__( self: Tuple , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = sys.stdout lowercase__ = open(UpperCamelCase_ , '''a''' ) def __getattr__( self: List[str] , UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" return getattr(self.stdout , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[str] ) -> str: """simple docstring""" self.stdout.write(UpperCamelCase_ ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , UpperCamelCase_ , 0 , re.M ) ) def _a ( SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = [] # deal with critical env vars lowercase__ = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: lowercase__ = os.environ.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if val is not None: cmd.append(f'{key}={val}' ) # python executable (not always needed if the script is executable) lowercase__ = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(SCREAMING_SNAKE_CASE ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowercase__ = [] lowercase__ = '''''' while len(SCREAMING_SNAKE_CASE ) > 0: current_line += f'{cmd.pop(0 )} ' if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(SCREAMING_SNAKE_CASE ) lowercase__ = '''''' return "\\\n".join(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own lowercase__ = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += f' --output_dir {output_dir}' # ensure we have --overwrite_output_dir lowercase__ = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} , ) lowercase__ = subprocess.run(SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE , text=SCREAMING_SNAKE_CASE ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams lowercase__ = variation.replace(''' ''' , '''-''' ) with open(Path(SCREAMING_SNAKE_CASE ) / f'log.{prefix}.stdout.txt' , '''w''' ) as f: f.write(result.stdout ) with open(Path(SCREAMING_SNAKE_CASE ) / f'log.{prefix}.stderr.txt' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(f'{output_dir}/all_results.json' , '''r''' , encoding='''utf-8''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase__ = [] lowercase__ = [] lowercase__ = f'{id}: {variation:<{longest_variation_len}}' lowercase__ = f'{preamble}: ' lowercase__ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(SCREAMING_SNAKE_CASE ) , desc=SCREAMING_SNAKE_CASE , leave=SCREAMING_SNAKE_CASE ): lowercase__ = process_run_single( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = single_run_metrics[target_metric_key] if not math.isnan(SCREAMING_SNAKE_CASE ): metrics.append(SCREAMING_SNAKE_CASE ) results.append(SCREAMING_SNAKE_CASE ) outcome += "โœ“" else: outcome += "โœ˜" lowercase__ = f'\33[2K\r{outcome}' if len(SCREAMING_SNAKE_CASE ) > 0: lowercase__ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowercase__ = round(mean_metrics[target_metric_key] , 2 ) lowercase__ = f'{outcome} {mean_target}' if len(SCREAMING_SNAKE_CASE ) > 1: results_str += f' {tuple(round(SCREAMING_SNAKE_CASE , 2 ) for x in results )}' print(SCREAMING_SNAKE_CASE ) lowercase__ = variation return mean_metrics else: print(SCREAMING_SNAKE_CASE ) return {variation_key: variation, target_metric_key: nan} def _a ( ): """simple docstring""" lowercase__ = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return f'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = pd.DataFrame(SCREAMING_SNAKE_CASE ) lowercase__ = '''variation''' lowercase__ = '''diff_%''' lowercase__ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowercase__ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(SCREAMING_SNAKE_CASE ): # as a fallback, use the minimal value as the sentinel lowercase__ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(SCREAMING_SNAKE_CASE ): lowercase__ = df.apply( lambda SCREAMING_SNAKE_CASE : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns lowercase__ = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowercase__ = df.reindex(SCREAMING_SNAKE_CASE , axis='''columns''' ) # reorder cols # capitalize lowercase__ = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible lowercase__ = df.rename(lambda SCREAMING_SNAKE_CASE : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) lowercase__ = df.rename(lambda SCREAMING_SNAKE_CASE : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) lowercase__ = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=SCREAMING_SNAKE_CASE , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=SCREAMING_SNAKE_CASE , floatfmt='''.2f''' )] print('''\n\n'''.join(SCREAMING_SNAKE_CASE ) ) def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , nargs='''+''' , required=SCREAMING_SNAKE_CASE , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=SCREAMING_SNAKE_CASE , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=SCREAMING_SNAKE_CASE , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=SCREAMING_SNAKE_CASE , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=SCREAMING_SNAKE_CASE , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) lowercase__ = parser.parse_args() lowercase__ = args.output_dir Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ = get_base_command(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # split each dimension into its --foo variations lowercase__ = [list(map(str.strip , re.split(R'''\|''' , SCREAMING_SNAKE_CASE ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowercase__ = list(map(str.strip , map(''' '''.join , itertools.product(*SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ = max(len(SCREAMING_SNAKE_CASE ) for x in variations ) # split wanted keys lowercase__ = args.report_metric_keys.split() # capture prints into a log file for convenience lowercase__ = f'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(f'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(f'and this script\'s output is also piped into {report_fn}' ) lowercase__ = Tee(SCREAMING_SNAKE_CASE ) print(f'\n*** Running {len(SCREAMING_SNAKE_CASE )} benchmarks:' ) print(f'Base command: {" ".join(SCREAMING_SNAKE_CASE )}' ) lowercase__ = '''variation''' lowercase__ = [] for id, variation in enumerate(tqdm(SCREAMING_SNAKE_CASE , desc='''Total completion: ''' , leave=SCREAMING_SNAKE_CASE ) ): lowercase__ = base_cmd + variation.split() results.append( process_run( id + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , args.target_metric_key , SCREAMING_SNAKE_CASE , args.repeat_times , SCREAMING_SNAKE_CASE , args.verbose , ) ) process_results(SCREAMING_SNAKE_CASE , args.target_metric_key , SCREAMING_SNAKE_CASE , args.base_variation , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from __future__ import annotations from typing import TypedDict class _a ( UpperCamelCase__ ): _lowercase : str _lowercase : int def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE ) )] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) lowercase__ = all_rotations(SCREAMING_SNAKE_CASE ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation lowercase__ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE ), } return response def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: lowercase__ = int(SCREAMING_SNAKE_CASE ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(SCREAMING_SNAKE_CASE ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) lowercase__ = [''''''] * len(SCREAMING_SNAKE_CASE ) for _ in range(len(SCREAMING_SNAKE_CASE ) ): for i in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCAmelCase = 'Provide a string that I will generate its BWT transform: ' lowerCAmelCase = input(entry_msg).strip() lowerCAmelCase = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) lowerCAmelCase = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = '''falcon''' _lowercase : str = ['''past_key_values'''] def __init__( self: str , UpperCamelCase_: Any=65_024 , UpperCamelCase_: Tuple=4_544 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: List[Any]=71 , UpperCamelCase_: List[str]=1E-5 , UpperCamelCase_: Tuple=0.02 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Dict=0.0 , UpperCamelCase_: Optional[Any]=0.0 , UpperCamelCase_: str=None , UpperCamelCase_: str=False , UpperCamelCase_: str=False , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Union[str, Any]=False , UpperCamelCase_: Union[str, Any]=11 , UpperCamelCase_: Optional[Any]=11 , **UpperCamelCase_: int , ) -> Optional[Any]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop('''n_embed''' , UpperCamelCase_ ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return not self.alibi
43
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
1
from collections.abc import Sequence def _a ( SCREAMING_SNAKE_CASE = None ): """simple docstring""" if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) lowercase__ = nums[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): lowercase__ = nums[i] lowercase__ = max(SCREAMING_SNAKE_CASE , ans + num , SCREAMING_SNAKE_CASE ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCAmelCase = int(input('Enter number of elements : ').strip()) lowerCAmelCase = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
43
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter lowercase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowercase__ = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams lowercase__ = 4 lowercase__ = True # hparam_utils.py hparams lowercase__ = 0.664_694 lowercase__ = 0.207_951 lowercase__ = 0.121_194 lowercase__ = True lowercase__ = True lowercase__ = False lowercase__ = 0.0_352_513 lowercase__ = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowercase__ = 4 lowercase__ = False # hparam_utils.py hparams lowercase__ = 36.4_519 lowercase__ = 0.903_421 lowercase__ = 222.088 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 0.763_141 lowercase__ = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": lowercase__ = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": lowercase__ = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": lowercase__ = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) lowercase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=5_12 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
43
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
1
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') lowerCAmelCase = {'target_lang': 'fi', 'source_lang': 'en'} lowerCAmelCase = '>>zh<<' lowerCAmelCase = 'Helsinki-NLP/' if is_torch_available(): lowerCAmelCase = 'pt' elif is_tf_available(): lowerCAmelCase = 'tf' else: lowerCAmelCase = 'jax' @require_sentencepiece class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = MarianTokenizer _lowercase : Any = False _lowercase : Tuple = True def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" super().setUp() lowercase__ = ['''</s>''', '''<unk>''', '''โ–This''', '''โ–is''', '''โ–a''', '''โ–t''', '''est''', '''\u0120''', '''<pad>'''] lowercase__ = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowercase__ = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) lowercase__ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self: Optional[Any] , **UpperCamelCase_: Dict ) -> MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Dict ) -> str: """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = '''</s>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) lowercase__ = en_de_tokenizer(['''I am a small frog'''] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) lowercase__ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) lowercase__ = [x.name for x in Path(UpperCamelCase_ ).glob('''*''' )] self.assertIn('''source.spm''' , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = tok( ['''I am a small frog''' * 1_000, '''I am a small frog'''] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowerCamelCase_ ( self: Any ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = {'''input_ids''': [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def lowerCamelCase_ ( self: List[Any] ) -> int: """simple docstring""" lowercase__ = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) lowercase__ = '''Tรคmรค on testi''' lowercase__ = '''This is a test''' lowercase__ = [76, 7, 2_047, 2] lowercase__ = [69, 12, 11, 940, 2] lowercase__ = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
43
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase_ ( self: Any ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" torch.manual_seed(0 ) lowercase__ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) lowercase__ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase__ = DDPMScheduler() lowercase__ = AudioDiffusionPipeline(vqvae=UpperCamelCase_ , unet=self.dummy_unet , mel=UpperCamelCase_ , scheduler=UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(generator=UpperCamelCase_ , steps=4 ) lowercase__ = output.audios[0] lowercase__ = output.images[0] lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(generator=UpperCamelCase_ , steps=4 , return_dict=UpperCamelCase_ ) lowercase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase__ = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] lowercase__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase__ = DDIMScheduler() lowercase__ = self.dummy_vqvae_and_unet lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCamelCase_ , scheduler=UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) np.random.seed(0 ) lowercase__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(raw_audio=UpperCamelCase_ , generator=UpperCamelCase_ , start_step=5 , steps=10 ) lowercase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase__ = self.dummy_unet_condition lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCamelCase_ , mel=UpperCamelCase_ , scheduler=UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) np.random.seed(0 ) lowercase__ = torch.rand((1, 1, 10) ) lowercase__ = pipe(generator=UpperCamelCase_ , encoding=UpperCamelCase_ ) lowercase__ = output.images[0] lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = torch_device lowercase__ = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(generator=UpperCamelCase_ ) lowercase__ = output.audios[0] lowercase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
43
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'โ–' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class _a ( UpperCamelCase__ ): def lowerCamelCase_ ( self: int , UpperCamelCase_: GenericTensor ) -> np.ndarray: """simple docstring""" if self.framework == "tf": lowercase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase_ ) else: raise ValueError('''Unsupported framework''' ) return masked_index def lowerCamelCase_ ( self: str , UpperCamelCase_: GenericTensor ) -> np.ndarray: """simple docstring""" lowercase__ = self.get_masked_index(UpperCamelCase_ ) lowercase__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , f'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: GenericTensor ) -> Dict: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: str=None , **UpperCamelCase_: Any ) -> Dict[str, GenericTensor]: """simple docstring""" if return_tensors is None: lowercase__ = self.framework lowercase__ = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.ensure_exactly_one_mask_token(UpperCamelCase_ ) return model_inputs def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> int: """simple docstring""" lowercase__ = self.model(**UpperCamelCase_ ) lowercase__ = model_inputs['''input_ids'''] return model_outputs def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=5 , UpperCamelCase_: Optional[int]=None ) -> Optional[int]: """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: lowercase__ = target_ids.shape[0] lowercase__ = model_outputs['''input_ids'''][0] lowercase__ = model_outputs['''logits'''] if self.framework == "tf": lowercase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase__ = outputs.numpy() lowercase__ = outputs[0, masked_index, :] lowercase__ = stable_softmax(UpperCamelCase_ , axis=-1 ) if target_ids is not None: lowercase__ = tf.gather_nd(tf.squeeze(UpperCamelCase_ , 0 ) , target_ids.reshape(-1 , 1 ) ) lowercase__ = tf.expand_dims(UpperCamelCase_ , 0 ) lowercase__ = tf.math.top_k(UpperCamelCase_ , k=UpperCamelCase_ ) lowercase__ , lowercase__ = topk.values.numpy(), topk.indices.numpy() else: lowercase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase__ = outputs[0, masked_index, :] lowercase__ = logits.softmax(dim=-1 ) if target_ids is not None: lowercase__ = probs[..., target_ids] lowercase__ , lowercase__ = probs.topk(UpperCamelCase_ ) lowercase__ = [] lowercase__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowercase__ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowercase__ = input_ids.numpy().copy() if target_ids is not None: lowercase__ = target_ids[p].tolist() lowercase__ = p # Filter padding out: lowercase__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase__ = self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) lowercase__ = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(UpperCamelCase_ ) result.append(UpperCamelCase_ ) if single_mask: return result[0] return result def lowerCamelCase_ ( self: Any , UpperCamelCase_: int , UpperCamelCase_: int=None ) -> Dict: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = [targets] try: lowercase__ = self.tokenizer.get_vocab() except Exception: lowercase__ = {} lowercase__ = [] for target in targets: lowercase__ = vocab.get(UpperCamelCase_ , UpperCamelCase_ ) if id_ is None: lowercase__ = self.tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , max_length=1 , truncation=UpperCamelCase_ , )['''input_ids'''] if len(UpperCamelCase_ ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowercase__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) lowercase__ = list(set(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowercase__ = np.array(UpperCamelCase_ ) return target_ids def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = {} if targets is not None: lowercase__ = self.get_target_ids(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = target_ids if top_k is not None: lowercase__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self: List[Any] , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: Tuple , **UpperCamelCase_: List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) == 1: return outputs[0] return outputs
43
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
1
import os def _a ( ): """simple docstring""" with open(os.path.dirname(SCREAMING_SNAKE_CASE ) + '''/grid.txt''' ) as f: lowercase__ = [] # noqa: E741 for _ in range(20 ): l.append([int(SCREAMING_SNAKE_CASE ) for x in f.readline().split()] ) lowercase__ = 0 # right for i in range(20 ): for j in range(17 ): lowercase__ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowercase__ = temp # down for i in range(17 ): for j in range(20 ): lowercase__ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowercase__ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowercase__ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowercase__ = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowercase__ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowercase__ = temp return maximum if __name__ == "__main__": print(solution())
43
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''maskformer''' _lowercase : Any = {'''hidden_size''': '''mask_feature_size'''} _lowercase : int = ['''resnet''', '''swin'''] _lowercase : int = ['''detr'''] def __init__( self: Dict , UpperCamelCase_: int = 256 , UpperCamelCase_: int = 256 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[Dict] = None , UpperCamelCase_: Optional[Dict] = None , UpperCamelCase_: float = 0.02 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: float = 20.0 , UpperCamelCase_: Optional[bool] = None , **UpperCamelCase_: int , ) -> Optional[int]: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = backbone_config.pop('''model_type''' ) lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(UpperCamelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' f'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ = DetrConfig() else: # verify that the decoder is supported lowercase__ = ( decoder_config.pop('''model_type''' ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'Transformer Decoder {decoder_type} not supported, please use one of' f' {",".join(self.decoders_supported )}' ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = CONFIG_MAPPING[decoder_type] lowercase__ = config_class.from_dict(UpperCamelCase_ ) lowercase__ = backbone_config lowercase__ = decoder_config # main feature dimension for the model lowercase__ = fpn_feature_size lowercase__ = mask_feature_size # initializer lowercase__ = init_std lowercase__ = init_xavier_std # Hungarian matcher && loss lowercase__ = cross_entropy_weight lowercase__ = dice_weight lowercase__ = mask_weight lowercase__ = use_auxiliary_loss lowercase__ = no_object_weight lowercase__ = output_auxiliary_logits lowercase__ = self.decoder_config.encoder_attention_heads lowercase__ = self.decoder_config.num_hidden_layers super().__init__(**UpperCamelCase_ ) @classmethod def lowerCamelCase_ ( cls: Tuple , UpperCamelCase_: PretrainedConfig , UpperCamelCase_: PretrainedConfig , **UpperCamelCase_: Any ) -> str: """simple docstring""" return cls( backbone_config=UpperCamelCase_ , decoder_config=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict[str, any]: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.backbone_config.to_dict() lowercase__ = self.decoder_config.to_dict() lowercase__ = self.__class__.model_type return output
43
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = tokenizer(example['''content'''] , truncation=SCREAMING_SNAKE_CASE )['''input_ids'''] lowercase__ = len(example['''content'''] ) / len(output['''input_ids'''] ) return output lowerCAmelCase = HfArgumentParser(PretokenizationArguments) lowerCAmelCase = parser.parse_args() if args.num_workers is None: lowerCAmelCase = multiprocessing.cpu_count() lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase = time.time() lowerCAmelCase = load_dataset(args.dataset_name, split='train') print(f"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase = time.time() lowerCAmelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(f"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
43
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
1
from __future__ import annotations from collections.abc import Iterator class _a : def __init__( self: Union[str, Any] , UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = value lowercase__ = None lowercase__ = None class _a : def __init__( self: Any , UpperCamelCase_: Node ) -> None: """simple docstring""" lowercase__ = tree def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self: Any ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
43
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
1
import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(SCREAMING_SNAKE_CASE ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
43
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from manim import * class _a ( UpperCamelCase__ ): def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = Rectangle(height=0.5 , width=0.5 ) lowercase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowercase__ = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowercase__ = VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowercase__ = Text('''CPU''' , font_size=24 ) lowercase__ = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase_ ) lowercase__ = [mem.copy() for i in range(1 )] lowercase__ = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowercase__ = Text('''GPU''' , font_size=24 ) lowercase__ = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) gpu.align_to(UpperCamelCase_ , UpperCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCamelCase_ ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowercase__ = Text('''Model''' , font_size=24 ) lowercase__ = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) , ) lowercase__ = MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) lowercase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>โ—</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase_ , run_time=2.5 ) , Write(UpperCamelCase_ ) , Write(UpperCamelCase_ ) ) self.add(UpperCamelCase_ ) lowercase__ = [] lowercase__ = [] lowercase__ = [] for i, rect in enumerate(UpperCamelCase_ ): lowercase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase_ , opacity=0.7 ) cpu_target.move_to(UpperCamelCase_ ) cpu_target.generate_target() lowercase__ = 0.46 / 4 lowercase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCamelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCamelCase_ , buff=0.0 ) cpu_targs.append(UpperCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCamelCase_ ) ) second_animations.append(MoveToTarget(UpperCamelCase_ , run_time=1.5 ) ) self.play(*UpperCamelCase_ ) self.play(*UpperCamelCase_ ) self.wait()
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : Any = '''mra''' def __init__( self: Tuple , UpperCamelCase_: Optional[Any]=50_265 , UpperCamelCase_: Union[str, Any]=768 , UpperCamelCase_: Optional[Any]=12 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: Dict=3_072 , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=512 , UpperCamelCase_: Union[str, Any]=1 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Any=1E-5 , UpperCamelCase_: List[str]="absolute" , UpperCamelCase_: Dict=4 , UpperCamelCase_: Union[str, Any]="full" , UpperCamelCase_: List[str]=0 , UpperCamelCase_: Union[str, Any]=0 , UpperCamelCase_: str=1 , UpperCamelCase_: int=0 , UpperCamelCase_: Tuple=2 , **UpperCamelCase_: Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = block_per_row lowercase__ = approx_mode lowercase__ = initial_prior_first_n_blocks lowercase__ = initial_prior_diagonal_n_blocks
43
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
1
# using dfs for finding eulerian path traversal def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase__ = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowercase__ , lowercase__ = True, True lowercase__ = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 lowercase__ = -1 for i in range(SCREAMING_SNAKE_CASE ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowercase__ = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowercase__ , lowercase__ = check_circuit_or_path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowercase__ = 1 if check == 2: lowercase__ = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowercase__ = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" lowercase__ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowercase__ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowercase__ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowercase__ = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowercase__ = { 1: [], 2: [] # all degree is zero } lowercase__ = 10 check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and ลukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
1
from math import ceil def _a ( SCREAMING_SNAKE_CASE = 10_01 ): """simple docstring""" lowercase__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowercase__ = 2 * i + 1 lowercase__ = 2 * i lowercase__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
43
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowerCAmelCase = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' lowerCAmelCase = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' lowerCAmelCase = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return float((preds == labels).mean() ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = simple_accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = float(fa_score(y_true=SCREAMING_SNAKE_CASE , y_pred=SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = np.array(SCREAMING_SNAKE_CASE ) lowercase__ = np.array(SCREAMING_SNAKE_CASE ) lowercase__ = en_sentvecs.shape[0] # mean centering lowercase__ = en_sentvecs - np.mean(SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = in_sentvecs - np.mean(SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = cdist(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''cosine''' ) lowercase__ = np.array(range(SCREAMING_SNAKE_CASE ) ) lowercase__ = sim.argsort(axis=1 )[:, :10] lowercase__ = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any] ) -> List[str]: """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(UpperCamelCase_ , UpperCamelCase_ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(UpperCamelCase_ , UpperCamelCase_ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
43
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = args.pruning_method lowercase__ = args.threshold lowercase__ = args.model_name_or_path.rstrip('''/''' ) lowercase__ = args.target_model_path print(f'Load fine-pruned model from {model_name_or_path}' ) lowercase__ = torch.load(os.path.join(SCREAMING_SNAKE_CASE , '''pytorch_model.bin''' ) ) lowercase__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowercase__ = tensor print(f'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: lowercase__ = tensor print(f'Copied layer {name}' ) elif "bias" in name: lowercase__ = tensor print(f'Copied layer {name}' ) else: if pruning_method == "magnitude": lowercase__ = MagnitudeBinarizer.apply(inputs=SCREAMING_SNAKE_CASE , threshold=SCREAMING_SNAKE_CASE ) lowercase__ = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue lowercase__ = name[:-6] lowercase__ = model[f'{prefix_}mask_scores'] lowercase__ = TopKBinarizer.apply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowercase__ = name[:-6] lowercase__ = model[f'{prefix_}mask_scores'] lowercase__ = ThresholdBinarizer.apply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue lowercase__ = name[:-6] lowercase__ = model[f'{prefix_}mask_scores'] lowercase__ , lowercase__ = -0.1, 1.1 lowercase__ = torch.sigmoid(SCREAMING_SNAKE_CASE ) lowercase__ = s * (r - l) + l lowercase__ = s_bar.clamp(min=0.0 , max=1.0 ) lowercase__ = tensor * mask print(f'Pruned layer {name}' ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: lowercase__ = os.path.join( os.path.dirname(SCREAMING_SNAKE_CASE ) , f'bertarized_{os.path.basename(SCREAMING_SNAKE_CASE )}' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): shutil.copytree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'\nCreated folder {target_model_path}' ) torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) lowerCAmelCase = parser.parse_args() main(args)
43
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : List[str] = '''layoutlmv3''' def __init__( self: Optional[Any] , UpperCamelCase_: Union[str, Any]=50_265 , UpperCamelCase_: Tuple=768 , UpperCamelCase_: int=12 , UpperCamelCase_: List[str]=12 , UpperCamelCase_: List[Any]=3_072 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: str=0.1 , UpperCamelCase_: str=512 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: str=0.02 , UpperCamelCase_: int=1E-5 , UpperCamelCase_: List[Any]=1 , UpperCamelCase_: List[str]=0 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=1_024 , UpperCamelCase_: List[str]=128 , UpperCamelCase_: List[str]=128 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Any=32 , UpperCamelCase_: Any=128 , UpperCamelCase_: Optional[int]=64 , UpperCamelCase_: str=256 , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Optional[int]=224 , UpperCamelCase_: Any=3 , UpperCamelCase_: int=16 , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: List[str] , ) -> Optional[int]: """simple docstring""" super().__init__( vocab_size=UpperCamelCase_ , hidden_size=UpperCamelCase_ , num_hidden_layers=UpperCamelCase_ , num_attention_heads=UpperCamelCase_ , intermediate_size=UpperCamelCase_ , hidden_act=UpperCamelCase_ , hidden_dropout_prob=UpperCamelCase_ , attention_probs_dropout_prob=UpperCamelCase_ , max_position_embeddings=UpperCamelCase_ , type_vocab_size=UpperCamelCase_ , initializer_range=UpperCamelCase_ , layer_norm_eps=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = max_ad_position_embeddings lowercase__ = coordinate_size lowercase__ = shape_size lowercase__ = has_relative_attention_bias lowercase__ = rel_pos_bins lowercase__ = max_rel_pos lowercase__ = has_spatial_attention_bias lowercase__ = rel_ad_pos_bins lowercase__ = max_rel_ad_pos lowercase__ = text_embed lowercase__ = visual_embed lowercase__ = input_size lowercase__ = num_channels lowercase__ = patch_size lowercase__ = classifier_dropout class _a ( UpperCamelCase__ ): _lowercase : List[str] = version.parse('''1.12''' ) @property def lowerCamelCase_ ( self: int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def lowerCamelCase_ ( self: Any ) -> float: """simple docstring""" return 1E-5 @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return 12 def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: "ProcessorMixin" , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional["TensorType"] = None , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 40 , UpperCamelCase_: int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , '''apply_ocr''' , UpperCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ = processor.tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) lowercase__ = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence lowercase__ = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase__ = self._generate_dummy_images(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = dict( processor( UpperCamelCase_ , text=UpperCamelCase_ , boxes=UpperCamelCase_ , return_tensors=UpperCamelCase_ , ) ) return inputs
43
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase = get_tests_dir('fixtures/vocab.json') lowerCAmelCase = get_tests_dir('fixtures') class _a ( unittest.TestCase ): _lowercase : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = 0 def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = WavaVecaConfig() lowercase__ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) lowercase__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase_ , os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) copyfile(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) lowercase__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = WavaVecaFeatureExtractor() lowercase__ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) lowercase__ = WavaVecaProcessor(UpperCamelCase_ , UpperCamelCase_ ) # save in new folder processor.save_pretrained(UpperCamelCase_ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , '''r''' ) as f: lowercase__ = json.load(UpperCamelCase_ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase_ ) ) lowercase__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = WavaVecaFeatureExtractor() lowercase__ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) lowercase__ = WavaVecaProcessor(UpperCamelCase_ , UpperCamelCase_ ) # save in new folder processor.save_pretrained(UpperCamelCase_ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , '''r''' ) as f: lowercase__ = json.load(UpperCamelCase_ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase_ ) ) lowercase__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase_ ) # copy relevant files copyfile(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , '''w''' ) as f: f.write('''{}''' ) lowercase__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" with self.assertRaises(UpperCamelCase_ ): lowercase__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowercase__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase_ ) lowercase__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) lowercase__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) lowercase__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) lowercase__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__ = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = os.path.join(UpperCamelCase_ , '''vocab.txt''' ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase__ = CustomTokenizer(UpperCamelCase_ ) lowercase__ = CustomProcessor(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase_ ) lowercase__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self: int ) -> Union[str, Any]: """simple docstring""" class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = False class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = False class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''AutoFeatureExtractor''' _lowercase : Dict = '''AutoTokenizer''' _lowercase : List[Any] = False try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local classes. lowercase__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def lowerCamelCase_ ( self: int ) -> Union[str, Any]: """simple docstring""" lowercase__ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class _a ( unittest.TestCase ): _lowercase : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowerCamelCase_ ( cls: str ) -> Tuple: """simple docstring""" lowercase__ = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCamelCase_ ( cls: str ) -> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def lowerCamelCase_ ( self: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = WavaVecaProcessor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase_ , '''test-processor''' ) , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) lowercase__ = WavaVecaProcessor.from_pretrained(f'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(new_processor.feature_extractor , UpperCamelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase_ ( self: Dict ) -> Any: """simple docstring""" lowercase__ = WavaVecaProcessor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase_ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase_ , use_auth_token=self._token , organization='''valid_org''' , ) lowercase__ = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(new_processor.feature_extractor , UpperCamelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase_ ( self: Optional[Any] ) -> List[str]: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase__ = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = os.path.join(UpperCamelCase_ , '''vocab.txt''' ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase__ = CustomTokenizer(UpperCamelCase_ ) lowercase__ = CustomProcessor(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'{USER}/test-dynamic-processor' , token=self._token ) lowercase__ = Repository(UpperCamelCase_ , clone_from=f'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(UpperCamelCase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase_ , '''tokenizer_config.json''' ) ) as f: lowercase__ = json.load(UpperCamelCase_ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ , '''custom_processing.py''' ) ) ) repo.push_to_hub() lowercase__ = AutoProcessor.from_pretrained(f'{USER}/test-dynamic-processor' , trust_remote_code=UpperCamelCase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
43
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and ลukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase = object() # For specifying empty leaf dict `{}` lowerCAmelCase = object() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowercase__ = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def _a ( ): """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P('''mp''' , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = _get_partition_rules() lowercase__ = _replacement_rules(SCREAMING_SNAKE_CASE ) lowercase__ = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowercase__ = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowercase__ = '''''' else: lowercase__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowercase__ = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=SCREAMING_SNAKE_CASE , ) lowercase__ = ViTHybridConfig(backbone_config=SCREAMING_SNAKE_CASE , image_size=3_84 , num_labels=10_00 ) lowercase__ = False # load original model from timm lowercase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__ = timm_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE ) lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = '''huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowercase__ = ViTHybridModel(SCREAMING_SNAKE_CASE ).eval() else: lowercase__ = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # create image processor lowercase__ = create_transform(**resolve_data_config({} , model=SCREAMING_SNAKE_CASE ) ) lowercase__ = transform.transforms lowercase__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase__ = ViTHybridImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=SCREAMING_SNAKE_CASE , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase__ = prepare_img() lowercase__ = transform(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) lowercase__ = processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # verify logits with torch.no_grad(): lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: lowercase__ = timm_model.forward_features(SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1E-3 ) else: lowercase__ = timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(f'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(f'ybelkada/{vit_name}' ) processor.push_to_hub(f'ybelkada/{vit_name}' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) lowerCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
43
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
1
import os import jsonlines import numpy as np from tqdm import tqdm lowerCAmelCase = 2048 lowerCAmelCase = 4096 lowerCAmelCase = 42 lowerCAmelCase = os.environ.pop('PROCESS_TRAIN', 'false') lowerCAmelCase = {'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def choose_first(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: lowercase__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowercase__ = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a lowercase__ = {'''id''': example['''id''']} lowercase__ = example['''annotations'''] lowercase__ = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: lowercase__ = ['''yes'''] if 1 in yes_no_answer else ['''no'''] lowercase__ = lowercase__ = [] lowercase__ = lowercase__ = [] lowercase__ = ['''<cls>'''] else: lowercase__ = ['''short'''] lowercase__ = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available lowercase__ = ['''long'''] lowercase__ = choose_first(annotation['''long_answer'''] , is_long_answer=SCREAMING_SNAKE_CASE ) lowercase__ = [] answer.update(SCREAMING_SNAKE_CASE ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: lowercase__ = True else: lowercase__ = False lowercase__ = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , SCREAMING_SNAKE_CASE ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = _get_single_answer(SCREAMING_SNAKE_CASE ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowercase__ = example['''document''']['''tokens'''] lowercase__ = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(SCREAMING_SNAKE_CASE ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowercase__ = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 lowercase__ = example['''document''']['''tokens'''] lowercase__ = answer['''start_token'''] lowercase__ = answer['''end_token'''] lowercase__ = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowercase__ = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: lowercase__ = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] lowercase__ = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] lowercase__ = ''' '''.join([old[i] for i in range(len(SCREAMING_SNAKE_CASE ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , SCREAMING_SNAKE_CASE , end='''\n''' ) print('''Old:''' , SCREAMING_SNAKE_CASE , end='''\n\n''' ) return { "context": " ".join(SCREAMING_SNAKE_CASE ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=20_48 , SCREAMING_SNAKE_CASE=40_96 , SCREAMING_SNAKE_CASE=True ): """simple docstring""" lowercase__ = get_context_and_ans(SCREAMING_SNAKE_CASE , assertion=SCREAMING_SNAKE_CASE ) lowercase__ = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowercase__ = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids lowercase__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowercase__ = [] lowercase__ = [] lowercase__ = input_ids[:q_len] lowercase__ = range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , max_length - doc_stride ) for i in doc_start_indices: lowercase__ = i + max_length - q_len lowercase__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(SCREAMING_SNAKE_CASE ), "end_token": [-1_00] * len(SCREAMING_SNAKE_CASE ), "category": category, }, } lowercase__ = out['''context'''].split() lowercase__ = splitted_context[answer['''end_token''']] lowercase__ = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=SCREAMING_SNAKE_CASE , ).input_ids ) lowercase__ = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowercase__ = len(tokenizer(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowercase__ = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive lowercase__ = answer['''start_token'''] lowercase__ = answer['''end_token'''] if assertion: lowercase__ = tokenizer.decode(SCREAMING_SNAKE_CASE ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , SCREAMING_SNAKE_CASE , end='''\n\n''' ) if len(SCREAMING_SNAKE_CASE ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowercase__ = input_ids[:q_len] lowercase__ = range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , max_length - doc_stride ) lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] # null, yes, no, long, short for i in doc_start_indices: lowercase__ = i + max_length - q_len lowercase__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowercase__ = start_token - i + q_len lowercase__ = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: lowercase__ = -1_00 lowercase__ = -1_00 answers_category.append('''null''' ) lowercase__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(SCREAMING_SNAKE_CASE ) answers_end_token.append(SCREAMING_SNAKE_CASE ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(SCREAMING_SNAKE_CASE ) ) print('''Old:''' , tokenizer.decode(SCREAMING_SNAKE_CASE ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=20_48 , SCREAMING_SNAKE_CASE=40_96 , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = get_strided_contexts_and_ans( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , doc_stride=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , assertion=SCREAMING_SNAKE_CASE , ) return example def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" with jsonlines.open(SCREAMING_SNAKE_CASE , '''a''' ) as writer: for example in tqdm(SCREAMING_SNAKE_CASE , total=len(SCREAMING_SNAKE_CASE ) , desc='''Saving samples ... ''' ): lowercase__ = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer lowerCAmelCase = load_dataset('natural_questions') lowerCAmelCase = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') lowerCAmelCase = data['train' if PROCESS_TRAIN == 'true' else 'validation'] lowerCAmelCase = { 'tokenizer': tokenizer, 'doc_stride': DOC_STRIDE, 'max_length': MAX_LENGTH, 'assertion': False, } lowerCAmelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) lowerCAmelCase = data.remove_columns(['annotations', 'document', 'id', 'question']) print(data) np.random.seed(SEED) lowerCAmelCase = 'nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl' save_to_disk(data, file_name=cache_file_name)
43
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = list(s_dict.keys() ) for key in keys: lowercase__ = R'''.*/layers_(\d+)''' lowercase__ = key if re.match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , SCREAMING_SNAKE_CASE ) lowercase__ = R'''(encoder|decoder)\/''' if re.match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = re.match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).groups() if groups[0] == "encoder": lowercase__ = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , SCREAMING_SNAKE_CASE ) lowercase__ = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , SCREAMING_SNAKE_CASE ) elif groups[0] == "decoder": lowercase__ = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , SCREAMING_SNAKE_CASE ) lowercase__ = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , SCREAMING_SNAKE_CASE ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowercase__ = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'{key} -> {new_key}' ) lowercase__ = s_dict.pop(SCREAMING_SNAKE_CASE ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowercase__ = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowercase__ = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowercase__ = s_dict[key].shape[0] lowercase__ = s_dict[key] for idx in range(SCREAMING_SNAKE_CASE ): lowercase__ = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(SCREAMING_SNAKE_CASE ) return s_dict lowerCAmelCase = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" import regex as re with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = f.read() lowercase__ = re.findall(R'''(.*) = ([0-9.]*)''' , SCREAMING_SNAKE_CASE ) lowercase__ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowercase__ = float(SCREAMING_SNAKE_CASE ) if '''.''' in value else int(SCREAMING_SNAKE_CASE ) lowercase__ = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , SCREAMING_SNAKE_CASE )[0] lowercase__ = str(activation[1] ) lowercase__ = num_experts lowercase__ = SwitchTransformersConfig(**SCREAMING_SNAKE_CASE ) return config def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="./" , SCREAMING_SNAKE_CASE=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) lowercase__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) if gin_file is not None: lowercase__ = convert_gin_to_config(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: lowercase__ = SwitchTransformersConfig.from_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = SwitchTransformersForConditionalGeneration(SCREAMING_SNAKE_CASE ) lowercase__ = flax_params['''target'''] lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='''/''' ) lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) lowercase__ = unflatten_dict(SCREAMING_SNAKE_CASE , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') lowerCAmelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
43
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
1
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): _lowercase : str = '''timm_backbone''' def __init__( self: List[str] , UpperCamelCase_: Dict=None , UpperCamelCase_: List[str]=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Dict=None , **UpperCamelCase_: Optional[int] , ) -> Tuple: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = backbone lowercase__ = num_channels lowercase__ = features_only lowercase__ = use_pretrained_backbone lowercase__ = True lowercase__ = out_indices if out_indices is not None else (-1,)
43
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'โ–' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=13_37 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=13_37 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = split_dict._to_yaml_list() assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) lowercase__ = SplitDict._from_yaml_list(SCREAMING_SNAKE_CASE ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowercase__ = None # the split name of split_dict takes over the name of the split info object lowercase__ = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=SCREAMING_SNAKE_CASE ), SplitInfo(dataset_name='''my_dataset''' )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
43
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class _a ( UpperCamelCase__ ): _lowercase : List[Any] = '''openai-gpt''' _lowercase : int = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self: Union[str, Any] , UpperCamelCase_: Tuple=40_478 , UpperCamelCase_: Any=512 , UpperCamelCase_: List[str]=768 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: List[str]=12 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Any=1E-5 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: List[str]="cls_index" , UpperCamelCase_: int=True , UpperCamelCase_: Any=None , UpperCamelCase_: Dict=True , UpperCamelCase_: str=0.1 , **UpperCamelCase_: Any , ) -> Any: """simple docstring""" lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = afn lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = summary_type lowercase__ = summary_use_proj lowercase__ = summary_activation lowercase__ = summary_first_dropout lowercase__ = summary_proj_to_labels super().__init__(**UpperCamelCase_ )
43
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase = Lock() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(SCREAMING_SNAKE_CASE ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase__ = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(SCREAMING_SNAKE_CASE ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase__ = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # after all swaps are performed, send the values back to main result_pipe[1].send(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase__ = Pipe() lowercase__ = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowercase__ = temp_rs lowercase__ = temp_rr for i in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): lowercase__ = Pipe() lowercase__ = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowercase__ = temp_rs lowercase__ = temp_rr process_array_.append( Process( target=SCREAMING_SNAKE_CASE , args=( len(SCREAMING_SNAKE_CASE ) - 1, arr[len(SCREAMING_SNAKE_CASE ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(SCREAMING_SNAKE_CASE ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(SCREAMING_SNAKE_CASE ) ): lowercase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def _a ( ): """simple docstring""" lowercase__ = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*SCREAMING_SNAKE_CASE ) lowercase__ = odd_even_transposition(SCREAMING_SNAKE_CASE ) print('''Sorted List\n''' ) print(*SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _a ( UpperCamelCase__ ): def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = 5 # Realm tok lowercase__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase__ = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> RealmTokenizer: """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = RealmConfig(num_block_records=self.num_block_records ) return config def lowerCamelCase_ ( self: str ) -> Optional[int]: """simple docstring""" lowercase__ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def lowerCamelCase_ ( self: int ) -> Union[str, Any]: """simple docstring""" lowercase__ = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=UpperCamelCase_ , ) return block_records def lowerCamelCase_ ( self: Optional[Any] ) -> int: """simple docstring""" lowercase__ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" lowercase__ = self.get_config() lowercase__ = self.get_dummy_retriever() lowercase__ = retriever.tokenizer lowercase__ = np.array([0, 3] , dtype='''long''' ) lowercase__ = tokenizer(['''Test question'''] ).input_ids lowercase__ = tokenizer( ['''the fourth'''] , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ).input_ids lowercase__ = config.reader_seq_len lowercase__ , lowercase__ , lowercase__ , lowercase__ = retriever( UpperCamelCase_ , UpperCamelCase_ , answer_ids=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors='''np''' ) self.assertEqual(len(UpperCamelCase_ ) , 2 ) self.assertEqual(len(UpperCamelCase_ ) , 2 ) self.assertEqual(len(UpperCamelCase_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_config() lowercase__ = self.get_dummy_retriever() lowercase__ = retriever.tokenizer lowercase__ = np.array([0, 3, 5] , dtype='''long''' ) lowercase__ = tokenizer(['''Test question'''] ).input_ids lowercase__ = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ).input_ids lowercase__ = config.reader_seq_len lowercase__ , lowercase__ , lowercase__ , lowercase__ = retriever( UpperCamelCase_ , UpperCamelCase_ , answer_ids=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors='''np''' ) self.assertEqual([False, True, True] , UpperCamelCase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , UpperCamelCase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path lowercase__ = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: lowercase__ = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) lowercase__ = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
43
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowercase__ = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) lowercase__ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowercase__ = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) lowercase__ = tokenizer.decode(greedy_ids[0] ) lowercase__ = TextIteratorStreamer(UpperCamelCase_ ) lowercase__ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowercase__ = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowercase__ = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowercase__ = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) lowercase__ = greedy_ids[:, input_ids.shape[1] :] lowercase__ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowercase__ = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowercase__ = -1 lowercase__ = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowercase__ = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowercase__ = cs.out[:-1] # Remove the final "\n" lowercase__ = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowercase__ = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowercase__ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowercase__ = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowercase__ = '''''' for new_text in streamer: streamer_text += new_text
43
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase = logging.getLogger(__name__) @dataclass class _a : _lowercase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _lowercase : bool = field(default=UpperCamelCase__ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _lowercase : bool = field(default=UpperCamelCase__ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _a : _lowercase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _lowercase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _lowercase : Optional[int] = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : Optional[int] = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : Optional[int] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _lowercase : Optional[int] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _lowercase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _lowercase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _lowercase : Optional[str] = field(default=UpperCamelCase__ , metadata={'''help''': '''Source language id for translation.'''} ) _lowercase : Optional[str] = field(default=UpperCamelCase__ , metadata={'''help''': '''Target language id for translation.'''} ) _lowercase : Optional[int] = field(default=UpperCamelCase__ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , f'{split}_results.json' ) ) def _a ( ): """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase__ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase__ = SeqaSeqDataset # Get datasets lowercase__ = ( dataset_class( SCREAMING_SNAKE_CASE , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) lowercase__ = ( dataset_class( SCREAMING_SNAKE_CASE , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase__ = ( dataset_class( SCREAMING_SNAKE_CASE , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase__ = ( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None ) lowercase__ = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , data_args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , ) lowercase__ = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) lowercase__ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase__ = train_result.metrics lowercase__ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate(metric_key_prefix='''val''' ) lowercase__ = data_args.n_val lowercase__ = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) if training_args.do_predict: logger.info('''*** Predict ***''' ) lowercase__ = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE , metric_key_prefix='''test''' ) lowercase__ = test_output.metrics lowercase__ = data_args.n_test if trainer.is_world_process_zero(): lowercase__ = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate: lowercase__ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) lowercase__ = lmap(str.strip , SCREAMING_SNAKE_CASE ) write_txt_file(SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" main() if __name__ == "__main__": main()
43
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): _lowercase : Dict = '''upernet''' def __init__( self: Optional[Any] , UpperCamelCase_: Dict=None , UpperCamelCase_: List[str]=512 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: str=[1, 2, 3, 6] , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=0.4 , UpperCamelCase_: Optional[Any]=384 , UpperCamelCase_: List[Any]=256 , UpperCamelCase_: Any=1 , UpperCamelCase_: str=False , UpperCamelCase_: Optional[int]=255 , **UpperCamelCase_: Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**UpperCamelCase_ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = backbone_config.get('''model_type''' ) lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(UpperCamelCase_ ) lowercase__ = backbone_config lowercase__ = hidden_size lowercase__ = initializer_range lowercase__ = pool_scales lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_in_channels lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = loss_ignore_index def lowerCamelCase_ ( self: List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.backbone_config.to_dict() lowercase__ = self.__class__.model_type return output
43
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and ลukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
1
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
1
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): _lowercase : Any = ['''input_features''', '''attention_mask'''] def __init__( self: Dict , UpperCamelCase_: str=80 , UpperCamelCase_: Any=16_000 , UpperCamelCase_: Union[str, Any]=80 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: int=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Optional[Any]=True , **UpperCamelCase_: List[str] , ) -> int: """simple docstring""" super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = num_mel_bins lowercase__ = do_ceptral_normalize lowercase__ = normalize_means lowercase__ = normalize_vars lowercase__ = True def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , ) -> np.ndarray: """simple docstring""" lowercase__ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowercase__ = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 ) lowercase__ = ta_kaldi.fbank(UpperCamelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCamelCase_ ( UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[bool] = True , UpperCamelCase_: Optional[bool] = True , UpperCamelCase_: float = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: lowercase__ = x[:input_length].mean(axis=0 ) lowercase__ = np.subtract(UpperCamelCase_ , UpperCamelCase_ ) if normalize_vars: lowercase__ = x[:input_length].std(axis=0 ) lowercase__ = np.divide(UpperCamelCase_ , UpperCamelCase_ ) if input_length < x.shape[0]: lowercase__ = padding_value # make sure array is in float32 lowercase__ = x.astype(np.floataa ) return x def lowerCamelCase_ ( self: int , UpperCamelCase_: List[np.ndarray] , UpperCamelCase_: Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" lowercase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase_ , UpperCamelCase_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase_ , UpperCamelCase_ ) ] def __call__( self: List[Any] , UpperCamelCase_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_: Union[bool, str, PaddingStrategy] = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[bool] = None , **UpperCamelCase_: List[Any] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowercase__ = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): lowercase__ = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [raw_speech] # extract fbank features lowercase__ = [self._extract_fbank_features(UpperCamelCase_ ) for waveform in raw_speech] # convert into correct format for padding lowercase__ = BatchFeature({'''input_features''': features} ) lowercase__ = self.pad( UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) # make sure list is in array format lowercase__ = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , UpperCamelCase_ ): lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features] lowercase__ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowercase__ = ( np.array(UpperCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase_ , max_length=UpperCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__ = self.normalize( padded_inputs['''input_features'''] , attention_mask=UpperCamelCase_ ) if return_tensors is not None: lowercase__ = padded_inputs.convert_to_tensors(UpperCamelCase_ ) return padded_inputs
43
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCAmelCase = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCAmelCase = { 'jukebox': 512, } class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_LYRIC_TOKENS_SIZES _lowercase : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self: Dict , UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: List[str] , UpperCamelCase_: int=["v3", "v2", "v2"] , UpperCamelCase_: List[str]=512 , UpperCamelCase_: Any=5 , UpperCamelCase_: Union[str, Any]="<|endoftext|>" , **UpperCamelCase_: Optional[Any] , ) -> Dict: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token super().__init__( unk_token=UpperCamelCase_ , n_genres=UpperCamelCase_ , version=UpperCamelCase_ , max_n_lyric_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = version lowercase__ = max_n_lyric_tokens lowercase__ = n_genres with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowercase__ = json.load(UpperCamelCase_ ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowercase__ = json.load(UpperCamelCase_ ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowercase__ = json.load(UpperCamelCase_ ) lowercase__ = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: lowercase__ = oov.replace(r'''\-\'''' , r'''\-+\'''' ) lowercase__ = regex.compile(UpperCamelCase_ ) lowercase__ = {v: k for k, v in self.artists_encoder.items()} lowercase__ = {v: k for k, v in self.genres_encoder.items()} lowercase__ = {v: k for k, v in self.lyrics_encoder.items()} @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] ) -> int: """simple docstring""" lowercase__ = [self.artists_encoder.get(UpperCamelCase_ , 0 ) for artist in list_artists] for genres in range(len(UpperCamelCase_ ) ): lowercase__ = [self.genres_encoder.get(UpperCamelCase_ , 0 ) for genre in list_genres[genres]] lowercase__ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) lowercase__ = [[self.lyrics_encoder.get(UpperCamelCase_ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[Any] ) -> str: """simple docstring""" return list(UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Dict , **UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = self.prepare_for_tokenization(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self._tokenize(UpperCamelCase_ ) return artist, genre, lyrics def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": lowercase__ = artists[idx].lower() lowercase__ = [genres[idx].lower()] else: lowercase__ = self._normalize(artists[idx] ) + '''.v2''' lowercase__ = [ self._normalize(UpperCamelCase_ ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowercase__ = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) lowercase__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' lowercase__ = {vocab[index]: index + 1 for index in range(len(UpperCamelCase_ ) )} lowercase__ = 0 lowercase__ = len(UpperCamelCase_ ) + 1 lowercase__ = self.vocab lowercase__ = {v: k for k, v in self.vocab.items()} lowercase__ = '''''' else: lowercase__ = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) lowercase__ = self._run_strip_accents(UpperCamelCase_ ) lowercase__ = lyrics.replace('''\\''' , '''\n''' ) lowercase__ = self.out_of_vocab.sub('''''' , UpperCamelCase_ ), [], [] return artists, genres, lyrics def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Any ) -> Any: """simple docstring""" lowercase__ = unicodedata.normalize('''NFD''' , UpperCamelCase_ ) lowercase__ = [] for char in text: lowercase__ = unicodedata.category(UpperCamelCase_ ) if cat == "Mn": continue output.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ = ( [chr(UpperCamelCase_ ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(UpperCamelCase_ ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(UpperCamelCase_ ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) lowercase__ = frozenset(UpperCamelCase_ ) lowercase__ = re.compile(r'''_+''' ) lowercase__ = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) lowercase__ = pattern.sub('''_''' , UpperCamelCase_ ).strip('''_''' ) return text def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[str] ) -> str: """simple docstring""" return " ".join(UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: bool = False ) -> int: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = TensorType(UpperCamelCase_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf lowercase__ = tf.constant lowercase__ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch lowercase__ = torch.tensor lowercase__ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 lowercase__ = jnp.array lowercase__ = _is_jax else: lowercase__ = np.asarray lowercase__ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowercase__ = [inputs] if not is_tensor(UpperCamelCase_ ): lowercase__ = as_tensor(UpperCamelCase_ ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any]="" , UpperCamelCase_: Union[str, Any]="pt" ) -> BatchEncoding: """simple docstring""" lowercase__ = [0, 0, 0] lowercase__ = [artist] * len(self.version ) lowercase__ = [genres] * len(self.version ) lowercase__ , lowercase__ , lowercase__ = self.tokenize(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ , lowercase__ , lowercase__ = self._convert_token_to_id(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [-INFINITY] * len(full_tokens[-1] ) lowercase__ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCamelCase_ ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def lowerCamelCase_ ( self: str , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCamelCase_ ) ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCamelCase_ ) ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCamelCase_ ) ) return (artists_file, genres_file, lyrics_file) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] ) -> str: """simple docstring""" lowercase__ = self.artists_decoder.get(UpperCamelCase_ ) lowercase__ = [self.genres_decoder.get(UpperCamelCase_ ) for genre in genres_index] lowercase__ = [self.lyrics_decoder.get(UpperCamelCase_ ) for character in lyric_index] return artist, genres, lyrics
43
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
1
import math def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 lowercase__ = n while left <= right: lowercase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowercase__ = mid - 1 else: lowercase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
43
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCAmelCase = '\nHugging Face was founded in 2016 by French entrepreneurs Clรฉment Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class _a ( unittest.TestCase , UpperCamelCase__ ): def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = load_tool('''text-question-answering''' ) self.tool.setup() lowercase__ = load_tool('''text-question-answering''' , remote=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tool(UpperCamelCase_ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' ) def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = self.remote_tool(UpperCamelCase_ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' ) def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = self.tool(text=UpperCamelCase_ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' ) def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.remote_tool(text=UpperCamelCase_ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' )
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _a ( UpperCamelCase__ ): _lowercase : List[str] = '''roformer''' def __init__( self: Optional[int] , UpperCamelCase_: Optional[Any]=50_000 , UpperCamelCase_: Tuple=None , UpperCamelCase_: int=768 , UpperCamelCase_: Any=12 , UpperCamelCase_: Optional[int]=12 , UpperCamelCase_: Optional[Any]=3_072 , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: Tuple=1_536 , UpperCamelCase_: Any=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Any=1E-1_2 , UpperCamelCase_: Optional[Any]=0 , UpperCamelCase_: str=False , UpperCamelCase_: Optional[int]=True , **UpperCamelCase_: Dict , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = hidden_size if embedding_size is None else embedding_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = rotary_value lowercase__ = use_cache class _a ( UpperCamelCase__ ): @property def lowerCamelCase_ ( self: str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} lowercase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" random.seed(SCREAMING_SNAKE_CASE ) np.random.seed(SCREAMING_SNAKE_CASE ) torch.manual_seed(SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(SCREAMING_SNAKE_CASE ) # ^^ safe to call this function even if cuda is not available class _a : def __init__( self: List[str] , UpperCamelCase_: Iterable[torch.nn.Parameter] , UpperCamelCase_: float = 0.9999 , UpperCamelCase_: float = 0.0 , UpperCamelCase_: int = 0 , UpperCamelCase_: bool = False , UpperCamelCase_: Union[float, int] = 1.0 , UpperCamelCase_: Union[float, int] = 2 / 3 , UpperCamelCase_: Optional[Any] = None , UpperCamelCase_: Dict[str, Any] = None , **UpperCamelCase_: List[Any] , ) -> Tuple: """simple docstring""" if isinstance(UpperCamelCase_ , torch.nn.Module ): lowercase__ = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ , ) lowercase__ = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility lowercase__ = True if kwargs.get('''max_value''' , UpperCamelCase_ ) is not None: lowercase__ = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) lowercase__ = kwargs['''max_value'''] if kwargs.get('''min_value''' , UpperCamelCase_ ) is not None: lowercase__ = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) lowercase__ = kwargs['''min_value'''] lowercase__ = list(UpperCamelCase_ ) lowercase__ = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , UpperCamelCase_ ) is not None: lowercase__ = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) self.to(device=kwargs['''device'''] ) lowercase__ = None lowercase__ = decay lowercase__ = min_decay lowercase__ = update_after_step lowercase__ = use_ema_warmup lowercase__ = inv_gamma lowercase__ = power lowercase__ = 0 lowercase__ = None # set in `step()` lowercase__ = model_cls lowercase__ = model_config @classmethod def lowerCamelCase_ ( cls: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: int ) -> "EMAModel": """simple docstring""" lowercase__ , lowercase__ = model_cls.load_config(UpperCamelCase_ , return_unused_kwargs=UpperCamelCase_ ) lowercase__ = model_cls.from_pretrained(UpperCamelCase_ ) lowercase__ = cls(model.parameters() , model_cls=UpperCamelCase_ , model_config=model.config ) ema_model.load_state_dict(UpperCamelCase_ ) return ema_model def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) lowercase__ = self.model_cls.from_config(self.model_config ) lowercase__ = self.state_dict() state_dict.pop('''shadow_params''' , UpperCamelCase_ ) model.register_to_config(**UpperCamelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int ) -> float: """simple docstring""" lowercase__ = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: lowercase__ = 1 - (1 + step / self.inv_gamma) ** -self.power else: lowercase__ = (1 + step) / (10 + step) lowercase__ = min(UpperCamelCase_ , self.decay ) # make sure decay is not smaller than min_decay lowercase__ = max(UpperCamelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self: int , UpperCamelCase_: Iterable[torch.nn.Parameter] ) -> int: """simple docstring""" if isinstance(UpperCamelCase_ , torch.nn.Module ): lowercase__ = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ , ) lowercase__ = parameters.parameters() lowercase__ = list(UpperCamelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. lowercase__ = self.get_decay(self.optimization_step ) lowercase__ = decay lowercase__ = 1 - decay lowercase__ = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , UpperCamelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): lowercase__ = deepspeed.zero.GatheredParameters(UpperCamelCase_ , modifier_rank=UpperCamelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(UpperCamelCase_ ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" lowercase__ = list(UpperCamelCase_ ) for s_param, param in zip(self.shadow_params , UpperCamelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Optional[int]=None ) -> None: """simple docstring""" lowercase__ = [ p.to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) if p.is_floating_point() else p.to(device=UpperCamelCase_ ) for p in self.shadow_params ] def lowerCamelCase_ ( self: Union[str, Any] ) -> dict: """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" lowercase__ = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self: str , UpperCamelCase_: Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , UpperCamelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. lowercase__ = None def lowerCamelCase_ ( self: Dict , UpperCamelCase_: dict ) -> None: """simple docstring""" lowercase__ = copy.deepcopy(UpperCamelCase_ ) lowercase__ = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) lowercase__ = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , UpperCamelCase_ ): raise ValueError('''Invalid min_decay''' ) lowercase__ = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , UpperCamelCase_ ): raise ValueError('''Invalid optimization_step''' ) lowercase__ = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , UpperCamelCase_ ): raise ValueError('''Invalid update_after_step''' ) lowercase__ = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , UpperCamelCase_ ): raise ValueError('''Invalid use_ema_warmup''' ) lowercase__ = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) lowercase__ = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) lowercase__ = state_dict.get('''shadow_params''' , UpperCamelCase_ ) if shadow_params is not None: lowercase__ = shadow_params if not isinstance(self.shadow_params , UpperCamelCase_ ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(UpperCamelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
43
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = Mock() lowercase__ = conn, Mock() lowercase__ = iter([1, None] ) lowercase__ = lambda SCREAMING_SNAKE_CASE : next(SCREAMING_SNAKE_CASE ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=SCREAMING_SNAKE_CASE ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
43
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'module.blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'module.blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'module.blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'module.blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'module.blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowercase__ = '''''' else: lowercase__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(f'module.blocks.{i}.attn.qkv.weight' ) lowercase__ = state_dict.pop(f'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ViTMSNConfig() lowercase__ = 10_00 lowercase__ = '''datasets/huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase__ = 3_84 lowercase__ = 15_36 lowercase__ = 6 elif "l16" in checkpoint_url: lowercase__ = 10_24 lowercase__ = 40_96 lowercase__ = 24 lowercase__ = 16 lowercase__ = 0.1 elif "b4" in checkpoint_url: lowercase__ = 4 elif "l7" in checkpoint_url: lowercase__ = 7 lowercase__ = 10_24 lowercase__ = 40_96 lowercase__ = 24 lowercase__ = 16 lowercase__ = 0.1 lowercase__ = ViTMSNModel(SCREAMING_SNAKE_CASE ) lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''target_encoder'''] lowercase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(SCREAMING_SNAKE_CASE ) lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE , base_model=SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , base_model=SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) lowercase__ = ViTImageProcessor( size=config.image_size , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase__ = model(**SCREAMING_SNAKE_CASE ) lowercase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
43
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def _a ( ): """simple docstring""" lowercase__ = 10 lowercase__ = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) lowercase__ = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(SCREAMING_SNAKE_CASE ) ), } , features=SCREAMING_SNAKE_CASE , ) return dataset @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=SCREAMING_SNAKE_CASE ) return filename # FILE_CONTENT + files lowerCAmelCase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' lowercase__ = FILE_CONTENT with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return filename @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" import bza lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' lowercase__ = bytes(SCREAMING_SNAKE_CASE , '''utf-8''' ) with bza.open(SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" import gzip lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) lowercase__ = bytes(SCREAMING_SNAKE_CASE , '''utf-8''' ) with gzip.open(SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' lowercase__ = bytes(SCREAMING_SNAKE_CASE , '''utf-8''' ) with lza.frame.open(SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as archive: archive.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" import tarfile lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" import lzma lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' lowercase__ = bytes(SCREAMING_SNAKE_CASE , '''utf-8''' ) with lzma.open(SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" import zipfile lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' lowercase__ = bytes(SCREAMING_SNAKE_CASE , '''utf-8''' ) with zstd.open(SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' lowercase__ = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return filename lowerCAmelCase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCAmelCase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCAmelCase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCAmelCase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='''session''' ) def _a ( ): """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = datasets.Dataset.from_dict(SCREAMING_SNAKE_CASE ) lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE ) ) as con: lowercase__ = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(SCREAMING_SNAKE_CASE , '''w''' , newline='''''' ) as f: lowercase__ = csv.DictWriter(SCREAMING_SNAKE_CASE , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(SCREAMING_SNAKE_CASE , '''w''' , newline='''''' ) as f: lowercase__ = csv.DictWriter(SCREAMING_SNAKE_CASE , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" import bza lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(SCREAMING_SNAKE_CASE , '''rb''' ) as f: lowercase__ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) lowercase__ = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(SCREAMING_SNAKE_CASE , '''wb''' ) as f: lowercase__ = pq.ParquetWriter(SCREAMING_SNAKE_CASE , schema=SCREAMING_SNAKE_CASE ) lowercase__ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(SCREAMING_SNAKE_CASE ) )] for k in DATA[0]} , schema=SCREAMING_SNAKE_CASE ) writer.write_table(SCREAMING_SNAKE_CASE ) writer.close() return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowercase__ = {'''data''': DATA} with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowercase__ = {'''data''': DATA_DICT_OF_LISTS} with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in DATA: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in DATA: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" import gzip lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(SCREAMING_SNAKE_CASE , '''rb''' ) as orig_file: with gzip.open(SCREAMING_SNAKE_CASE , '''wb''' ) as zipped_file: zipped_file.writelines(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" import gzip lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(SCREAMING_SNAKE_CASE , '''rb''' ) as orig_file: with gzip.open(SCREAMING_SNAKE_CASE , '''wb''' ) as zipped_file: zipped_file.writelines(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('''nested''' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.join('''nested''' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ['''0''', '''1''', '''2''', '''3'''] lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ['''0''', '''1''', '''2''', '''3'''] lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ['''0''', '''1''', '''2''', '''3'''] lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) lowercase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _a ( ): """simple docstring""" return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def _a ( ): """simple docstring""" return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
43
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'โ–' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
1
def _a ( SCREAMING_SNAKE_CASE = 60_08_51_47_51_43 ): """simple docstring""" try: lowercase__ = int(SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase__ = 1 lowercase__ = 2 while i * i <= n: while n % i == 0: lowercase__ = i n //= i i += 1 if n > 1: lowercase__ = n return int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"""{solution() = }""")
43
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
1
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(SCREAMING_SNAKE_CASE ) == 1: return True lowercase__ = series[1] - series[0] for index in range(len(SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Input list must be a non empty list''' ) lowercase__ = 0 for val in series: answer += val return answer / len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
1
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 if input_a == input_a else 0 def _a ( ): """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
43
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = torch.device('cpu') def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] for k in state_dict.keys(): lowercase__ = k if ".pwconv" in k: lowercase__ = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: lowercase__ = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: lowercase__ = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: lowercase__ = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: lowercase__ = k_new.split('''.''' ) if ls[2].isdigit(): lowercase__ = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: lowercase__ = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowercase__ = 10_00 lowercase__ = '''huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowercase__ = [3, 3, 6, 4] lowercase__ = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": lowercase__ = [3, 3, 9, 6] lowercase__ = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": lowercase__ = [4, 3, 10, 5] lowercase__ = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": lowercase__ = [4, 4, 12, 6] lowercase__ = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' , check_hash=SCREAMING_SNAKE_CASE ) else: lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) lowercase__ = checkpoint lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase__ = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) # prepare test inputs lowercase__ = prepare_img() lowercase__ = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) lowercase__ = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # compare outputs from both models lowercase__ = get_expected_output(SCREAMING_SNAKE_CASE ) lowercase__ = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') lowerCAmelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
43
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''gpt_bigcode''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : Union[str, Any] = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self: List[Any] , UpperCamelCase_: Tuple=50_257 , UpperCamelCase_: List[Any]=1_024 , UpperCamelCase_: str=768 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: str=None , UpperCamelCase_: List[str]="gelu_pytorch_tanh" , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Tuple=1E-5 , UpperCamelCase_: int=0.02 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=50_256 , UpperCamelCase_: List[Any]=50_256 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: int=True , UpperCamelCase_: Union[str, Any]=True , **UpperCamelCase_: Any , ) -> str: """simple docstring""" lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = n_inner lowercase__ = activation_function lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = scale_attn_weights lowercase__ = use_cache lowercase__ = attention_softmax_in_fpaa lowercase__ = scale_attention_softmax_in_fpaa lowercase__ = multi_query lowercase__ = bos_token_id lowercase__ = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
43
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) lowerCAmelCase = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) lowerCAmelCase = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) lowerCAmelCase = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) lowerCAmelCase = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) lowerCAmelCase = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) lowerCAmelCase = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) lowerCAmelCase = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) lowerCAmelCase = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) lowerCAmelCase = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) lowerCAmelCase = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) lowerCAmelCase = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a ( _BaseAutoModelClass ): _lowercase : Dict = FLAX_MODEL_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModel) class _a ( _BaseAutoModelClass ): _lowercase : Any = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _a ( _BaseAutoModelClass ): _lowercase : str = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _a ( _BaseAutoModelClass ): _lowercase : str = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _a ( _BaseAutoModelClass ): _lowercase : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _a ( _BaseAutoModelClass ): _lowercase : str = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _a ( _BaseAutoModelClass ): _lowercase : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _a ( _BaseAutoModelClass ): _lowercase : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _a ( _BaseAutoModelClass ): _lowercase : str = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _a ( _BaseAutoModelClass ): _lowercase : Optional[Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _a ( _BaseAutoModelClass ): _lowercase : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _a ( _BaseAutoModelClass ): _lowercase : int = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _a ( _BaseAutoModelClass ): _lowercase : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
43
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _a ( UpperCamelCase__ ): _lowercase : Any = (CMStochasticIterativeScheduler,) _lowercase : Optional[int] = 10 def lowerCamelCase_ ( self: Union[str, Any] , **UpperCamelCase_: Dict ) -> str: """simple docstring""" lowercase__ = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = 10 lowercase__ = self.get_scheduler_config() lowercase__ = self.scheduler_classes[0](**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) lowercase__ = scheduler.timesteps[0] lowercase__ = scheduler.timesteps[1] lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample lowercase__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> Optional[Any]: """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**UpperCamelCase_ ) lowercase__ = 1 scheduler.set_timesteps(UpperCamelCase_ ) lowercase__ = scheduler.timesteps lowercase__ = torch.manual_seed(0 ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCamelCase_ ): # 1. scale model input lowercase__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict noise residual lowercase__ = model(UpperCamelCase_ , UpperCamelCase_ ) # 3. predict previous sample x_t-1 lowercase__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(UpperCamelCase_ ) ) lowercase__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**UpperCamelCase_ ) lowercase__ = [106, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowercase__ = scheduler.timesteps lowercase__ = torch.manual_seed(0 ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowercase__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict noise residual lowercase__ = model(UpperCamelCase_ , UpperCamelCase_ ) # 3. predict previous sample x_t-1 lowercase__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(UpperCamelCase_ ) ) lowercase__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**UpperCamelCase_ ) lowercase__ = [39, 30, 12, 15, 0] with self.assertRaises(UpperCamelCase_ , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] ) -> int: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**UpperCamelCase_ ) lowercase__ = [39, 30, 12, 1, 0] lowercase__ = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**UpperCamelCase_ ) lowercase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
43
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and ลukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
1
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = f'Input value of [number={number}] must be an integer' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: lowercase__ = f'Input value of [number={number}] must be > 0' raise ValueError(SCREAMING_SNAKE_CASE ) lowercase__ = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
43
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" inspect_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = path + '''.py''' assert script_name in os.listdir(SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" inspect_metric(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = path + '''.py''' assert script_name in os.listdir(SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_dataset_config_info(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE ): get_dataset_config_info(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_dataset_config_names(SCREAMING_SNAKE_CASE ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_dataset_infos(SCREAMING_SNAKE_CASE ) assert list(infos.keys() ) == expected_configs lowercase__ = expected_configs[0] assert expected_config in infos lowercase__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_dataset_infos(SCREAMING_SNAKE_CASE ) assert expected_config in infos lowercase__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE ): get_dataset_split_names(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE )
43
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
1