code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from collections.abc import Callable import numpy as np def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Any: '''simple docstring''' a__ = int(np.ceil((x_end - xa) / step_size ) ) a__ = np.zeros((n + 1,) ) a__ = ya a__ = xa for k in range(UpperCAmelCase__ ): a__ = y[k] + step_size * ode_func(UpperCAmelCase__,y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
232
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a : Tuple = logging.get_logger(__name__) def __magic_name__ ( lowercase_ , lowercase_=False , lowercase_=False ) -> int: '''simple docstring''' UpperCamelCase = "backbone." if is_semantic else "" UpperCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', "beit.embeddings.cls_token"), (f'''{prefix}patch_embed.proj.weight''', "beit.embeddings.patch_embeddings.projection.weight"), (f'''{prefix}patch_embed.proj.bias''', "beit.embeddings.patch_embeddings.projection.bias"), (f'''{prefix}pos_embed''', "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=False , lowercase_=False ) -> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): UpperCamelCase = "backbone." if is_semantic else "" # queries, keys and values UpperCamelCase = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCamelCase = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCamelCase = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase = q_bias UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCamelCase = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCamelCase = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCamelCase = gamma_a UpperCamelCase = gamma_a def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' UpperCamelCase = dct.pop(lowercase_ ) UpperCamelCase = val def __magic_name__ ( ) -> int: '''simple docstring''' UpperCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=False ) -> int: '''simple docstring''' UpperCamelCase = False if "rvlcdip" in checkpoint_url else True UpperCamelCase = BeitConfig(use_absolute_position_embeddings=lowercase_ , use_mask_token=lowercase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 # labels if "rvlcdip" in checkpoint_url: UpperCamelCase = 16 UpperCamelCase = "huggingface/label-files" UpperCamelCase = "rvlcdip-id2label.json" UpperCamelCase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase = {int(lowercase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCamelCase = torch.hub.load_state_dict_from_url(lowercase_ , map_location="cpu" )["model"] UpperCamelCase = create_rename_keys(lowercase_ , has_lm_head=lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ , has_lm_head=lowercase_ ) # load HuggingFace model UpperCamelCase = BeitForMaskedImageModeling(lowercase_ ) if has_lm_head else BeitForImageClassification(lowercase_ ) model.eval() model.load_state_dict(lowercase_ ) # Check outputs on an image UpperCamelCase = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowercase_ ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowercase_ , return_tensors="pt" ) UpperCamelCase = encoding["pixel_values"] UpperCamelCase = model(lowercase_ ) UpperCamelCase = outputs.logits # verify logits UpperCamelCase = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowercase_ ), "Shape of logits not as expected" Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: if has_lm_head: UpperCamelCase = "dit-base" if "base" in checkpoint_url else "dit-large" else: UpperCamelCase = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(lowercase_ , lowercase_ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=lowercase_ , ) model.push_to_hub( repo_path_or_name=Path(lowercase_ , lowercase_ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=lowercase_ , ) if __name__ == "__main__": __a : str = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) __a : Union[str, Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
606
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
0
import os import jsonlines import numpy as np from tqdm import tqdm __UpperCAmelCase : Union[str, Any] = 2_0_4_8 __UpperCAmelCase : int = 4_0_9_6 __UpperCAmelCase : Tuple = 4_2 __UpperCAmelCase : str = os.environ.pop("PROCESS_TRAIN", "false") __UpperCAmelCase : Optional[Any] = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowercase_ ( __snake_case : List[Any] ) -> int: '''simple docstring''' def choose_first(__snake_case : Optional[int] , __snake_case : Dict=False ): assert isinstance(__snake_case , __snake_case ) if len(__snake_case ) == 1: snake_case__ :List[Any] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: snake_case__ :Union[str, Any] = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a snake_case__ :List[Any] = {"id": example["id"]} snake_case__ :List[Any] = example["annotations"] snake_case__ :Optional[Any] = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: snake_case__ :Dict = ["yes"] if 1 in yes_no_answer else ["no"] snake_case__ :Any = [] snake_case__ :Optional[Any] = [] snake_case__ :Optional[int] = ["<cls>"] else: snake_case__ :Dict = ["short"] snake_case__ :int = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available snake_case__ :Optional[Any] = ["long"] snake_case__ :List[str] = choose_first(annotation["long_answer"] , is_long_answer=__snake_case ) snake_case__ :List[str] = [] answer.update(__snake_case ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: snake_case__ :Union[str, Any] = True else: snake_case__ :Dict = False snake_case__ :int = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , __snake_case ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Dict=False ) -> Dict: '''simple docstring''' snake_case__ :Dict = _get_single_answer(__snake_case ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case__ :Dict = example["document"]["tokens"] snake_case__ :Optional[Any] = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(__snake_case ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples snake_case__ :Tuple = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 snake_case__ :Optional[int] = example["document"]["tokens"] snake_case__ :Any = answer["start_token"] snake_case__ :Any = answer["end_token"] snake_case__ :Tuple = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 snake_case__ :Any = " ".join(context[start_token:end_token] ) # checking above code if assertion: snake_case__ :Dict = doc["is_html"][answer["start_token"] : answer["end_token"]] snake_case__ :Any = doc["token"][answer["start_token"] : answer["end_token"]] snake_case__ :Optional[Any] = " ".join([old[i] for i in range(len(__snake_case ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , __snake_case , end="\n" ) print("Old:" , __snake_case , end="\n\n" ) return { "context": " ".join(__snake_case ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowercase_ ( __snake_case : List[str] , __snake_case : List[str] , __snake_case : Any=20_48 , __snake_case : str=40_96 , __snake_case : Dict=True ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Tuple = get_context_and_ans(__snake_case , assertion=__snake_case ) snake_case__ :Any = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } snake_case__ :List[Any] = tokenizer(example["question"]["text"] , out["context"] ).input_ids snake_case__ :Optional[int] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case__ :List[str] = [] snake_case__ :int = [] snake_case__ :List[Any] = input_ids[:q_len] snake_case__ :List[str] = range(__snake_case , len(__snake_case ) , max_length - doc_stride ) for i in doc_start_indices: snake_case__ :List[str] = i + max_length - q_len snake_case__ :Union[str, Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(__snake_case ), "end_token": [-1_00] * len(__snake_case ), "category": category, }, } snake_case__ :Any = out["context"].split() snake_case__ :List[str] = splitted_context[answer["end_token"]] snake_case__ :List[str] = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=__snake_case , ).input_ids ) snake_case__ :List[Any] = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=__snake_case ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token snake_case__ :Union[str, Any] = len(tokenizer(__snake_case , add_special_tokens=__snake_case ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 snake_case__ :Optional[int] = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive snake_case__ :Optional[Any] = answer["start_token"] snake_case__ :List[Any] = answer["end_token"] if assertion: snake_case__ :Tuple = tokenizer.decode(__snake_case ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , __snake_case , end="\n\n" ) if len(__snake_case ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } snake_case__ :List[str] = input_ids[:q_len] snake_case__ :str = range(__snake_case , len(__snake_case ) , max_length - doc_stride ) snake_case__ :Union[str, Any] = [] snake_case__ :Optional[Any] = [] snake_case__ :Optional[Any] = [] snake_case__ :str = [] # null, yes, no, long, short for i in doc_start_indices: snake_case__ :Optional[Any] = i + max_length - q_len snake_case__ :Optional[Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: snake_case__ :List[str] = start_token - i + q_len snake_case__ :Dict = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: snake_case__ :Any = -1_00 snake_case__ :Union[str, Any] = -1_00 answers_category.append("null" ) snake_case__ :Union[str, Any] = inputs[-1][start_token : end_token + 1] answers_start_token.append(__snake_case ) answers_end_token.append(__snake_case ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(__snake_case ) ) print("Old:" , tokenizer.decode(__snake_case ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowercase_ ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int=20_48 , __snake_case : Tuple=40_96 , __snake_case : int=False ) -> Tuple: '''simple docstring''' snake_case__ :Optional[Any] = get_strided_contexts_and_ans( __snake_case , __snake_case , doc_stride=__snake_case , max_length=__snake_case , assertion=__snake_case , ) return example def lowercase_ ( __snake_case : int , __snake_case : Optional[Any] ) -> Optional[Any]: '''simple docstring''' with jsonlines.open(__snake_case , "a" ) as writer: for example in tqdm(__snake_case , total=len(__snake_case ) , desc="Saving samples ... " ): snake_case__ :str = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __UpperCAmelCase : int = load_dataset("natural_questions") __UpperCAmelCase : Tuple = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") __UpperCAmelCase : Optional[int] = data["train" if PROCESS_TRAIN == "true" else "validation"] __UpperCAmelCase : Union[str, Any] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } __UpperCAmelCase : Optional[Any] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __UpperCAmelCase : Optional[int] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) __UpperCAmelCase : str = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
241
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCamelCase__ ( lowerCAmelCase__ ): for param in module.parameters(): lowercase = False def UpperCamelCase__ ( ): lowercase = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase = """mps""" if device == "mps": print( """WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues""" """ with generations.""" ) return device def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = plt.imshow(lowerCAmelCase__ ) fig.axes.get_xaxis().set_visible(lowerCAmelCase__ ) fig.axes.get_yaxis().set_visible(lowerCAmelCase__ ) plt.show() def UpperCamelCase__ ( ): lowercase = datetime.now() lowercase = current_time.strftime("""%H:%M:%S""" ) return timestamp
428
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if not len(_lowercase ) == len(_lowercase ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = equationa UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = equationa # Calculate the determinants of the matrices UpperCAmelCase_ : Union[str, Any] = aa * ba - aa * ba UpperCAmelCase_ : str = ca * ba - ca * ba UpperCAmelCase_ : Dict = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: UpperCAmelCase_ : Tuple = determinant_x / determinant UpperCAmelCase_ : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
30
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
0
import heapq def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Any: snake_case__ = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__lowerCAmelCase , [-1 * len(__lowerCAmelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices snake_case__ = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices snake_case__ = heapq.heappop(__lowerCAmelCase )[1][0] chosen_vertices.add(__lowerCAmelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: snake_case__ = elem[1][1].index(__lowerCAmelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__lowerCAmelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
33
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
0
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a ( UpperCamelCase__ ): def __init__( self : Optional[int] , lowercase_ : Dict , lowercase_ : Optional[int]=13 , lowercase_ : List[Any]=7 , lowercase_ : Tuple=True , lowercase_ : List[Any]=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]=True , lowercase_ : Dict=True , lowercase_ : Optional[int]=False , lowercase_ : str=False , lowercase_ : Any=False , lowercase_ : int=2 , lowercase_ : Dict=99 , lowercase_ : Tuple=0 , lowercase_ : Tuple=32 , lowercase_ : List[str]=5 , lowercase_ : Tuple=4 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Any=512 , lowercase_ : Union[str, Any]=12 , lowercase_ : Optional[Any]=2 , lowercase_ : Any=0.02 , lowercase_ : Tuple=3 , lowercase_ : Optional[int]=4 , lowercase_ : Dict="last" , lowercase_ : Optional[Any]=None , lowercase_ : Union[str, Any]=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_lengths snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = gelu_activation snake_case_ = sinusoidal_embeddings snake_case_ = causal snake_case_ = asm snake_case_ = n_langs snake_case_ = vocab_size snake_case_ = n_special snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = summary_type snake_case_ = use_proj snake_case_ = scope def A_ ( self : Optional[Any] ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_input_lengths: snake_case_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , 2 ).float() snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A_ ( self : int ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def A_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Any , ): snake_case_ = FlaubertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() snake_case_ = model(UpperCamelCase_ , lengths=UpperCamelCase_ , langs=UpperCamelCase_ ) snake_case_ = model(UpperCamelCase_ , langs=UpperCamelCase_ ) snake_case_ = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Any , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Any , ): snake_case_ = FlaubertWithLMHeadModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() snake_case_ = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : str , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , ): snake_case_ = FlaubertForQuestionAnsweringSimple(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() snake_case_ = model(UpperCamelCase_ ) snake_case_ = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : int , ): snake_case_ = FlaubertForQuestionAnswering(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() snake_case_ = model(UpperCamelCase_ ) snake_case_ = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , p_mask=UpperCamelCase_ , ) snake_case_ = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , ) ((snake_case_ ) , ) = result_with_labels.to_tuple() snake_case_ = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) ((snake_case_ ) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A_ ( self : List[Any] , lowercase_ : Any , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : str , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Tuple , ): snake_case_ = FlaubertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() snake_case_ = model(UpperCamelCase_ ) snake_case_ = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : Optional[int] , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : List[str] , ): snake_case_ = self.num_labels snake_case_ = FlaubertForTokenClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() snake_case_ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Any , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : int , ): snake_case_ = self.num_choices snake_case_ = FlaubertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : List[str] ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = config_and_inputs snake_case_ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): snake_case_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) snake_case_ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def A_ ( self : Any , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A_ ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Any=False ): snake_case_ = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) return inputs_dict def A_ ( self : Any ): snake_case_ = FlaubertModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCamelCase_ , emb_dim=37 ) def A_ ( self : int ): self.config_tester.run_common_tests() def A_ ( self : str ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase_ ) def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase_ ) def A_ ( self : Optional[int] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase_ ) def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase_ ) @slow def A_ ( self : int ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = FlaubertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow @require_torch_gpu def A_ ( self : Union[str, Any] ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return snake_case_ = True snake_case_ = model_class(config=UpperCamelCase_ ) snake_case_ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) snake_case_ = torch.jit.trace( UpperCamelCase_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''traced_model.pt''' ) ) snake_case_ = torch.jit.load(os.path.join(UpperCamelCase_ , '''traced_model.pt''' ) , map_location=UpperCamelCase_ ) loaded(inputs_dict['''input_ids'''].to(UpperCamelCase_ ) , inputs_dict['''attention_mask'''].to(UpperCamelCase_ ) ) @require_torch class a ( unittest.TestCase ): @slow def A_ ( self : Any ): snake_case_ = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) snake_case_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): snake_case_ = model(UpperCamelCase_ )[0] snake_case_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase_ ) snake_case_ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1e-4 ) )
640
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch UpperCAmelCase_ : int = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __A ( UpperCamelCase__ ): def A__ ( self :int , __snake_case :GenericTensor ): '''simple docstring''' if self.framework == "tf": __magic_name__ : Any =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __magic_name__ : List[Any] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase_ ) else: raise ValueError("""Unsupported framework""" ) return masked_index def A__ ( self :str , __snake_case :GenericTensor ): '''simple docstring''' __magic_name__ : Dict =self.get_masked_index(UpperCamelCase_ ) __magic_name__ : Optional[int] =np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def A__ ( self :str , __snake_case :GenericTensor ): '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(UpperCamelCase_ ) def A__ ( self :List[str] , __snake_case :str , __snake_case :str=None , **__snake_case :Any ): '''simple docstring''' if return_tensors is None: __magic_name__ : Union[str, Any] =self.framework __magic_name__ : Any =self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.ensure_exactly_one_mask_token(UpperCamelCase_ ) return model_inputs def A__ ( self :Any , __snake_case :Any ): '''simple docstring''' __magic_name__ : Dict =self.model(**UpperCamelCase_ ) __magic_name__ : Any =model_inputs["""input_ids"""] return model_outputs def A__ ( self :Dict , __snake_case :List[Any] , __snake_case :Optional[int]=5 , __snake_case :Optional[int]=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: __magic_name__ : List[str] =target_ids.shape[0] __magic_name__ : List[Any] =model_outputs["""input_ids"""][0] __magic_name__ : List[Any] =model_outputs["""logits"""] if self.framework == "tf": __magic_name__ : Union[str, Any] =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __magic_name__ : Optional[int] =outputs.numpy() __magic_name__ : Optional[Any] =outputs[0, masked_index, :] __magic_name__ : Union[str, Any] =stable_softmax(UpperCamelCase_ , axis=-1 ) if target_ids is not None: __magic_name__ : List[str] =tf.gather_nd(tf.squeeze(UpperCamelCase_ , 0 ) , target_ids.reshape(-1 , 1 ) ) __magic_name__ : Optional[Any] =tf.expand_dims(UpperCamelCase_ , 0 ) __magic_name__ : Optional[Any] =tf.math.top_k(UpperCamelCase_ , k=UpperCamelCase_ ) __magic_name__ , __magic_name__ : Union[str, Any] =topk.values.numpy(), topk.indices.numpy() else: __magic_name__ : Optional[Any] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __magic_name__ : Tuple =outputs[0, masked_index, :] __magic_name__ : Union[str, Any] =logits.softmax(dim=-1 ) if target_ids is not None: __magic_name__ : Tuple =probs[..., target_ids] __magic_name__ , __magic_name__ : Dict =probs.topk(UpperCamelCase_ ) __magic_name__ : Union[str, Any] =[] __magic_name__ : Union[str, Any] =values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __magic_name__ : Any =[] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __magic_name__ : Tuple =input_ids.numpy().copy() if target_ids is not None: __magic_name__ : str =target_ids[p].tolist() __magic_name__ : Optional[Any] =p # Filter padding out: __magic_name__ : int =tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __magic_name__ : Dict =self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) __magic_name__ : int ={"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(UpperCamelCase_ ) result.append(UpperCamelCase_ ) if single_mask: return result[0] return result def A__ ( self :Any , __snake_case :int , __snake_case :int=None ): '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __magic_name__ : Tuple =[targets] try: __magic_name__ : Optional[Any] =self.tokenizer.get_vocab() except Exception: __magic_name__ : Any ={} __magic_name__ : int =[] for target in targets: __magic_name__ : int =vocab.get(UpperCamelCase_ , UpperCamelCase_ ) if id_ is None: __magic_name__ : Union[str, Any] =self.tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , max_length=1 , truncation=UpperCamelCase_ , )["""input_ids"""] if len(UpperCamelCase_ ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue __magic_name__ : Any =input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) __magic_name__ : List[Any] =list(set(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) __magic_name__ : List[Any] =np.array(UpperCamelCase_ ) return target_ids def A__ ( self :List[str] , __snake_case :int=None , __snake_case :List[Any]=None ): '''simple docstring''' __magic_name__ : List[str] ={} if targets is not None: __magic_name__ : Union[str, Any] =self.get_target_ids(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ : Any =target_ids if top_k is not None: __magic_name__ : List[str] =top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self :List[Any] , __snake_case :Optional[Any] , *__snake_case :Tuple , **__snake_case :List[Any] ): '''simple docstring''' __magic_name__ : str =super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) == 1: return outputs[0] return outputs
21
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
0
'''simple docstring''' from __future__ import annotations from typing import TypedDict class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): """simple docstring""" A__ : str A__ : int def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : str ): '''simple docstring''' if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(lowerCamelCase__ ) )] def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : str ): '''simple docstring''' if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) A: Dict = all_rotations(lowerCamelCase__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation A: str = { """bwt_string""": """""".join([word[-1] for word in rotations] ), """idx_original_string""": rotations.index(lowerCamelCase__ ), } return response def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any ): '''simple docstring''' if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: A: int = int(lowerCamelCase__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(lowerCamelCase__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) A: Any = [""""""] * len(lowerCamelCase__ ) for _ in range(len(lowerCamelCase__ ) ): for i in range(len(lowerCamelCase__ ) ): A: Optional[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple ='Provide a string that I will generate its BWT transform: ' __SCREAMING_SNAKE_CASE : str =input(entry_msg).strip() __SCREAMING_SNAKE_CASE : Optional[int] =bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result['bwt_string']}'""" ) __SCREAMING_SNAKE_CASE : Optional[Any] =reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ f"""we get original string '{original_string}'""" )
135
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Any =os.path.join(args.tf_model_dir , "parameters.json" ) lowerCamelCase__: Any =json.loads(open(__a ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): lowerCamelCase__: Union[str, Any] =args.output + ".pt" lowerCamelCase__: str =OrderedDict() with tf.device("/CPU:0" ): lowerCamelCase__: Dict =tf.train.load_checkpoint(args.tf_model_dir ) lowerCamelCase__: Optional[int] =reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCamelCase__: Union[str, Any] =reader.get_tensor(__a ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): lowerCamelCase__: str =int(key_name[9] ) elif key_name.startswith("pasts/out" ): lowerCamelCase__: int =8 lowerCamelCase__: List[Any] ="model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCamelCase__: Tuple =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: Dict =torch.tensor(__a ) elif key_name.startswith("model/moe" ): lowerCamelCase__: Tuple =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): lowerCamelCase__: Optional[Any] ="model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player lowerCamelCase__: Dict =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: List[Any] =torch.tensor(__a ) elif key_name.endswith("/softmlp/kernel" ): lowerCamelCase__: List[Any] ="model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player lowerCamelCase__: Any =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: Dict =torch.tensor(__a ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): lowerCamelCase__: int =key_name[-9:-7] for i in range(16 ): lowerCamelCase__: Union[str, Any] ="model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) lowerCamelCase__: List[Any] =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCamelCase__: Tuple =torch.tensor(__a ) elif key_name.startswith("model/mlp" ): lowerCamelCase__: str =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): lowerCamelCase__: Optional[int] ="model.blocks.%d.feed_forward.mlp.wi.weight" % player lowerCamelCase__: Optional[Any] =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: int =torch.tensor(__a ) elif key_name.endswith("/p1/bias" ): lowerCamelCase__: List[Any] ="model.blocks.%d.feed_forward.mlp.wi.bias" % player lowerCamelCase__: Dict =vnp.copy() # same because it is one dimensional lowerCamelCase__: Optional[Any] =torch.tensor(__a ) elif key_name.endswith("/p2/kernel" ): lowerCamelCase__: Dict ="model.blocks.%d.feed_forward.mlp.wo.weight" % player lowerCamelCase__: Any =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: str =torch.tensor(__a ) elif key_name.endswith("/p2/bias" ): lowerCamelCase__: Any ="model.blocks.%d.feed_forward.mlp.wo.bias" % player lowerCamelCase__: int =vnp.copy() # same because it is one dimensional lowerCamelCase__: List[Any] =torch.tensor(__a ) elif key_name.startswith("model/ln" ): lowerCamelCase__: Dict =int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): lowerCamelCase__: Tuple ="model.blocks.%d.feed_forward.norm.bias" % player lowerCamelCase__: str =vnp.copy() # same because it is one dimensional lowerCamelCase__: List[Any] =torch.tensor(__a ) elif key_name.endswith("/g" ): lowerCamelCase__: List[Any] ="model.blocks.%d.feed_forward.norm.weight" % player lowerCamelCase__: Optional[Any] =vnp.copy() # same because it is one dimensional lowerCamelCase__: Optional[int] =torch.tensor(__a ) elif key_name.startswith("model/att" ): lowerCamelCase__: Tuple =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): lowerCamelCase__: Optional[int] =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCamelCase__: str =state[:, 0, :, :] lowerCamelCase__: List[str] =state[:, 1, :, :] lowerCamelCase__: Optional[int] =state[:, 2, :, :] lowerCamelCase__: Dict =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: List[str] =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: str =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: Optional[int] ="model.blocks.%d.self_attn.self_attn.q_proj.weight" % player lowerCamelCase__: List[str] =torch.tensor(__a ) lowerCamelCase__: int ="model.blocks.%d.self_attn.self_attn.k_proj.weight" % player lowerCamelCase__: Optional[int] =torch.tensor(__a ) lowerCamelCase__: List[str] ="model.blocks.%d.self_attn.self_attn.v_proj.weight" % player lowerCamelCase__: List[str] =torch.tensor(__a ) elif key_name.endswith("/o/kernel" ): lowerCamelCase__: List[Any] ="model.blocks.%d.self_attn.self_attn.out_proj.weight" % player lowerCamelCase__: List[str] =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: Union[str, Any] =torch.tensor(__a ) elif key_name.startswith("model/an" ): lowerCamelCase__: Any =int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): lowerCamelCase__: Optional[int] ="model.blocks.%d.self_attn.norm.bias" % player lowerCamelCase__: Tuple =vnp.copy() # same because it is one dimensional lowerCamelCase__: Any =torch.tensor(__a ) elif key_name.endswith("/g" ): lowerCamelCase__: Optional[Any] ="model.blocks.%d.self_attn.norm.weight" % player lowerCamelCase__: Tuple =vnp.copy() # same because it is one dimensional lowerCamelCase__: Dict =torch.tensor(__a ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): lowerCamelCase__: int ={"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] lowerCamelCase__: int ="model.%s.weight" % nlayer lowerCamelCase__: Optional[Any] =vnp.copy() # same in embedded lowerCamelCase__: str =torch.tensor(__a ) if key_name.startswith("model/wte" ): lowerCamelCase__: str ="lm_head.weight" lowerCamelCase__: Optional[Any] =vnp.copy() # same in embedded lowerCamelCase__: List[Any] =torch.tensor(__a ) elif key_name.startswith("model/wob" ): lowerCamelCase__: int ="final_logits_bias" lowerCamelCase__: Optional[Any] =vnp.copy() # same in embedded lowerCamelCase__: List[Any] =state.reshape((1, -1) ) lowerCamelCase__: Tuple =torch.tensor(__a ) elif key_name == "model/dense/kernel": lowerCamelCase__: List[str] ="model.last_project.weight" lowerCamelCase__: Union[str, Any] =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: Optional[Any] =torch.tensor(__a ) elif key_name == "model/dense_1/bias": lowerCamelCase__: Optional[int] ="model.last_project.bias" lowerCamelCase__: Union[str, Any] =vnp.copy() # same because it is one dimensional lowerCamelCase__: Optional[Any] =torch.tensor(__a ) torch.save(__a , args.output ) if __name__ == "__main__": __A = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __A = parser.parse_args() convert_tf_gptsan_to_pt(args)
59
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = AutoConfig.from_pretrained(lowerCamelCase_ ) lowercase__ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowerCamelCase_ ) lowercase__ = checkpoints.load_tax_checkpoint(lowerCamelCase_ ) lowercase__ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": lowercase__ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): lowercase__ = F"""layers_{str(lowerCamelCase_ )}""" # Self-Attention lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowercase__ = flax_model.params['''encoder''']['''block'''][str(lowerCamelCase_ )]['''layer'''] lowercase__ = tax_attention_key lowercase__ = tax_attention_out lowercase__ = tax_attention_query lowercase__ = tax_attention_value lowercase__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_global_layer_norm if split_mlp_wi: lowercase__ = tax_mlp_wi_a lowercase__ = tax_mlp_wi_a else: lowercase__ = tax_mlp_wi lowercase__ = tax_mlp_wo lowercase__ = tax_mlp_layer_norm lowercase__ = flax_model_encoder_layer_block # Only for layer 0: lowercase__ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T lowercase__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T lowercase__ = tax_encoder_global_rel_embedding # Assigning lowercase__ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] lowercase__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowercase__ = F"""layers_{str(lowerCamelCase_ )}""" # Self-Attention lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] lowercase__ = tax_enc_dec_attention_module['''key''']['''kernel'''] lowercase__ = tax_enc_dec_attention_module['''out''']['''kernel'''] lowercase__ = tax_enc_dec_attention_module['''query''']['''kernel'''] lowercase__ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowercase__ = flax_model.params['''decoder''']['''block'''][str(lowerCamelCase_ )]['''layer'''] lowercase__ = tax_attention_key lowercase__ = tax_attention_out lowercase__ = tax_attention_query lowercase__ = tax_attention_value lowercase__ = tax_pre_attention_layer_norm lowercase__ = tax_enc_dec_attention_key lowercase__ = tax_enc_dec_attention_out lowercase__ = tax_enc_dec_attention_query lowercase__ = tax_enc_dec_attention_value lowercase__ = tax_cross_layer_norm if split_mlp_wi: lowercase__ = tax_mlp_wi_a lowercase__ = tax_mlp_wi_a else: lowercase__ = tax_mlp_wi lowercase__ = tax_mlp_wo lowercase__ = txa_mlp_layer_norm lowercase__ = flax_model_decoder_layer_block # Decoder Normalization lowercase__ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] lowercase__ = txa_decoder_norm # Only for layer 0: lowercase__ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T lowercase__ = tax_decoder_rel_embedding # Token Embeddings lowercase__ = tax_model['''target''']['''token_embedder''']['''embedding'''] lowercase__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(lowerCamelCase_ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": A__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) A__ : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
183
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
0
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __magic_name__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") __magic_name__ = get_tests_dir("fixtures/vocab.json") __magic_name__ = get_tests_dir("fixtures") class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" a_ : Tuple =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def _lowerCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' a__ = 0 def _lowerCAmelCase ( self : str ) -> Any: '''simple docstring''' a__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig() a__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) a__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( self : Dict ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase_ , os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) copyfile(UpperCamelCase_ , os.path.join(UpperCamelCase_ , 'vocab.json' ) ) a__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaFeatureExtractor() a__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) a__ = WavaVecaProcessor(UpperCamelCase_ , UpperCamelCase_ ) # save in new folder processor.save_pretrained(UpperCamelCase_ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , 'r' ) as f: a__ = json.load(UpperCamelCase_ ) config_dict.pop('processor_class' ) with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , 'w' ) as f: f.write(json.dumps(UpperCamelCase_ ) ) a__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaFeatureExtractor() a__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) a__ = WavaVecaProcessor(UpperCamelCase_ , UpperCamelCase_ ) # save in new folder processor.save_pretrained(UpperCamelCase_ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , 'r' ) as f: a__ = json.load(UpperCamelCase_ ) config_dict.pop('processor_class' ) with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , 'w' ) as f: f.write(json.dumps(UpperCamelCase_ ) ) a__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( self : int ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(UpperCamelCase_ ) # copy relevant files copyfile(UpperCamelCase_ , os.path.join(UpperCamelCase_ , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , 'w' ) as f: f.write('{}' ) a__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(UpperCamelCase_ ): a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=UpperCamelCase_ ) a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) a__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) a__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) a__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' try: AutoConfig.register('custom' , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API a__ = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: a__ = os.path.join(UpperCamelCase_ , 'vocab.txt' ) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) a__ = CustomTokenizer(UpperCamelCase_ ) a__ = CustomProcessor(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase_ ) a__ = AutoProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowerCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" a_ : Optional[int] =False class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" a_ : Optional[int] =False class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" a_ : Tuple ='''AutoFeatureExtractor''' a_ : Dict ='''AutoTokenizer''' a_ : List[Any] =False try: AutoConfig.register('custom' , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local classes. a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowerCAmelCase ( self : Dict ) -> Optional[int]: '''simple docstring''' a__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' a__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" a_ : Tuple =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _lowerCAmelCase ( cls : str ) -> Tuple: '''simple docstring''' a__ = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def _lowerCAmelCase ( cls : str ) -> Dict: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def _lowerCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' a__ = WavaVecaProcessor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase_ , 'test-processor' ) , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) a__ = WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(new_processor.feature_extractor , UpperCamelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _lowerCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ = WavaVecaProcessor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase_ , 'test-processor-org' ) , push_to_hub=UpperCamelCase_ , use_auth_token=self._token , organization='valid_org' , ) a__ = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(new_processor.feature_extractor , UpperCamelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() a__ = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: a__ = os.path.join(UpperCamelCase_ , 'vocab.txt' ) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) a__ = CustomTokenizer(UpperCamelCase_ ) a__ = CustomProcessor(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) a__ = Repository(UpperCamelCase_ , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(UpperCamelCase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) ) as f: a__ = json.load(UpperCamelCase_ ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ , 'custom_processing.py' ) ) ) repo.push_to_hub() a__ = AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=UpperCamelCase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
232
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a : List[Any] = logging.get_logger(__name__) __a : Optional[int] = torch.device("""cpu""") def __magic_name__ ( ) -> List[str]: '''simple docstring''' UpperCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im def __magic_name__ ( lowercase_ ) -> Any: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = dct.pop(lowercase_ ) UpperCamelCase = val def __magic_name__ ( lowercase_ ) -> int: '''simple docstring''' UpperCamelCase = [] for k in state_dict.keys(): UpperCamelCase = k if ".pwconv" in k: UpperCamelCase = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: UpperCamelCase = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: UpperCamelCase = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: UpperCamelCase = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCamelCase = k_new.split("." ) if ls[2].isdigit(): UpperCamelCase = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: UpperCamelCase = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' UpperCamelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase = 1000 UpperCamelCase = "huggingface/label-files" UpperCamelCase = "imagenet-1k-id2label.json" UpperCamelCase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase = {int(lowercase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCamelCase = [3, 3, 6, 4] UpperCamelCase = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCamelCase = [3, 3, 9, 6] UpperCamelCase = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCamelCase = [4, 3, 10, 5] UpperCamelCase = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCamelCase = [4, 4, 12, 6] UpperCamelCase = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCamelCase = torch.hub.load_state_dict_from_url(lowercase_ , map_location="cpu" , check_hash=lowercase_ ) else: UpperCamelCase = torch.load(lowercase_ , map_location="cpu" ) UpperCamelCase = checkpoint UpperCamelCase = create_rename_keys(lowercase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) # load HuggingFace model UpperCamelCase = SwiftFormerForImageClassification(lowercase_ ).eval() hf_model.load_state_dict(lowercase_ ) # prepare test inputs UpperCamelCase = prepare_img() UpperCamelCase = ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCamelCase = processor(images=lowercase_ , return_tensors="pt" ) # compare outputs from both models UpperCamelCase = get_expected_output(lowercase_ ) UpperCamelCase = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase_ , atol=1E-3 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": __a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") __a : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
606
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=13_37 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=13_37 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def lowercase_ ( __snake_case : Any ) -> str: '''simple docstring''' snake_case__ :Optional[Any] = split_dict._to_yaml_list() assert len(__snake_case ) == len(__snake_case ) snake_case__ :Any = SplitDict._from_yaml_list(__snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case__ :Any = None # the split name of split_dict takes over the name of the split info object snake_case__ :Optional[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=__snake_case ), SplitInfo(dataset_name="my_dataset" )] ) def lowercase_ ( __snake_case : Any ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
241
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
0
from __future__ import annotations def UpperCamelCase__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return array lowercase , lowercase = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) # Compute the variables lowercase = _max - _min + 1 lowercase , lowercase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase = i - _min lowercase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase = 0 for i in range(lowerCAmelCase__ ): while holes_repeat[i] > 0: lowercase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Optional[Any] =input('''Enter numbers separated by comma:\n''') __SCREAMING_SNAKE_CASE : int =[int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
428
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = 10 UpperCAmelCase_ : Optional[Any] = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) UpperCAmelCase_ : int = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(_lowercase ) ), } , features=_lowercase , ) return dataset @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=_lowercase ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' UpperCAmelCase_ : Tuple = FILE_CONTENT with open(_lowercase , '''w''' ) as f: f.write(_lowercase ) return filename @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' import bza UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' UpperCAmelCase_ : Any = bytes(_lowercase , '''utf-8''' ) with bza.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' import gzip UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) UpperCAmelCase_ : List[str] = bytes(_lowercase , '''utf-8''' ) with gzip.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Any = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' UpperCAmelCase_ : Optional[Any] = bytes(_lowercase , '''utf-8''' ) with lza.frame.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(_lowercase , '''w''' ) as archive: archive.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' import tarfile UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(_lowercase , '''w''' ) as f: f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' import lzma UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' UpperCAmelCase_ : Optional[int] = bytes(_lowercase , '''utf-8''' ) with lzma.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' import zipfile UpperCAmelCase_ : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' UpperCAmelCase_ : List[str] = bytes(_lowercase , '''utf-8''' ) with zstd.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' UpperCAmelCase_ : Dict = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(_lowercase , '''w''' ) as f: f.write(_lowercase ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = datasets.Dataset.from_dict(_lowercase ) UpperCAmelCase_ : List[str] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(_lowercase ) ) as con: UpperCAmelCase_ : Any = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(_lowercase , '''w''' , newline='''''' ) as f: UpperCAmelCase_ : List[str] = csv.DictWriter(_lowercase , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(_lowercase , '''w''' , newline='''''' ) as f: UpperCAmelCase_ : int = csv.DictWriter(_lowercase , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' import bza UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(_lowercase , '''rb''' ) as f: UpperCAmelCase_ : Optional[int] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(_lowercase , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) UpperCAmelCase_ : List[str] = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(_lowercase , '''wb''' ) as f: UpperCAmelCase_ : Optional[int] = pq.ParquetWriter(_lowercase , schema=_lowercase ) UpperCAmelCase_ : str = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_lowercase ) )] for k in DATA[0]} , schema=_lowercase ) writer.write_table(_lowercase ) writer.close() return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) UpperCAmelCase_ : Optional[int] = {'''data''': DATA} with open(_lowercase , '''w''' ) as f: json.dump(_lowercase , _lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) UpperCAmelCase_ : List[str] = {'''data''': DATA_DICT_OF_LISTS} with open(_lowercase , '''w''' ) as f: json.dump(_lowercase , _lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(_lowercase , '''w''' ) as f: for item in DATA: f.write(json.dumps(_lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(_lowercase , '''w''' ) as f: for item in DATA: f.write(json.dumps(_lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(_lowercase , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(_lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(_lowercase , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(_lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' import gzip UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(_lowercase , '''rb''' ) as orig_file: with gzip.open(_lowercase , '''wb''' ) as zipped_file: zipped_file.writelines(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' import gzip UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(_lowercase , '''rb''' ) as orig_file: with gzip.open(_lowercase , '''wb''' ) as zipped_file: zipped_file.writelines(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.join('''nested''' , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(_lowercase , '''w''' ) as f: f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(_lowercase , '''w''' ) as f: f.add(_lowercase , arcname=os.path.join('''nested''' , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ['''0''', '''1''', '''2''', '''3'''] UpperCAmelCase_ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(_lowercase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = ['''0''', '''1''', '''2''', '''3'''] UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(_lowercase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ['''0''', '''1''', '''2''', '''3'''] UpperCAmelCase_ : str = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(_lowercase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(_lowercase , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) UpperCAmelCase_ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ): '''simple docstring''' return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ): '''simple docstring''' return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
30
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowerCamelCase__ : Any = """\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n""" lowerCamelCase__ : Union[str, Any] = """\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n""" lowerCamelCase__ : List[str] = """\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n""" def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: snake_case__ = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = float(fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = np.array(__lowerCAmelCase ) snake_case__ = np.array(__lowerCAmelCase ) snake_case__ = en_sentvecs.shape[0] # mean centering snake_case__ = en_sentvecs - np.mean(__lowerCAmelCase , axis=0 ) snake_case__ = in_sentvecs - np.mean(__lowerCAmelCase , axis=0 ) snake_case__ = cdist(__lowerCAmelCase , __lowerCAmelCase , '''cosine''' ) snake_case__ = np.array(range(__lowerCAmelCase ) ) snake_case__ = sim.argsort(axis=1 )[:, :10] snake_case__ = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:List[str] , _a:Union[str, Any] ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(UpperCamelCase_ , UpperCamelCase_ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(UpperCamelCase_ , UpperCamelCase_ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
33
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy a : str = logging.get_logger(__name__) a : Tuple = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } a : List[Any] = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } a : List[str] = { 'jukebox': 512, } class a ( UpperCamelCase__ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_LYRIC_TOKENS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : List[str] , lowercase_ : int=["v3", "v2", "v2"] , lowercase_ : List[str]=512 , lowercase_ : Any=5 , lowercase_ : Union[str, Any]="<|endoftext|>" , **lowercase_ : Optional[Any] , ): snake_case_ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token super().__init__( unk_token=UpperCamelCase_ , n_genres=UpperCamelCase_ , version=UpperCamelCase_ , max_n_lyric_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) snake_case_ = version snake_case_ = max_n_lyric_tokens snake_case_ = n_genres with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: snake_case_ = json.load(UpperCamelCase_ ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: snake_case_ = json.load(UpperCamelCase_ ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: snake_case_ = json.load(UpperCamelCase_ ) snake_case_ = R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: snake_case_ = oov.replace(R'''\-\'''' , R'''\-+\'''' ) snake_case_ = regex.compile(UpperCamelCase_ ) snake_case_ = {v: k for k, v in self.artists_encoder.items()} snake_case_ = {v: k for k, v in self.genres_encoder.items()} snake_case_ = {v: k for k, v in self.lyrics_encoder.items()} @property def A_ ( self : Optional[Any] ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def A_ ( self : List[Any] ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def A_ ( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[Any] ): snake_case_ = [self.artists_encoder.get(UpperCamelCase_ , 0 ) for artist in list_artists] for genres in range(len(UpperCamelCase_ ) ): snake_case_ = [self.genres_encoder.get(UpperCamelCase_ , 0 ) for genre in list_genres[genres]] snake_case_ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case_ = [[self.lyrics_encoder.get(UpperCamelCase_ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def A_ ( self : List[Any] , lowercase_ : List[Any] ): return list(UpperCamelCase_ ) def A_ ( self : int , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , **lowercase_ : str ): snake_case_ ,snake_case_ ,snake_case_ = self.prepare_for_tokenization(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) snake_case_ = self._tokenize(UpperCamelCase_ ) return artist, genre, lyrics def A_ ( self : List[str] , lowercase_ : str , lowercase_ : str , lowercase_ : str , lowercase_ : bool = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case_ = artists[idx].lower() snake_case_ = [genres[idx].lower()] else: snake_case_ = self._normalize(artists[idx] ) + '''.v2''' snake_case_ = [ self._normalize(UpperCamelCase_ ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case_ = regex.compile(R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) snake_case_ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' snake_case_ = {vocab[index]: index + 1 for index in range(len(UpperCamelCase_ ) )} snake_case_ = 0 snake_case_ = len(UpperCamelCase_ ) + 1 snake_case_ = self.vocab snake_case_ = {v: k for k, v in self.vocab.items()} snake_case_ = '''''' else: snake_case_ = regex.compile(R'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) snake_case_ = self._run_strip_accents(UpperCamelCase_ ) snake_case_ = lyrics.replace('''\\''' , '''\n''' ) snake_case_ = self.out_of_vocab.sub('''''' , UpperCamelCase_ ), [], [] return artists, genres, lyrics def A_ ( self : Tuple , lowercase_ : Any ): snake_case_ = unicodedata.normalize('''NFD''' , UpperCamelCase_ ) snake_case_ = [] for char in text: snake_case_ = unicodedata.category(UpperCamelCase_ ) if cat == "Mn": continue output.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def A_ ( self : Tuple , lowercase_ : str ): snake_case_ = ( [chr(UpperCamelCase_ ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(UpperCamelCase_ ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(UpperCamelCase_ ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) snake_case_ = frozenset(UpperCamelCase_ ) snake_case_ = re.compile(R'''_+''' ) snake_case_ = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) snake_case_ = pattern.sub('''_''' , UpperCamelCase_ ).strip('''_''' ) return text def A_ ( self : Union[str, Any] , lowercase_ : List[str] ): return " ".join(UpperCamelCase_ ) def A_ ( self : Dict , lowercase_ : List[str] , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : bool = False ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): snake_case_ = TensorType(UpperCamelCase_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf snake_case_ = tf.constant snake_case_ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch snake_case_ = torch.tensor snake_case_ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 snake_case_ = jnp.array snake_case_ = _is_jax else: snake_case_ = np.asarray snake_case_ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case_ = [inputs] if not is_tensor(UpperCamelCase_ ): snake_case_ = as_tensor(UpperCamelCase_ ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Union[str, Any]="" , lowercase_ : Union[str, Any]="pt" ): snake_case_ = [0, 0, 0] snake_case_ = [artist] * len(self.version ) snake_case_ = [genres] * len(self.version ) snake_case_ ,snake_case_ ,snake_case_ = self.tokenize(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) snake_case_ ,snake_case_ ,snake_case_ = self._convert_token_to_id(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) snake_case_ = [-INFINITY] * len(full_tokens[-1] ) snake_case_ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCamelCase_ ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def A_ ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCamelCase_ ) ) snake_case_ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCamelCase_ ) ) snake_case_ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCamelCase_ ) ) return (artists_file, genres_file, lyrics_file) def A_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : List[str] ): snake_case_ = self.artists_decoder.get(UpperCamelCase_ ) snake_case_ = [self.genres_decoder.get(UpperCamelCase_ ) for genre in genres_index] snake_case_ = [self.lyrics_decoder.get(UpperCamelCase_ ) for character in lyric_index] return artist, genres, lyrics
640
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
0
import numpy as np def lowerCAmelCase_ ( lowerCamelCase ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
21
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '▁' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __SCREAMING_SNAKE_CASE : Optional[int] ='platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: A: Dict = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: A: Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: A: int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A: Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A: Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=32 , A=2 , A=1 , A=0 , A=0.02 , ) -> int: A: int = parent A: Optional[int] = batch_size A: str = seq_length A: str = is_training A: Optional[int] = use_labels A: List[str] = vocab_size A: Optional[Any] = hidden_size A: Union[str, Any] = num_hidden_layers A: Optional[int] = num_attention_heads A: Dict = intermediate_size A: str = hidden_act A: List[Any] = hidden_dropout_prob A: Union[str, Any] = attention_probs_dropout_prob A: Optional[int] = max_position_embeddings A: List[Any] = eos_token_id A: List[str] = pad_token_id A: Any = bos_token_id A: str = initializer_range def a__ ( self ) -> Optional[int]: A: Union[str, Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) A: Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) A: Union[str, Any] = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) A: Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , ) A: Optional[Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def a__ ( self ) -> Optional[int]: A , A: str = self.prepare_config_and_inputs() return config, inputs_dict def a__ ( self , A , A , A ) -> Optional[Any]: A: str = 20 A: Tuple = model_class_name(UpperCamelCase_ ) A: Union[str, Any] = model.encode(inputs_dict["""input_ids"""] ) A , A: int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) A: Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) A: List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) A: str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A: List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) A: Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) A: Optional[Any] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) A: Optional[Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ ) A: Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) def a__ ( self , A , A , A ) -> List[str]: A: Optional[Any] = 20 A: Any = model_class_name(UpperCamelCase_ ) A: str = model.encode(inputs_dict["""input_ids"""] ) A , A: Tuple = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) A: Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A: Optional[int] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) A: Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A: List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) A: int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) A: int = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) A: Tuple = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) A: Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" A__ : List[str] = 99 def a__ ( self ) -> List[Any]: A: Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) A: Tuple = input_ids.shape[0] A: Tuple = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def a__ ( self ) -> str: A , A , A: List[str] = self._get_config_and_data() A: List[str] = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) A: List[Any] = lm_model(input_ids=UpperCamelCase_ ) A: List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCamelCase_ ) def a__ ( self ) -> int: A: str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) A: Optional[int] = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) A: Dict = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) A: Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) A: List[Any] = lm_model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) A: Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCamelCase_ ) def a__ ( self ) -> Optional[int]: A: Tuple = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) A: Optional[int] = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) A: Optional[Any] = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() A: List[Any] = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase , UpperCamelCase__ ): """simple docstring""" A__ : Optional[Any] = True A__ : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) A__ : Any = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def a__ ( self ) -> List[Any]: A: Tuple = FlaxBlenderbotModelTester(self ) def a__ ( self ) -> Tuple: A , A: Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def a__ ( self ) -> List[str]: A , A: Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def a__ ( self ) -> List[Any]: A , A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A: Tuple = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) A: str = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(A , A=None , **A ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): A: Any = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A: Dict = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a__ ( self ) -> Dict: A , A: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A: Optional[Any] = model_class(UpperCamelCase_ ) A: int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) A: int = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A , A , A ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest("""JIT Enabled""" ): A: Optional[Any] = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A: Dict = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a__ ( self ) -> Any: for model_class_name in self.all_model_classes: A: str = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids A: List[str] = np.ones((1, 1) ) * model.config.eos_token_id A: List[str] = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def a__ ( self ) -> List[str]: A: List[str] = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} A: Optional[int] = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} A: str = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCamelCase_ ) A: Union[str, Any] = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) A: Optional[Any] = ["""Sam"""] A: int = tokenizer(UpperCamelCase_ , return_tensors="""jax""" ) A: List[str] = model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) A: Dict = """Sam is a great name. It means \"sun\" in Gaelic.""" A: str = tokenizer.batch_decode(UpperCamelCase_ , **UpperCamelCase_ ) assert generated_txt[0].strip() == tgt_text
135
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class _SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): '''simple docstring''' lowercase_ = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"audio": Audio()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "audio" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Tuple) ->List[str]: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCamelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[str] =copy.deepcopy(self) lowerCamelCase__: Tuple =self.label_schema.copy() lowerCamelCase__: Dict =features[self.label_column] lowerCamelCase__: List[str] =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
59
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[int] = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class _UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" lowercase__ = '''openai-gpt''' lowercase__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any], lowerCamelCase : Tuple=40_478, lowerCamelCase : Any=512, lowerCamelCase : List[str]=768, lowerCamelCase : Tuple=12, lowerCamelCase : List[str]=12, lowerCamelCase : List[str]="gelu", lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[int]=0.1, lowerCamelCase : List[str]=0.1, lowerCamelCase : Any=1E-5, lowerCamelCase : Optional[int]=0.02, lowerCamelCase : List[str]="cls_index", lowerCamelCase : int=True, lowerCamelCase : Any=None, lowerCamelCase : Dict=True, lowerCamelCase : str=0.1, **lowerCamelCase : Any, ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = afn lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = summary_type lowercase__ = summary_use_proj lowercase__ = summary_activation lowercase__ = summary_first_dropout lowercase__ = summary_proj_to_labels super().__init__(**UpperCamelCase_ )
183
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) a__ = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCamelCase_ ) a__ = -1 a__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) a__ = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) a__ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: a__ = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer a__ = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( self : str ) -> int: '''simple docstring''' a__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) a__ = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCamelCase_ ) a__ = -1 a__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) a__ = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) a__ = tokenizer.decode(greedy_ids[0] ) a__ = TextIteratorStreamer(UpperCamelCase_ ) a__ = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} a__ = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() a__ = '' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( self : str ) -> List[str]: '''simple docstring''' a__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) a__ = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCamelCase_ ) a__ = -1 a__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) a__ = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) a__ = greedy_ids[:, input_ids.shape[1] :] a__ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: a__ = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer a__ = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' a__ = AutoTokenizer.from_pretrained('distilgpt2' ) a__ = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(UpperCamelCase_ ) a__ = -1 a__ = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: a__ = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token a__ = cs.out[:-1] # Remove the final "\n" a__ = tokenizer(UpperCamelCase_ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: '''simple docstring''' a__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) a__ = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCamelCase_ ) a__ = -1 a__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) a__ = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) a__ = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} a__ = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): a__ = '' for new_text in streamer: streamer_text += new_text
232
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
0
from __future__ import annotations from collections.abc import Iterator class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = value UpperCamelCase = None UpperCamelCase = None class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = tree def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
606
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase_ ( __snake_case : Any , __snake_case : Tuple , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict ) -> int: '''simple docstring''' for attribute in key.split("." ): snake_case__ :Optional[int] = getattr(__snake_case , __snake_case ) if weight_type is not None: snake_case__ :Dict = getattr(__snake_case , __snake_case ).shape else: snake_case__ :int = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case__ :Any = value elif weight_type == "weight_g": snake_case__ :int = value elif weight_type == "weight_v": snake_case__ :Optional[Any] = value elif weight_type == "bias": snake_case__ :str = value else: snake_case__ :Optional[int] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase_ ( __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> List[str]: '''simple docstring''' snake_case__ :int = [] snake_case__ :Tuple = fairseq_model.state_dict() snake_case__ :Optional[int] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case__ :Tuple = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == "group" , ) snake_case__ :Optional[Any] = True else: for key, mapped_key in MAPPING.items(): snake_case__ :Optional[int] = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: snake_case__ :Optional[Any] = True if "*" in mapped_key: snake_case__ :List[str] = name.split(__snake_case )[0].split("." )[-2] snake_case__ :List[str] = mapped_key.replace("*" , __snake_case ) if "weight_g" in name: snake_case__ :Dict = "weight_g" elif "weight_v" in name: snake_case__ :List[Any] = "weight_v" elif "weight" in name: snake_case__ :str = "weight" elif "bias" in name: snake_case__ :int = "bias" else: snake_case__ :Optional[int] = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) def lowercase_ ( __snake_case : List[str] , __snake_case : str , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = full_name.split("conv_layers." )[-1] snake_case__ :Any = name.split("." ) snake_case__ :List[Any] = int(items[0] ) snake_case__ :List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case__ :List[str] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case__ :Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case__ :int = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case__ :List[str] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) def lowercase_ ( __snake_case : int , __snake_case : Any ) -> int: '''simple docstring''' snake_case__ :List[str] = SEWConfig() if is_finetuned: snake_case__ :Union[str, Any] = model.wav_encoder.wav_model.cfg else: snake_case__ :Tuple = model.cfg snake_case__ :Tuple = fs_config.conv_bias snake_case__ :Tuple = eval(fs_config.conv_feature_layers ) snake_case__ :Tuple = [x[0] for x in conv_layers] snake_case__ :Optional[Any] = [x[1] for x in conv_layers] snake_case__ :Tuple = [x[2] for x in conv_layers] snake_case__ :Union[str, Any] = "gelu" snake_case__ :int = "layer" if fs_config.extractor_mode == "layer_norm" else "group" snake_case__ :Tuple = 0.0 snake_case__ :Tuple = fs_config.activation_fn.name snake_case__ :List[str] = fs_config.encoder_embed_dim snake_case__ :Any = 0.0_2 snake_case__ :Optional[int] = fs_config.encoder_ffn_embed_dim snake_case__ :Optional[Any] = 1e-5 snake_case__ :List[Any] = fs_config.encoder_layerdrop snake_case__ :Union[str, Any] = fs_config.encoder_attention_heads snake_case__ :Union[str, Any] = fs_config.conv_pos_groups snake_case__ :Dict = fs_config.conv_pos snake_case__ :List[Any] = len(__snake_case ) snake_case__ :Optional[Any] = fs_config.encoder_layers snake_case__ :Union[str, Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case__ :List[str] = model.cfg snake_case__ :int = fs_config.final_dropout snake_case__ :List[Any] = fs_config.layerdrop snake_case__ :str = fs_config.activation_dropout snake_case__ :List[str] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case__ :List[str] = fs_config.attention_dropout snake_case__ :Optional[Any] = fs_config.dropout_input snake_case__ :Tuple = fs_config.dropout snake_case__ :Optional[Any] = fs_config.mask_channel_length snake_case__ :Any = fs_config.mask_channel_prob snake_case__ :Any = fs_config.mask_length snake_case__ :Any = fs_config.mask_prob snake_case__ :str = "Wav2Vec2FeatureExtractor" snake_case__ :List[str] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Union[str, Any]=None , __snake_case : Optional[Any]=None , __snake_case : List[str]=True ) -> Optional[int]: '''simple docstring''' if is_finetuned: snake_case__ , snake_case__ , snake_case__ :List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: snake_case__ , snake_case__ , snake_case__ :str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case__ :Optional[int] = SEWConfig.from_pretrained(__snake_case ) else: snake_case__ :str = convert_config(model[0] , __snake_case ) snake_case__ :List[str] = model[0].eval() snake_case__ :Dict = True if config.feat_extract_norm == "layer" else False snake_case__ :List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) if is_finetuned: if dict_path: snake_case__ :Dict = Dictionary.load(__snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case__ :Any = target_dict.pad_index snake_case__ :Optional[Any] = target_dict.bos_index snake_case__ :str = target_dict.pad_index snake_case__ :Union[str, Any] = target_dict.bos_index snake_case__ :Union[str, Any] = target_dict.eos_index snake_case__ :List[Any] = len(target_dict.symbols ) snake_case__ :Optional[int] = os.path.join(__snake_case , "vocab.json" ) if not os.path.isdir(__snake_case ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__snake_case ) ) return os.makedirs(__snake_case , exist_ok=__snake_case ) with open(__snake_case , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , __snake_case ) snake_case__ :Optional[int] = WavaVecaCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__snake_case , ) snake_case__ :str = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) processor.save_pretrained(__snake_case ) snake_case__ :List[str] = SEWForCTC(__snake_case ) else: snake_case__ :Optional[Any] = SEWModel(__snake_case ) feature_extractor.save_pretrained(__snake_case ) recursively_load_weights(__snake_case , __snake_case , __snake_case ) hf_model.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCAmelCase : int = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
241
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] ={ '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A_ ( UpperCamelCase__ ): _A :Optional[Any] = '''trocr''' _A :int = ['''past_key_values'''] _A :Dict = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : int , snake_case__ : Tuple=5_02_65 , snake_case__ : List[str]=10_24 , snake_case__ : Dict=12 , snake_case__ : Optional[Any]=16 , snake_case__ : Tuple=40_96 , snake_case__ : Tuple="gelu" , snake_case__ : Union[str, Any]=5_12 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Any=0.0 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : Optional[Any]=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : Optional[Any]=0.0 , snake_case__ : Dict=True , snake_case__ : Dict=False , snake_case__ : Dict=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=1 , snake_case__ : Union[str, Any]=0 , snake_case__ : Tuple=2 , **snake_case__ : str , ): lowercase = vocab_size lowercase = d_model lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = decoder_ffn_dim lowercase = activation_function lowercase = max_position_embeddings lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = init_std lowercase = decoder_layerdrop lowercase = use_cache lowercase = scale_embedding lowercase = use_learned_position_embeddings lowercase = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
428
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def lowerCamelCase__ ( _lowercase , _lowercase = 16 ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ : int = datasets.map( _lowercase , batched=_lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ : str = 8 else: UpperCAmelCase_ : str = None return tokenizer.pad( _lowercase , padding='''longest''' , max_length=_lowercase , pad_to_multiple_of=_lowercase , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase_ : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) UpperCAmelCase_ : Any = DataLoader( tokenized_datasets['''validation'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _lowercase ) == "1": UpperCAmelCase_ : List[Any] = 2 # New Code # UpperCAmelCase_ : Optional[int] = int(args.gradient_accumulation_steps ) # Initialize accelerator UpperCAmelCase_ : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : Dict = config['''lr'''] UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] ) UpperCAmelCase_ : Any = int(config['''seed'''] ) UpperCAmelCase_ : Dict = int(config['''batch_size'''] ) UpperCAmelCase_ : Dict = evaluate.load('''glue''' , '''mrpc''' ) set_seed(_lowercase ) UpperCAmelCase_, UpperCAmelCase_ : Tuple = get_dataloaders(_lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : int = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ : Dict = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ : Optional[int] = AdamW(params=model.parameters() , lr=_lowercase ) # Instantiate scheduler UpperCAmelCase_ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=100 , num_training_steps=(len(_lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : List[Any] = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowercase ): UpperCAmelCase_ : Union[str, Any] = model(**_lowercase ) UpperCAmelCase_ : Tuple = output.loss accelerator.backward(_lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : int = model(**_lowercase ) UpperCAmelCase_ : Optional[int] = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_, UpperCAmelCase_ : List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_lowercase , references=_lowercase , ) UpperCAmelCase_ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _lowercase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_lowercase , default=_lowercase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=_lowercase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCAmelCase_ : str = parser.parse_args() UpperCAmelCase_ : int = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
30
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ , snake_case__ = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) snake_case__ = '''A painting of a squirrel eating a burger''' snake_case__ = jax.device_count() snake_case__ = num_samples * [prompt] snake_case__ = sd_pipe.prepare_inputs(UpperCamelCase_ ) snake_case__ = replicate(UpperCamelCase_ ) snake_case__ = shard(UpperCamelCase_ ) snake_case__ = jax.random.PRNGKey(0 ) snake_case__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) snake_case__ = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=25 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) snake_case__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ = images[0, 2_53:2_56, 2_53:2_56, -1] snake_case__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = '''stabilityai/stable-diffusion-2''' snake_case__ , snake_case__ = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase_ , subfolder='''scheduler''' ) snake_case__ , snake_case__ = FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase_ , scheduler=UpperCamelCase_ , revision='''bf16''' , dtype=jnp.bfloataa , ) snake_case__ = scheduler_params snake_case__ = '''A painting of a squirrel eating a burger''' snake_case__ = jax.device_count() snake_case__ = num_samples * [prompt] snake_case__ = sd_pipe.prepare_inputs(UpperCamelCase_ ) snake_case__ = replicate(UpperCamelCase_ ) snake_case__ = shard(UpperCamelCase_ ) snake_case__ = jax.random.PRNGKey(0 ) snake_case__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) snake_case__ = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=25 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) snake_case__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ = images[0, 2_53:2_56, 2_53:2_56, -1] snake_case__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
33
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a ( unittest.TestCase ): @property def A_ ( self : Tuple ): torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A_ ( self : Dict ): snake_case_ = self.dummy_uncond_unet snake_case_ = ScoreSdeVeScheduler() snake_case_ = ScoreSdeVePipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) sde_ve.to(UpperCamelCase_ ) sde_ve.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=UpperCamelCase_ ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=UpperCamelCase_ , return_dict=UpperCamelCase_ )[ 0 ] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a ( unittest.TestCase ): def A_ ( self : Any ): snake_case_ = '''google/ncsnpp-church-256''' snake_case_ = UNetaDModel.from_pretrained(UpperCamelCase_ ) snake_case_ = ScoreSdeVeScheduler.from_pretrained(UpperCamelCase_ ) snake_case_ = ScoreSdeVePipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) sde_ve.to(UpperCamelCase_ ) sde_ve.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=UpperCamelCase_ ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
640
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : List[str] = logging.get_logger(__name__) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =[] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __magic_name__ : Optional[int] =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: __magic_name__ : Dict ="""""" else: __magic_name__ : Union[str, Any] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : Tuple =state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) __magic_name__ : Tuple =state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Dict =in_proj_weight[ : config.hidden_size, : ] __magic_name__ : Dict =in_proj_bias[: config.hidden_size] __magic_name__ : int =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Optional[Any] =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : List[str] =in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : int =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] =dct.pop(lowerCamelCase ) __magic_name__ : Tuple =val def lowerCAmelCase_ ( ): __magic_name__ : List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : Union[str, Any] =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Any =BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=lowerCamelCase , ) __magic_name__ : List[Any] =ViTHybridConfig(backbone_config=lowerCamelCase , image_size=384 , num_labels=1000 ) __magic_name__ : List[str] =False # load original model from timm __magic_name__ : Any =timm.create_model(lowerCamelCase , pretrained=lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys __magic_name__ : int =timm_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase ) __magic_name__ : Optional[int] =create_rename_keys(lowerCamelCase , lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : Dict ="""huggingface/label-files""" __magic_name__ : Any ="""imagenet-1k-id2label.json""" __magic_name__ : int =json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __magic_name__ : Optional[Any] ={int(lowerCamelCase ): v for k, v in idalabel.items()} __magic_name__ : List[Any] =idalabel __magic_name__ : Optional[Any] ={v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": __magic_name__ : List[str] =ViTHybridModel(lowerCamelCase ).eval() else: __magic_name__ : int =ViTHybridForImageClassification(lowerCamelCase ).eval() model.load_state_dict(lowerCamelCase ) # create image processor __magic_name__ : Optional[int] =create_transform(**resolve_data_config({} , model=lowerCamelCase ) ) __magic_name__ : int =transform.transforms __magic_name__ : int ={ """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __magic_name__ : Tuple =ViTHybridImageProcessor( do_resize=lowerCamelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCamelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __magic_name__ : List[str] =prepare_img() __magic_name__ : Optional[Any] =transform(lowerCamelCase ).unsqueeze(0 ) __magic_name__ : str =processor(lowerCamelCase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowerCamelCase , lowerCamelCase ) # verify logits with torch.no_grad(): __magic_name__ : str =model(lowerCamelCase ) __magic_name__ : Tuple =outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: __magic_name__ : Optional[Any] =timm_model.forward_features(lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCamelCase , outputs.pooler_output , atol=1E-3 ) else: __magic_name__ : str =timm_model(lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
0
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): """simple docstring""" def a__ ( self ) -> List[str]: A: Any = SMALL_MODEL_IDENTIFIER A: Dict = """pt""" A: Optional[int] = """tf""" def a__ ( self , A ) -> int: A: Any = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase_ ) def a__ ( self , A ) -> List[Any]: A: str = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ ) model_tf.save_pretrained(UpperCamelCase_ ) def a__ ( self ) -> Any: A: Any = """mock_framework""" # Framework provided - return whatever the user provides A: Tuple = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) A: Optional[Any] = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) A: int = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def a__ ( self ) -> Any: with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) A: Tuple = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) A: List[str] = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase_ ): A: Union[str, Any] = FeaturesManager.determine_framework(UpperCamelCase_ ) def a__ ( self ) -> Any: A: Optional[int] = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ): A: int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow A: Optional[int] = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): A: Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Both in environment -> use PyTorch A: Optional[Any] = MagicMock(return_value=UpperCamelCase_ ) A: Optional[int] = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): A: Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # Both not in environment -> raise error A: Dict = MagicMock(return_value=UpperCamelCase_ ) A: Optional[int] = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): with self.assertRaises(UpperCamelCase_ ): A: Any = FeaturesManager.determine_framework(self.test_model )
135
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
0
def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" if not isinstance(__a , __a ): lowerCamelCase__: Optional[int] =F"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 1: lowerCamelCase__: int =F"""Input value of [number={number}] must be > 0""" raise ValueError(__a ) lowerCamelCase__: Optional[Any] =1 for i in range(1 , __a ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
59
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDModel( sample_size=(32, 64), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''AttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''AttnUpBlock2D'''), ) return model @property def lowercase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D'''), cross_attention_dim=10, ) return model @property def lowercase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = AutoencoderKL( sample_size=(128, 64), in_channels=1, out_channels=1, latent_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D'''), up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D'''), ) lowercase__ = UNetaDModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''AttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''AttnUpBlock2D'''), ) return vqvae, unet @slow def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = Mel( x_res=self.dummy_unet.config.sample_size[1], y_res=self.dummy_unet.config.sample_size[0], ) lowercase__ = DDPMScheduler() lowercase__ = AudioDiffusionPipeline(vqvae=UpperCamelCase_, unet=self.dummy_unet, mel=UpperCamelCase_, scheduler=UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(generator=UpperCamelCase_, steps=4 ) lowercase__ = output.audios[0] lowercase__ = output.images[0] lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(generator=UpperCamelCase_, steps=4, return_dict=UpperCamelCase_ ) lowercase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.frombuffer(image_from_tuple.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1], y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0], ) lowercase__ = DDIMScheduler() lowercase__ = self.dummy_vqvae_and_unet lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=UpperCamelCase_, scheduler=UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) np.random.seed(0 ) lowercase__ = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(raw_audio=UpperCamelCase_, generator=UpperCamelCase_, start_step=5, steps=10 ) lowercase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase__ = self.dummy_unet_condition lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=UpperCamelCase_, mel=UpperCamelCase_, scheduler=UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) np.random.seed(0 ) lowercase__ = torch.rand((1, 1, 10) ) lowercase__ = pipe(generator=UpperCamelCase_, encoding=UpperCamelCase_ ) lowercase__ = output.images[0] lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = torch_device lowercase__ = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(generator=UpperCamelCase_ ) lowercase__ = output.audios[0] lowercase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
183
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" a_ : nn.Module a_ : List[nn.Module] =field(default_factory=UpperCamelCase__ ) a_ : list =field(default_factory=UpperCamelCase__ ) def _lowerCAmelCase ( self : str , _snake_case : List[Any] , _snake_case : Tensor , _snake_case : Tensor ) -> List[str]: '''simple docstring''' a__ = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase_ , nn.Convad ) or isinstance(UpperCamelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase_ ) def __call__( self : Optional[Any] , _snake_case : Tensor ) -> Tuple: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase_ ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return list(filter(lambda _snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" a_ : nn.Module a_ : nn.Module a_ : int =1 a_ : List =field(default_factory=UpperCamelCase__ ) a_ : List =field(default_factory=UpperCamelCase__ ) a_ : bool =True def __call__( self : int , _snake_case : Tensor ) -> Union[str, Any]: '''simple docstring''' a__ = Tracker(self.dest )(UpperCamelCase_ ).parametrized a__ = Tracker(self.src )(UpperCamelCase_ ).parametrized a__ = list(filter(lambda _snake_case : type(UpperCamelCase_ ) not in self.src_skip , UpperCamelCase_ ) ) a__ = list(filter(lambda _snake_case : type(UpperCamelCase_ ) not in self.dest_skip , UpperCamelCase_ ) ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(UpperCamelCase_ )} operations while''' F''' destination module has {len(UpperCamelCase_ )}.''' ) for dest_m, src_m in zip(UpperCamelCase_ , UpperCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[str] , _snake_case : nn.Module ) -> str: '''simple docstring''' super().__init__() a__ = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), F'''Unexpected layer name {k}''' a__ = len(UpperCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) a__ = nn.ModuleDict(UpperCamelCase_ ) def _lowerCAmelCase ( self : List[str] , _snake_case : Tensor ) -> Dict: '''simple docstring''' return get_trunk_forward_outputs( UpperCamelCase_ , out_feat_keys=UpperCamelCase_ , feature_blocks=self._feature_blocks , ) class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] , _snake_case : str ) -> str: '''simple docstring''' a__ = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] , _snake_case : str ) -> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' if x not in self: a__ = self.convert_name_to_timm(UpperCamelCase_ ) a__ = partial(lambda: (timm.create_model(UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval(), None) ) else: a__ = super().__getitem__(UpperCamelCase_ ) return val class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" def __getitem__( self : List[Any] , _snake_case : str ) -> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: a__ = RegNetModel else: a__ = RegNetForImageClassification return val def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> str: '''simple docstring''' for from_key, to_key in keys: a__ = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ = True,) -> Optional[int]: '''simple docstring''' print(f'''Converting {name}...''' ) with torch.no_grad(): a__ , a__ = from_model_func() a__ = our_model_func(UpperCAmelCase__ ).eval() a__ = ModuleTransfer(src=UpperCAmelCase__,dest=UpperCAmelCase__,raise_if_mismatch=UpperCAmelCase__ ) a__ = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(UpperCAmelCase__ ) if from_state_dict is not None: a__ = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: a__ = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] a__ = manually_copy_vissl_head(UpperCAmelCase__,our_model.state_dict(),UpperCAmelCase__ ) our_model.load_state_dict(UpperCAmelCase__ ) a__ = our_model(UpperCAmelCase__,output_hidden_states=UpperCAmelCase__ ) a__ = ( our_outputs.logits if isinstance(UpperCAmelCase__,UpperCAmelCase__ ) else our_outputs.last_hidden_state ) a__ = from_model(UpperCAmelCase__ ) a__ = from_output[-1] if type(UpperCAmelCase__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: a__ = our_outputs.hidden_states[-1] assert torch.allclose(UpperCAmelCase__,UpperCAmelCase__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name,commit_message='Add model',use_temp_dir=UpperCAmelCase__,) a__ = 2_24 if 'seer' not in name else 3_84 # we can use the convnext one a__ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k',size=UpperCAmelCase__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name,commit_message='Add image processor',use_temp_dir=UpperCAmelCase__,) print(f'''Pushed {name}''' ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__ = None,UpperCAmelCase__ = True ) -> List[Any]: '''simple docstring''' a__ = 'imagenet-1k-id2label.json' a__ = 10_00 a__ = (1, num_labels) a__ = 'huggingface/label-files' a__ = num_labels a__ = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__,UpperCAmelCase__,repo_type='dataset' ) ),'r' ) ) a__ = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} a__ = partial(UpperCAmelCase__,num_labels=UpperCAmelCase__,idalabel=UpperCAmelCase__,labelaid=UpperCAmelCase__ ) a__ = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7],hidden_sizes=[24, 56, 1_52, 3_68],groups_width=8,layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12],hidden_sizes=[32, 64, 1_60, 3_84],groups_width=16,layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7],hidden_sizes=[48, 96, 2_40, 5_28],groups_width=24,layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5],hidden_sizes=[64, 1_28, 2_88, 6_72],groups_width=16,layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2],hidden_sizes=[72, 1_68, 4_08, 9_12],groups_width=24,layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2],hidden_sizes=[96, 1_92, 4_32, 10_08],groups_width=48,layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2],hidden_sizes=[80, 2_40, 5_60, 13_60],groups_width=40,layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1],hidden_sizes=[1_68, 3_92, 7_84, 16_24],groups_width=56,layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1],hidden_sizes=[80, 2_40, 7_20, 19_20],groups_width=1_20,layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1],hidden_sizes=[2_24, 4_48, 8_96, 22_40],groups_width=1_12,layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1],hidden_sizes=[2_56, 5_12, 8_96, 20_48],groups_width=1_28,layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1],hidden_sizes=[3_36, 6_72, 13_44, 25_20],groups_width=1_68,layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7],hidden_sizes=[24, 56, 1_52, 3_68],groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6],hidden_sizes=[48, 1_04, 2_08, 4_40],groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4],hidden_sizes=[48, 1_12, 2_56, 6_08],groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2],hidden_sizes=[64, 1_28, 3_20, 7_68],groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2],hidden_sizes=[48, 1_20, 3_36, 8_88],groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1],hidden_sizes=[72, 2_16, 5_76, 15_12],groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2],hidden_sizes=[1_28, 1_92, 5_12, 10_88],groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2],hidden_sizes=[1_44, 2_88, 5_76, 12_96],groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1],hidden_sizes=[1_68, 4_48, 8_96, 20_16],groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1],hidden_sizes=[2_24, 4_48, 8_96, 22_40],groups_width=1_12 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1],hidden_sizes=[2_24, 4_48, 12_32, 30_24],groups_width=1_12 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1],hidden_sizes=[2_32, 6_96, 13_92, 37_12],groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1],hidden_sizes=[2_32, 6_96, 13_92, 37_12],groups_width=2_32 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1],hidden_sizes=[3_28, 9_84, 19_68, 49_20],groups_width=3_28 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1],hidden_sizes=[5_28, 10_56, 29_04, 73_92],groups_width=2_64 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1],hidden_sizes=[6_40, 16_96, 25_44, 50_88],groups_width=6_40 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1],hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80],groups_width=10_10 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1],hidden_sizes=[2_32, 6_96, 13_92, 37_12],groups_width=2_32 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1],hidden_sizes=[3_28, 9_84, 19_68, 49_20],groups_width=3_28 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1],hidden_sizes=[5_28, 10_56, 29_04, 73_92],groups_width=2_64 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1],hidden_sizes=[6_40, 16_96, 25_44, 50_88],groups_width=6_40 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1],hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80],groups_width=10_10 ), } a__ = NameToOurModelFuncMap() a__ = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(UpperCAmelCase__,UpperCAmelCase__ ) -> Tuple[nn.Module, Dict]: a__ = torch.hub.load_state_dict_from_url(UpperCAmelCase__,model_dir=str(UpperCAmelCase__ ),map_location='cpu' ) a__ = model_func() # check if we have a head, if yes add it a__ = files['classy_state_dict']['base_model']['model'] a__ = model_state_dict['trunk'] model.load_state_dict(UpperCAmelCase__ ) return model.eval(), model_state_dict["heads"] # pretrained a__ = partial( UpperCAmelCase__,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch',lambda: FakeRegNetVisslWrapper(RegNetYaagf() ),) a__ = partial( UpperCAmelCase__,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch',lambda: FakeRegNetVisslWrapper(RegNetYaagf() ),) a__ = partial( UpperCAmelCase__,'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch',lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ),) a__ = partial( UpperCAmelCase__,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch',lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27,group_width=10_10,w_a=17_44,w_a=620.83,w_m=2.52 ) ) ),) # IN1K finetuned a__ = partial( UpperCAmelCase__,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch',lambda: FakeRegNetVisslWrapper(RegNetYaagf() ),) a__ = partial( UpperCAmelCase__,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch',lambda: FakeRegNetVisslWrapper(RegNetYaagf() ),) a__ = partial( UpperCAmelCase__,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch',lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ),) a__ = partial( UpperCAmelCase__,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch',lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27,group_width=10_10,w_a=17_44,w_a=620.83,w_m=2.52 ) ) ),) if model_name: convert_weight_and_push( UpperCAmelCase__,names_to_from_model_map[model_name],names_to_ours_model_map[model_name],names_to_config[model_name],UpperCAmelCase__,UpperCAmelCase__,) else: for model_name, config in names_to_config.items(): convert_weight_and_push( UpperCAmelCase__,names_to_from_model_map[model_name],names_to_ours_model_map[model_name],UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,) return config, expected_shape if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) __magic_name__ = parser.parse_args() __magic_name__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
232
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
606
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __snake_case : int , __snake_case : List[str] , __snake_case : Dict , __snake_case : Tuple , __snake_case : List[str] ) -> str: '''simple docstring''' snake_case__ :Dict = TapasConfig.from_json_file(__snake_case ) # set absolute/relative position embeddings parameter snake_case__ :Any = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": snake_case__ :int = TapasForQuestionAnswering(config=__snake_case ) elif task == "WTQ": # run_task_main.py hparams snake_case__ :Dict = 4 snake_case__ :int = True # hparam_utils.py hparams snake_case__ :Any = 0.6_6_4_6_9_4 snake_case__ :str = 0.2_0_7_9_5_1 snake_case__ :Optional[Any] = 0.1_2_1_1_9_4 snake_case__ :Dict = True snake_case__ :Union[str, Any] = True snake_case__ :Dict = False snake_case__ :Optional[int] = 0.0_3_5_2_5_1_3 snake_case__ :Any = TapasForQuestionAnswering(config=__snake_case ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams snake_case__ :List[str] = 4 snake_case__ :List[str] = False # hparam_utils.py hparams snake_case__ :Union[str, Any] = 3_6.4_5_1_9 snake_case__ :Optional[Any] = 0.9_0_3_4_2_1 snake_case__ :List[Any] = 2_2_2.0_8_8 snake_case__ :Dict = True snake_case__ :str = True snake_case__ :Any = True snake_case__ :List[Any] = 0.7_6_3_1_4_1 snake_case__ :Union[str, Any] = TapasForQuestionAnswering(config=__snake_case ) elif task == "TABFACT": snake_case__ :Optional[int] = TapasForSequenceClassification(config=__snake_case ) elif task == "MLM": snake_case__ :Any = TapasForMaskedLM(config=__snake_case ) elif task == "INTERMEDIATE_PRETRAINING": snake_case__ :Optional[int] = TapasModel(config=__snake_case ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__snake_case , __snake_case , __snake_case ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__snake_case ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) snake_case__ :Optional[int] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=5_12 ) tokenizer.save_pretrained(__snake_case ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
241
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A_ ( UpperCamelCase__ , unittest.TestCase ): _A :str = CTRLTokenizer _A :Dict = False _A :int = False def SCREAMING_SNAKE_CASE__ ( self : str ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] lowercase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowercase = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , **snake_case__ : str ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : str ): lowercase = """adapt react readapt apt""" lowercase = """adapt react readapt apt""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase = """adapt react readapt apt""" lowercase = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() lowercase = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ )
428
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
0
from __future__ import annotations def lowerCamelCase__ ( _lowercase ): # This function is recursive '''simple docstring''' UpperCAmelCase_ : List[str] = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else UpperCAmelCase_ : int = array[0] UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : Optional[int] = [] while not is_found and i < array_length: if array[i] < pivot: UpperCAmelCase_ : int = True UpperCAmelCase_ : List[Any] = [element for element in array[i:] if element >= array[i]] UpperCAmelCase_ : str = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): UpperCAmelCase_ : Tuple = temp_array else: i += 1 UpperCAmelCase_ : Tuple = [element for element in array[1:] if element >= pivot] UpperCAmelCase_ : Union[str, Any] = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
30
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
0
import collections import os import re from pathlib import Path lowerCamelCase__ : List[Any] = """src/transformers""" # Matches is_xxx_available() lowerCamelCase__ : Optional[Any] = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowerCamelCase__ : List[Any] = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase__ : Union[str, Any] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowerCamelCase__ : str = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowerCamelCase__ : Any = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase__ : int = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase__ : str = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase__ : Optional[Any] = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowerCamelCase__ : List[str] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowerCamelCase__ : int = re.compile(r"""^\s*try:""") # Catches a line with else: lowerCamelCase__ : Union[str, Any] = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: if _re_test_backend.search(__lowerCAmelCase ) is None: return None snake_case__ = [b[0] for b in _re_backend.findall(__lowerCAmelCase )] backends.sort() return "_and_".join(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ = f.readlines() snake_case__ = 0 while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure snake_case__ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: snake_case__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCAmelCase ): snake_case__ = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0] snake_case__ = re.findall(r'''\[([^\]]+)\]''' , __lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue snake_case__ = _re_import_struct_key_value.search(__lowerCAmelCase ) if single_line_import_search is not None: snake_case__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 snake_case__ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): snake_case__ = lines[line_index] if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None: snake_case__ = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(''', ''' ) snake_case__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_between_brackets.search(__lowerCAmelCase ) is not None: snake_case__ = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(''', ''' ) snake_case__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_quote_object.search(__lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 snake_case__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case__ = [] while ( line_index < len(__lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): snake_case__ = lines[line_index] snake_case__ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case__ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. snake_case__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): snake_case__ = lines[line_index] snake_case__ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: def find_duplicates(__lowerCAmelCase ): return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case__ = [] for key in import_dict_objects.keys(): snake_case__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) snake_case__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case__ = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: snake_case__ = os.path.join(__lowerCAmelCase , '''__init__.py''' ) snake_case__ = parse_init(__lowerCAmelCase ) if objects is not None: snake_case__ = analyze_results(*__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > 0: raise ValueError('''\n\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: snake_case__ = [] for path, directories, files in os.walk(__lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCAmelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue snake_case__ = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) ) snake_case__ = short_path.replace(os.path.sep , '''.''' ) submodules.append(__lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue snake_case__ = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) ) snake_case__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__lowerCAmelCase ) return submodules lowerCamelCase__ : Tuple = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE ( ) -> Dict: from transformers.utils import direct_transformers_import snake_case__ = direct_transformers_import(__lowerCAmelCase ) snake_case__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__lowerCAmelCase , '''__init__.py''' ) , '''r''' ) as f: snake_case__ = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , __lowerCAmelCase ) ) ) snake_case__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__lowerCAmelCase ) > 0: snake_case__ = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
33
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
0
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a : Any = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' def constraint_to_multiple_of(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0, __UpperCAmelCase=None ): snake_case_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: snake_case_ = math.floor(val / multiple ) * multiple if x < min_val: snake_case_ = math.ceil(val / multiple ) * multiple return x snake_case_ = (output_size, output_size) if isinstance(__UpperCAmelCase, __UpperCAmelCase ) else output_size snake_case_ ,snake_case_ = get_image_size(__UpperCAmelCase ) snake_case_ ,snake_case_ = output_size # determine new height and width snake_case_ = output_height / input_height snake_case_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width snake_case_ = scale_width else: # fit height snake_case_ = scale_height snake_case_ = constraint_to_multiple_of(scale_height * input_height, multiple=__UpperCAmelCase ) snake_case_ = constraint_to_multiple_of(scale_width * input_width, multiple=__UpperCAmelCase ) return (new_height, new_width) class a ( UpperCamelCase__ ): snake_case_ = ['''pixel_values'''] def __init__( self : Optional[Any] , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = False , lowercase_ : int = 1 , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : Tuple , ): super().__init__(**UpperCamelCase_ ) snake_case_ = size if size is not None else {'''height''': 384, '''width''': 384} snake_case_ = get_size_dict(UpperCamelCase_ ) snake_case_ = do_resize snake_case_ = size snake_case_ = keep_aspect_ratio snake_case_ = ensure_multiple_of snake_case_ = resample snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self : Any , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : bool = False , lowercase_ : int = 1 , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ): snake_case_ = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}" ) snake_case_ = get_resize_output_image_size( UpperCamelCase_ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=UpperCamelCase_ , multiple=UpperCamelCase_ , ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def A_ ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def A_ ( self : int , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def A_ ( self : int , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : List[Any] , ): snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(UpperCamelCase_ ) snake_case_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio snake_case_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of snake_case_ = resample if resample is not None else self.resample snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: snake_case_ = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: snake_case_ = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] snake_case_ = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] snake_case_ = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) def A_ ( self : List[Any] , lowercase_ : str , lowercase_ : List[Tuple] = None ): snake_case_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCamelCase_ ): snake_case_ = target_sizes.numpy() snake_case_ = [] for idx in range(len(UpperCamelCase_ ) ): snake_case_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCamelCase_ ) snake_case_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase_ ) else: snake_case_ = logits.argmax(dim=1 ) snake_case_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
640
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __A : @staticmethod def A__ ( *__snake_case :Any , **__snake_case :Union[str, Any] ): '''simple docstring''' pass @is_pipeline_test @require_vision class __A ( unittest.TestCase ): @require_torch def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) __magic_name__ : Optional[int] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : List[Any] =image_classifier(UpperCamelCase_ , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCamelCase_ ) , [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] , ) __magic_name__ : str =image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ [ {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, ], ] , ) @require_tf def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) __magic_name__ : Optional[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Tuple =image_classifier(UpperCamelCase_ , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , ) __magic_name__ : Tuple =image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ [ {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCamelCase_ )}, ], ] , ) @slow @require_torch def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : List[str] =pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes __magic_name__ : List[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Optional[Any] =image_classifier(UpperCamelCase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) __magic_name__ : Dict =image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Dict =pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes __magic_name__ : List[str] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Any =image_classifier(UpperCamelCase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) __magic_name__ : Tuple =image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , )
21
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '▁' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A = True , A = None , A = 32 , A = True , A = 1 / 2_55 , A = True , A = True , A = [0.48145466, 0.4578275, 0.40821073] , A = [0.26862954, 0.26130258, 0.27577711] , A = True , A=7 , A=30 , A=4_00 , A=3 , ) -> Tuple: A: Optional[int] = parent A: Dict = do_resize A: str = size if size is not None else {"""shortest_edge""": 2_88} A: Tuple = size_divisor A: Union[str, Any] = do_rescale A: Tuple = rescale_factor A: Union[str, Any] = do_normalize A: List[str] = do_center_crop A: str = image_mean A: str = image_std A: int = do_pad A: List[Any] = batch_size A: Dict = num_channels A: List[Any] = min_resolution A: Optional[Any] = max_resolution def a__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def a__ ( self , A , A=False ) -> str: if not batched: A: Dict = self.size["""shortest_edge"""] A: Union[str, Any] = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): A , A: str = image.size else: A , A: Union[str, Any] = image.shape[1], image.shape[2] A: Any = size / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: A , A: Dict = size, scale * w else: A , A: List[str] = scale * h, size A: str = int((13_33 / 8_00) * size ) if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size: A: int = max_size / max(UpperCamelCase_ , UpperCamelCase_ ) A: Union[str, Any] = newh * scale A: Optional[Any] = neww * scale A , A: Union[str, Any] = int(newh + 0.5 ), int(neww + 0.5 ) A , A: Any = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A: List[Any] = [] for image in image_inputs: A , A: int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A: List[str] = max(UpperCamelCase_ , key=lambda A : item[0] )[0] A: int = max(UpperCamelCase_ , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" A__ : List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def a__ ( self ) -> Tuple: A: List[str] = BridgeTowerImageProcessingTester(self ) @property def a__ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Union[str, Any]: A: Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """size_divisor""" ) ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Tuple: A: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A: Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input A: Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A , A: Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A: List[str] = image_processing(UpperCamelCase_ , return_tensors="""pt""" ).pixel_values A , A: Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self ) -> Dict: A: List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A: Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input A: Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A , A: List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A: Dict = image_processing(UpperCamelCase_ , return_tensors="""pt""" ).pixel_values A , A: List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self ) -> List[Any]: A: List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input A: Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A , A: str = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A: Tuple = image_processing(UpperCamelCase_ , return_tensors="""pt""" ).pixel_values A , A: Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
135
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __A = None __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } __A = { "google/pegasus-xsum": 512, } class _SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PegasusTokenizer lowercase_ = ['''input_ids''', '''attention_mask'''] def __init__(self : List[str] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple="<pad>" , UpperCAmelCase_ : Dict="</s>" , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : Optional[int]="<mask_2>" , UpperCAmelCase_ : Dict="<mask_1>" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=103 , **UpperCAmelCase_ : List[str] , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =offset if additional_special_tokens is not None: if not isinstance(UpperCamelCase_ , UpperCamelCase_): raise TypeError( F"""additional_special_tokens should be of type {type(UpperCamelCase_)}, but is""" F""" {type(UpperCamelCase_)}""") lowerCamelCase__: Optional[Any] =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(UpperCamelCase_) , self.offset - 1) ] if len(set(UpperCamelCase_)) != len(UpperCamelCase_): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") lowerCamelCase__: Any =additional_special_tokens_extended else: lowerCamelCase__: Any =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset)] super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , pad_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , mask_token_sent=UpperCamelCase_ , offset=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCamelCase__: Union[str, Any] =vocab_file lowerCamelCase__: Any =False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Any) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F""" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}""") return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCamelCase_) elif token_ids_a is None: return self._special_token_mask(UpperCamelCase_) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(UpperCamelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: Tuple =os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_): copyfile(self.vocab_file , UpperCamelCase_) return (out_vocab_file,)
59
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
0
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = TFAutoModel.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = AutoModel.from_pretrained(UpperCamelCase_, from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) @slow def lowercase__ ( self : Tuple ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = TFAutoModelForPreTraining.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = AutoModelForPreTraining.from_pretrained(UpperCamelCase_, from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = TFAutoModelForCausalLM.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_ ) lowercase__ , lowercase__ = TFAutoModelForCausalLM.from_pretrained( UpperCamelCase_, output_loading_info=UpperCamelCase_, from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = AutoModelForCausalLM.from_pretrained(UpperCamelCase_, from_tf=UpperCamelCase_ ) lowercase__ , lowercase__ = AutoModelForCausalLM.from_pretrained( UpperCamelCase_, output_loading_info=UpperCamelCase_, from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) @slow def lowercase__ ( self : Dict ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = AutoModelWithLMHead.from_pretrained(UpperCamelCase_, from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) @slow def lowercase__ ( self : Tuple ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = TFAutoModelForMaskedLM.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_ ) lowercase__ , lowercase__ = TFAutoModelForMaskedLM.from_pretrained( UpperCamelCase_, output_loading_info=UpperCamelCase_, from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = AutoModelForMaskedLM.from_pretrained(UpperCamelCase_, from_tf=UpperCamelCase_ ) lowercase__ , lowercase__ = AutoModelForMaskedLM.from_pretrained( UpperCamelCase_, output_loading_info=UpperCamelCase_, from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) @slow def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_ ) lowercase__ , lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained( UpperCamelCase_, output_loading_info=UpperCamelCase_, from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_, from_tf=UpperCamelCase_ ) lowercase__ , lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( UpperCamelCase_, output_loading_info=UpperCamelCase_, from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) @slow def lowercase__ ( self : int ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = TFAutoModelForSequenceClassification.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase_, from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) @slow def lowercase__ ( self : str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = TFAutoModelForQuestionAnswering.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) lowercase__ = AutoModelForQuestionAnswering.from_pretrained(UpperCamelCase_, from_tf=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(model.num_parameters(), 14_410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ), 14_410 ) lowercase__ = AutoModelWithLMHead.from_pretrained(UpperCamelCase_, from_tf=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(model.num_parameters(), 14_410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ), 14_410 ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(model.num_parameters(), 14_410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ), 14_410 ) lowercase__ = AutoModelWithLMHead.from_pretrained(UpperCamelCase_, from_tf=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(model.num_parameters(), 14_410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ), 14_410 )
183
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
0
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _lowerCamelCase ( UpperCAmelCase__=32,UpperCAmelCase__=10,UpperCAmelCase__=1_00,UpperCAmelCase__=10_26,UpperCAmelCase__=True,UpperCAmelCase__="data/tokenized_stories_train_wikitext103.jbl",UpperCAmelCase__="igf_context_pairs.jbl",) -> Tuple: '''simple docstring''' set_seed(3 ) # generate train_data and objective_set a__ , a__ = generate_datasets( UpperCAmelCase__,UpperCAmelCase__,number=UpperCAmelCase__,min_len=10_26,trim=UpperCAmelCase__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? a__ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model a__ = load_gpta('gpt2' ).to(UpperCAmelCase__ ) print('computing perplexity on objective set' ) a__ = compute_perplexity(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ).item() print('perplexity on objective set:',UpperCAmelCase__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__=15,UpperCAmelCase__=1_28,UpperCAmelCase__=1_00,UpperCAmelCase__="igf_model.pt",) -> Optional[Any]: '''simple docstring''' set_seed(42 ) # Load pre-trained model a__ = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model a__ = SecondaryLearner(UpperCAmelCase__ ) # Train secondary learner a__ = train_secondary_learner( UpperCAmelCase__,UpperCAmelCase__,max_epochs=UpperCAmelCase__,batch_size=UpperCAmelCase__,eval_freq=1_00,igf_model_path=UpperCAmelCase__,) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__=32,UpperCAmelCase__=10_00,UpperCAmelCase__=16,UpperCAmelCase__=1.0,UpperCAmelCase__=recopy_gpta,UpperCAmelCase__=None,UpperCAmelCase__=10,UpperCAmelCase__="gpt2_finetuned.pt",) -> Optional[Any]: '''simple docstring''' a__ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) a__ = RandomSampler(UpperCAmelCase__ ) a__ = DataLoader(UpperCAmelCase__,sampler=UpperCAmelCase__ ) a__ = max_steps // (len(UpperCAmelCase__ )) + 1 a__ = 0 a__ = torch.zeros((1, context_len),dtype=torch.long,device=UpperCAmelCase__ ) a__ , a__ , a__ = recopy_model(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCAmelCase__ ) secondary_learner.eval() a__ = [] a__ = 0 a__ = [] a__ = [] # Compute the performance of the transformer model at the beginning a__ = compute_perplexity(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) test_perps.append(UpperCAmelCase__ ) print('Test perplexity, step',UpperCAmelCase__,':',UpperCAmelCase__ ) for epoch in range(int(UpperCAmelCase__ ) ): for step, example in enumerate(UpperCAmelCase__ ): torch.cuda.empty_cache() a__ = random.randint(0,example.size(2 ) - context_len - 1 ) a__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() a__ = model(UpperCAmelCase__,labels=UpperCAmelCase__ ) a__ = True if secondary_learner is not None: a__ = secondary_learner.forward( torch.tensor(UpperCAmelCase__,dtype=torch.long,device=UpperCAmelCase__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCAmelCase__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: a__ = -1 if predicted_q < threshold: a__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) a__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() a__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters(),3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: a__ = compute_perplexity(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) test_perps.append(UpperCAmelCase__ ) print('Test perplexity, step',UpperCAmelCase__,':',UpperCAmelCase__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict(),UpperCAmelCase__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _lowerCamelCase ( ) -> int: '''simple docstring''' a__ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir',default=UpperCAmelCase__,type=UpperCAmelCase__,required=UpperCAmelCase__,help='The input data dir. Should contain data files for WikiText.',) parser.add_argument( '--model_name_or_path',default=UpperCAmelCase__,type=UpperCAmelCase__,required=UpperCAmelCase__,help='Path to pretrained model or model identifier from huggingface.co/models',) parser.add_argument( '--data_file',type=UpperCAmelCase__,default=UpperCAmelCase__,help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ),) parser.add_argument( '--igf_data_file',type=UpperCAmelCase__,default=UpperCAmelCase__,help='A jbl file containing the context and information gain pairs to train secondary learner.',) parser.add_argument( '--output_dir',default=UpperCAmelCase__,type=UpperCAmelCase__,required=UpperCAmelCase__,help='The output directory where the final fine-tuned model is stored.',) parser.add_argument( '--tokenizer_name',default=UpperCAmelCase__,type=UpperCAmelCase__,help='Pretrained tokenizer name or path if not the same as model_name',) parser.add_argument('--seed',type=UpperCAmelCase__,default=UpperCAmelCase__,help='A seed for reproducible training.' ) parser.add_argument( '--context_len',default=32,type=UpperCAmelCase__,help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ),) parser.add_argument( '--size_objective_set',default=1_00,type=UpperCAmelCase__,help='number of articles that are long enough to be used as our objective set',) parser.add_argument( '--eval_freq',default=1_00,type=UpperCAmelCase__,help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps',default=10_00,type=UpperCAmelCase__,help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size',default=1_28,type=UpperCAmelCase__,help='batch size of training data for secondary learner',) parser.add_argument( '--batch_size',default=16,type=UpperCAmelCase__,help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval',default=10,type=UpperCAmelCase__,help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ),) parser.add_argument( '--number',default=1_00,type=UpperCAmelCase__,help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len',default=10_26,type=UpperCAmelCase__,help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs',default=15,type=UpperCAmelCase__,help='number of epochs to train secondary learner' ) parser.add_argument('--trim',default=UpperCAmelCase__,type=UpperCAmelCase__,help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold',default=1.0,type=UpperCAmelCase__,help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ),) parser.add_argument('--finetuned_model_name',default='gpt2_finetuned.pt',type=UpperCAmelCase__,help='finetuned_model_name' ) parser.add_argument( '--recopy_model',default=UpperCAmelCase__,type=UpperCAmelCase__,help='Reset the model to the original pretrained GPT-2 weights after each iteration',) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32,max_steps=10,size_objective_set=1_00,min_len=10_26,trim=UpperCAmelCase__,data_file='data/tokenized_stories_train_wikitext103.jbl',igf_data_file='igf_context_pairs.jbl',) # Load train data for secondary learner a__ = joblib.load('data/IGF_values.jbl' ) # Train secondary learner a__ = training_secondary_learner( UpperCAmelCase__,secondary_learner_max_epochs=15,secondary_learner_batch_size=1_28,eval_freq=1_00,igf_model_path='igf_model.pt',) # load pretrained gpt2 model a__ = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model a__ , a__ = generate_datasets( context_len=32,file='data/tokenized_stories_train_wikitext103.jbl',number=1_00,min_len=10_26,trim=UpperCAmelCase__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,context_len=32,max_steps=10_00,batch_size=16,threshold=1.0,recopy_model=UpperCAmelCase__,secondary_learner=UpperCAmelCase__,eval_interval=10,finetuned_model_name='gpt2_finetuned.pt',) if __name__ == "__main__": main()
232
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Tuple = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
606
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _snake_case ( UpperCamelCase__ , UpperCamelCase__ ): _A = '''pixel_values''' _A = False _A = TimmBackboneConfig def __init__( self ,UpperCamelCase ,**UpperCamelCase ) -> Optional[int]: requires_backends(self ,"timm" ) super().__init__(UpperCamelCase_ ) snake_case__ :Optional[int] = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(f'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCamelCase_ ,"out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) snake_case__ :Dict = getattr(UpperCamelCase_ ,"use_pretrained_backbone" ,UpperCamelCase_ ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. snake_case__ :Any = config.out_indices if getattr(UpperCamelCase_ ,"out_indices" ,UpperCamelCase_ ) is not None else (-1,) snake_case__ :Optional[int] = timm.create_model( config.backbone ,pretrained=UpperCamelCase_ ,features_only=config.features_only ,in_chans=config.num_channels ,out_indices=UpperCamelCase_ ,**UpperCamelCase_ ,) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. snake_case__ :Union[str, Any] = self._backbone.return_layers snake_case__ :List[Any] = {layer["module"]: str(UpperCamelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCamelCase_ ) @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,*UpperCamelCase ,**UpperCamelCase ) -> int: requires_backends(cls ,["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig snake_case__ :int = kwargs.pop("config" ,TimmBackboneConfig() ) snake_case__ :Union[str, Any] = kwargs.pop("use_timm_backbone" ,UpperCamelCase_ ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) snake_case__ :List[str] = kwargs.pop("num_channels" ,config.num_channels ) snake_case__ :Optional[int] = kwargs.pop("features_only" ,config.features_only ) snake_case__ :Optional[Any] = kwargs.pop("use_pretrained_backbone" ,config.use_pretrained_backbone ) snake_case__ :Union[str, Any] = kwargs.pop("out_indices" ,config.out_indices ) snake_case__ :str = TimmBackboneConfig( backbone=UpperCamelCase_ ,num_channels=UpperCamelCase_ ,features_only=UpperCamelCase_ ,use_pretrained_backbone=UpperCamelCase_ ,out_indices=UpperCamelCase_ ,) return super()._from_config(UpperCamelCase_ ,**UpperCamelCase_ ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Any: pass def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,**UpperCamelCase ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: snake_case__ :Tuple = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ :Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ :int = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone snake_case__ :Optional[int] = self._all_layers snake_case__ :Tuple = self._backbone(UpperCamelCase_ ,**UpperCamelCase_ ) snake_case__ :Optional[Any] = self._return_layers snake_case__ :Dict = tuple(hidden_states[i] for i in self.out_indices ) else: snake_case__ :Tuple = self._backbone(UpperCamelCase_ ,**UpperCamelCase_ ) snake_case__ :Dict = None snake_case__ :Any = tuple(UpperCamelCase_ ) snake_case__ :Any = tuple(UpperCamelCase_ ) if hidden_states is not None else None if not return_dict: snake_case__ :int = (feature_maps,) if output_hidden_states: snake_case__ :Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCamelCase_ ,hidden_states=UpperCamelCase_ ,attentions=UpperCamelCase_ )
241
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __SCREAMING_SNAKE_CASE : Optional[int] =logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE : Tuple ='''\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n''' def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=8 ): lowercase = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowercase = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class A_ ( UpperCamelCase__ ): def __init__( self : str , snake_case__ : MultilingualCLIP , snake_case__ : XLMRobertaTokenizer , snake_case__ : UNetaDConditionModel , snake_case__ : Union[DDIMScheduler, DDPMScheduler] , snake_case__ : VQModel , ): super().__init__() self.register_modules( text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : str , snake_case__ : List[str] ): if latents is None: lowercase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowercase = latents.to(UpperCamelCase_ ) lowercase = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Optional[int]=None , ): lowercase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1 # get prompt text embeddings lowercase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , truncation=UpperCamelCase_ , max_length=77 , return_attention_mask=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors="""pt""" , ) lowercase = text_inputs.input_ids lowercase = self.tokenizer(UpperCamelCase_ , padding="""longest""" , return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(UpperCamelCase_ , UpperCamelCase_ ): lowercase = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase = text_input_ids.to(UpperCamelCase_ ) lowercase = text_inputs.attention_mask.to(UpperCamelCase_ ) lowercase , lowercase = self.text_encoder( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowercase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase = text_encoder_hidden_states.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase = text_mask.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase = 42 if negative_prompt is None: lowercase = [""""""] * batch_size elif type(UpperCamelCase_ ) is not type(UpperCamelCase_ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase_ )} !=""" F""" {type(UpperCamelCase_ )}.""" ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase = [negative_prompt] elif batch_size != len(UpperCamelCase_ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase_ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: lowercase = negative_prompt lowercase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=77 , truncation=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors="""pt""" , ) lowercase = uncond_input.input_ids.to(UpperCamelCase_ ) lowercase = uncond_input.attention_mask.to(UpperCamelCase_ ) lowercase , lowercase = self.text_encoder( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase = negative_prompt_embeds.shape[1] lowercase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ ) lowercase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ ) lowercase = uncond_text_encoder_hidden_states.shape[1] lowercase = uncond_text_encoder_hidden_states.repeat(1 , UpperCamelCase_ , 1 ) lowercase = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , UpperCamelCase_ , -1 ) lowercase = uncond_text_mask.repeat_interleave(UpperCamelCase_ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowercase = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowercase = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : int=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowercase = torch.device(F"""cuda:{gpu_id}""" ) lowercase = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : int=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowercase = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowercase , lowercase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) if self.safety_checker is not None: lowercase , lowercase = cpu_offload_with_hook(self.safety_checker , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. lowercase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE__ ( self : Tuple ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self : Tuple , snake_case__ : Union[str, List[str]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Optional[Union[str, List[str]]] = None , snake_case__ : int = 5_12 , snake_case__ : int = 5_12 , snake_case__ : int = 1_00 , snake_case__ : float = 4.0 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase = 1 elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase = len(UpperCamelCase_ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}""" ) lowercase = self._execution_device lowercase = batch_size * num_images_per_prompt lowercase = guidance_scale > 1.0 lowercase , lowercase , lowercase = self._encode_prompt( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase = torch.cat(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase = self.scheduler.timesteps lowercase = self.unet.config.in_channels lowercase , lowercase = get_new_h_w(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent lowercase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} lowercase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: lowercase , lowercase = noise_pred.split(latents.shape[1] , dim=1 ) lowercase , lowercase = noise_pred.chunk(2 ) lowercase , lowercase = variance_pred.chunk(2 ) lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase , lowercase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , ).prev_sample # post-processing lowercase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase = image * 0.5 + 0.5 lowercase = image.clamp(0 , 1 ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
428
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') __a = {'target_lang': 'fi', 'source_lang': 'en'} __a = '>>zh<<' __a = 'Helsinki-NLP/' if is_torch_available(): __a = 'pt' elif is_tf_available(): __a = 'tf' else: __a = 'jax' @require_sentencepiece class __a( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = MarianTokenizer lowerCAmelCase = False lowerCAmelCase = True def a__ ( self ) -> Dict: super().setUp() UpperCAmelCase_ : Optional[Any] = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ : str = dict(zip(UpperCamelCase_ ,range(len(UpperCamelCase_ ) ) ) ) UpperCAmelCase_ : Optional[int] = Path(self.tmpdirname ) save_json(UpperCamelCase_ ,save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(UpperCamelCase_ ,save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ ,save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(UpperCamelCase_ ,save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) UpperCAmelCase_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname ,**UpperCamelCase_ ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: return ( "This is a test", "This is a test", ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : List[str] = '''</s>''' UpperCAmelCase_ : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) ,UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) ,UpperCamelCase_ ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''</s>''' ) self.assertEqual(vocab_keys[1] ,'''<unk>''' ) self.assertEqual(vocab_keys[-1] ,'''<pad>''' ) self.assertEqual(len(UpperCamelCase_ ) ,9 ) def a__ ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size ,9 ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Any = MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' ) UpperCAmelCase_ : Any = en_de_tokenizer(['''I am a small frog'''] ,return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ ,UpperCamelCase_ ) UpperCAmelCase_ : Dict = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(UpperCamelCase_ ,batch.input_ids[0] ) UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) UpperCAmelCase_ : List[Any] = [x.name for x in Path(UpperCamelCase_ ).glob('''*''' )] self.assertIn('''source.spm''' ,UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : str = tok( ['''I am a small frog''' * 1_000, '''I am a small frog'''] ,padding=UpperCamelCase_ ,truncation=UpperCamelCase_ ,return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ ,UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 512) ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = tok(['''I am a tiny frog''', '''I am a small frog'''] ,padding=UpperCamelCase_ ,return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ ,UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape ,(2, 10) ) @slow def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Any = {'''input_ids''': [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ ,model_name='''Helsinki-NLP/opus-mt-en-de''' ,revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' ,decode_kwargs={'''use_source_tokenizer''': True} ,) def a__ ( self ) -> int: UpperCAmelCase_ : List[str] = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) UpperCAmelCase_ : str = '''Tämä on testi''' UpperCAmelCase_ : Tuple = '''This is a test''' UpperCAmelCase_ : Optional[Any] = [76, 7, 2_047, 2] UpperCAmelCase_ : List[str] = [69, 12, 11, 940, 2] UpperCAmelCase_ : Dict = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ ,UpperCamelCase_ ) UpperCAmelCase_ : str = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ ,UpperCamelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer.decode(UpperCamelCase_ ,skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ ,UpperCamelCase_ )
30
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) snake_case__ = MaskFormerConfig(backbone_config=__lowerCAmelCase ) snake_case__ = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok snake_case__ = 847 snake_case__ = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok snake_case__ = 150 snake_case__ = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok snake_case__ = 171 snake_case__ = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO snake_case__ = 133 snake_case__ = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok snake_case__ = 19 snake_case__ = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok snake_case__ = 65 snake_case__ = '''mapillary-vistas-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]: snake_case__ = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: snake_case__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[:dim, :] snake_case__ = in_proj_bias[: dim] snake_case__ = in_proj_weight[ dim : dim * 2, : ] snake_case__ = in_proj_bias[ dim : dim * 2 ] snake_case__ = in_proj_weight[ -dim :, : ] snake_case__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: snake_case__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) snake_case__ = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[: hidden_size, :] snake_case__ = in_proj_bias[:config.hidden_size] snake_case__ = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case__ = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ = in_proj_weight[-hidden_size :, :] snake_case__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) snake_case__ = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[: hidden_size, :] snake_case__ = in_proj_bias[:config.hidden_size] snake_case__ = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case__ = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ = in_proj_weight[-hidden_size :, :] snake_case__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE ( ) -> Dict: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> Optional[int]: snake_case__ = get_maskformer_config(__lowerCAmelCase ) # load original state_dict with open(__lowerCAmelCase , '''rb''' ) as f: snake_case__ = pickle.load(__lowerCAmelCase ) snake_case__ = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys snake_case__ = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): snake_case__ = torch.from_numpy(__lowerCAmelCase ) # load 🤗 model snake_case__ = MaskFormerForInstanceSegmentation(__lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCAmelCase , param.shape ) snake_case__ , snake_case__ = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCAmelCase ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results snake_case__ = prepare_img() if "vistas" in model_name: snake_case__ = 65 elif "cityscapes" in model_name: snake_case__ = 6_5535 else: snake_case__ = 255 snake_case__ = True if '''ade''' in model_name else False snake_case__ = MaskFormerImageProcessor(ignore_index=__lowerCAmelCase , reduce_labels=__lowerCAmelCase ) snake_case__ = image_processor(__lowerCAmelCase , return_tensors='''pt''' ) snake_case__ = model(**__lowerCAmelCase ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": snake_case__ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you\'d like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ : str = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
33
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
0
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) snake_case_ = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''', __UpperCAmelCase ) if matches: snake_case_ = float(matches[1] ) snake_case_ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". snake_case_ = 1001 snake_case_ = '''imagenet-1k-id2label.json''' snake_case_ = '''huggingface/label-files''' snake_case_ = json.load(open(hf_hub_download(__UpperCAmelCase, __UpperCAmelCase, repo_type='''dataset''' ), '''r''' ) ) snake_case_ = {int(__UpperCAmelCase ) + 1: v for k, v in idalabel.items()} snake_case_ = '''background''' snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( ) -> int: '''simple docstring''' snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(__UpperCAmelCase, stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=False ) -> Tuple: '''simple docstring''' snake_case_ = get_mobilenet_va_config(__UpperCAmelCase ) # Load 🤗 model snake_case_ = MobileNetVaForImageClassification(__UpperCAmelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor snake_case_ = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size}, size={'''shortest_edge''': config.image_size + 32}, ) snake_case_ = image_processor(images=prepare_img(), return_tensors='''pt''' ) snake_case_ = model(**__UpperCAmelCase ) snake_case_ = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": snake_case_ = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": snake_case_ = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: snake_case_ = None if expected_logits is not None: assert torch.allclose(logits[0, :3], __UpperCAmelCase, atol=1e-4 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print('''Pushing to the hub...''' ) snake_case_ = '''google/''' + model_name image_processor.push_to_hub(__UpperCAmelCase ) model.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a : Tuple = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
640
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = '''layoutlmv3''' def __init__( self :Optional[Any] , __snake_case :Union[str, Any]=5_02_65 , __snake_case :Tuple=7_68 , __snake_case :int=12 , __snake_case :List[str]=12 , __snake_case :List[Any]=30_72 , __snake_case :Any="gelu" , __snake_case :Any=0.1 , __snake_case :str=0.1 , __snake_case :str=5_12 , __snake_case :Optional[Any]=2 , __snake_case :str=0.02 , __snake_case :int=1E-5 , __snake_case :List[Any]=1 , __snake_case :List[str]=0 , __snake_case :str=2 , __snake_case :Any=10_24 , __snake_case :List[str]=1_28 , __snake_case :List[str]=1_28 , __snake_case :Tuple=True , __snake_case :Any=32 , __snake_case :Any=1_28 , __snake_case :Optional[int]=64 , __snake_case :str=2_56 , __snake_case :Dict=True , __snake_case :Optional[int]=True , __snake_case :Optional[Any]=True , __snake_case :Optional[int]=2_24 , __snake_case :Any=3 , __snake_case :int=16 , __snake_case :List[Any]=None , **__snake_case :List[str] , ): '''simple docstring''' super().__init__( vocab_size=UpperCamelCase_ , hidden_size=UpperCamelCase_ , num_hidden_layers=UpperCamelCase_ , num_attention_heads=UpperCamelCase_ , intermediate_size=UpperCamelCase_ , hidden_act=UpperCamelCase_ , hidden_dropout_prob=UpperCamelCase_ , attention_probs_dropout_prob=UpperCamelCase_ , max_position_embeddings=UpperCamelCase_ , type_vocab_size=UpperCamelCase_ , initializer_range=UpperCamelCase_ , layer_norm_eps=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) __magic_name__ : int =max_ad_position_embeddings __magic_name__ : List[Any] =coordinate_size __magic_name__ : int =shape_size __magic_name__ : Optional[int] =has_relative_attention_bias __magic_name__ : Any =rel_pos_bins __magic_name__ : Any =max_rel_pos __magic_name__ : int =has_spatial_attention_bias __magic_name__ : Optional[int] =rel_ad_pos_bins __magic_name__ : int =max_rel_ad_pos __magic_name__ : Dict =text_embed __magic_name__ : List[Any] =visual_embed __magic_name__ : Union[str, Any] =input_size __magic_name__ : Optional[int] =num_channels __magic_name__ : Union[str, Any] =patch_size __magic_name__ : Tuple =classifier_dropout class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.12""" ) @property def A__ ( self :int ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-5 @property def A__ ( self :str ): '''simple docstring''' return 12 def A__ ( self :List[str] , __snake_case :"ProcessorMixin" , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional["TensorType"] = None , __snake_case :int = 3 , __snake_case :int = 40 , __snake_case :int = 40 , ): '''simple docstring''' setattr(processor.image_processor , """apply_ocr""" , UpperCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __magic_name__ : List[str] =compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ : Dict =processor.tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) __magic_name__ : str =compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence __magic_name__ : Tuple =[[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __magic_name__ : List[str] =[[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __magic_name__ : Any =self._generate_dummy_images(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ : Tuple =dict( processor( UpperCamelCase_ , text=UpperCamelCase_ , boxes=UpperCamelCase_ , return_tensors=UpperCamelCase_ , ) ) return inputs
21
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __SCREAMING_SNAKE_CASE : str ='\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' __SCREAMING_SNAKE_CASE : int ='\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' __SCREAMING_SNAKE_CASE : Optional[int] ='\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def a__ ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def a__ ( self , A , A , A = 1 , A = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
135
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
0
def lowerCAmelCase_ ( __a = 10 ) -> int: """simple docstring""" if not isinstance(__a , __a ) or n < 0: raise ValueError("Invalid input" ) lowerCamelCase__: Optional[Any] =10**n lowerCamelCase__: List[Any] =28433 * (pow(2 , 7830457 , __a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(10) = }')
59
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Dict = '▁' A__ : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} A__ : Optional[int] = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } A__ : str = {'vinai/bartpho-syllable': 10_24} class _UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int], lowerCamelCase : Dict, lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any]="<s>", lowerCamelCase : List[Any]="</s>", lowerCamelCase : Optional[int]="</s>", lowerCamelCase : List[str]="<s>", lowerCamelCase : Optional[int]="<unk>", lowerCamelCase : Optional[int]="<pad>", lowerCamelCase : Optional[int]="<mask>", lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : int, ): '''simple docstring''' lowercase__ = AddedToken(UpperCamelCase_, lstrip=UpperCamelCase_, rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_, UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_, eos_token=UpperCamelCase_, unk_token=UpperCamelCase_, sep_token=UpperCamelCase_, cls_token=UpperCamelCase_, pad_token=UpperCamelCase_, mask_token=UpperCamelCase_, sp_model_kwargs=self.sp_model_kwargs, **UpperCamelCase_, ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_, '''r''', encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str], lowerCamelCase : int ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self : Optional[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None, lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_, token_ids_a=UpperCamelCase_, already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase_, out_type=UpperCamelCase_ ) def lowercase__ ( self : Optional[int], lowerCamelCase : Any ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def lowercase__ ( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_, ''' ''' ).strip() return out_string def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( UpperCamelCase_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''], ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file, UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_, '''w''', encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(UpperCamelCase_ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
183
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
0
"""simple docstring""" from manim import * class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' a__ = Rectangle(height=0.5 , width=0.5 ) a__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) a__ = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) a__ = VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) a__ = Text('CPU' , font_size=24 ) a__ = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase_ ) a__ = [mem.copy() for i in range(1 )] a__ = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) a__ = Text('GPU' , font_size=24 ) a__ = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) gpu.align_to(UpperCamelCase_ , UpperCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCamelCase_ ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) a__ = Text('Model' , font_size=24 ) a__ = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) , ) a__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase_ , run_time=2.5 ) , Write(UpperCamelCase_ ) , Write(UpperCamelCase_ ) ) self.add(UpperCamelCase_ ) a__ = [] a__ = [] a__ = [] for i, rect in enumerate(UpperCamelCase_ ): a__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase_ , opacity=0.7 ) cpu_target.move_to(UpperCamelCase_ ) cpu_target.generate_target() a__ = 0.46 / 4 a__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCamelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCamelCase_ , buff=0.0 ) cpu_targs.append(UpperCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCamelCase_ ) ) second_animations.append(MoveToTarget(UpperCamelCase_ , run_time=1.5 ) ) self.play(*UpperCamelCase_ ) self.play(*UpperCamelCase_ ) self.wait()
232
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers __a : Tuple = float("""nan""") class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = sys.stdout UpperCamelCase = open(UpperCamelCase_ , "a" ) def __getattr__( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return getattr(self.stdout , UpperCamelCase_ ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" self.stdout.write(UpperCamelCase_ ) # strip tqdm codes self.file.write(re.sub(R"^.*\r" , "" , UpperCamelCase_ , 0 , re.M ) ) def __magic_name__ ( lowercase_=80 , lowercase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = [] # deal with critical env vars UpperCamelCase = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: UpperCamelCase = os.environ.get(lowercase_ , lowercase_ ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) UpperCamelCase = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(lowercase_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes UpperCamelCase = [] UpperCamelCase = "" while len(lowercase_ ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(lowercase_ ) == 0 or len(lowercase_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowercase_ ) UpperCamelCase = "" return "\\\n".join(lowercase_ ) def __magic_name__ ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' UpperCamelCase = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own UpperCamelCase = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir UpperCamelCase = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) UpperCamelCase = subprocess.run(lowercase_ , capture_output=lowercase_ , text=lowercase_ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams UpperCamelCase = variation.replace(" " , "-" ) with open(Path(lowercase_ ) / f'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(lowercase_ ) / f'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: UpperCamelCase = json.load(lowercase_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Any: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = f'''{id}: {variation:<{longest_variation_len}}''' UpperCamelCase = f'''{preamble}: ''' UpperCamelCase = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowercase_ ) , desc=lowercase_ , leave=lowercase_ ): UpperCamelCase = process_run_single( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase = single_run_metrics[target_metric_key] if not math.isnan(lowercase_ ): metrics.append(lowercase_ ) results.append(lowercase_ ) outcome += "✓" else: outcome += "✘" UpperCamelCase = f'''\33[2K\r{outcome}''' if len(lowercase_ ) > 0: UpperCamelCase = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} UpperCamelCase = round(mean_metrics[target_metric_key] , 2 ) UpperCamelCase = f'''{outcome} {mean_target}''' if len(lowercase_ ) > 1: results_str += f''' {tuple(round(lowercase_ , 2 ) for x in results )}''' print(lowercase_ ) UpperCamelCase = variation return mean_metrics else: print(lowercase_ ) return {variation_key: variation, target_metric_key: nan} def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f'''\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n''' def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = pd.DataFrame(lowercase_ ) UpperCamelCase = "variation" UpperCamelCase = "diff_%" UpperCamelCase = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan UpperCamelCase = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowercase_ ): # as a fallback, use the minimal value as the sentinel UpperCamelCase = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowercase_ ): UpperCamelCase = df.apply( lambda lowercase_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns UpperCamelCase = [variation_key, target_metric_key, diff_key, *report_metric_keys] UpperCamelCase = df.reindex(lowercase_ , axis="columns" ) # reorder cols # capitalize UpperCamelCase = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible UpperCamelCase = df.rename(lambda lowercase_ : c.replace("_" , "<br>" ) , axis="columns" ) UpperCamelCase = df.rename(lambda lowercase_ : c.replace("_" , "\n" ) , axis="columns" ) UpperCamelCase = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowercase_ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowercase_ , floatfmt=".2f" )] print("\n\n".join(lowercase_ ) ) def __magic_name__ ( ) -> List[Any]: '''simple docstring''' UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=lowercase_ , type=lowercase_ , required=lowercase_ , help="Base cmd" , ) parser.add_argument( "--variations" , default=lowercase_ , type=lowercase_ , nargs="+" , required=lowercase_ , help="Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'" , ) parser.add_argument( "--base-variation" , default=lowercase_ , type=lowercase_ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=lowercase_ , type=lowercase_ , required=lowercase_ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=lowercase_ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=lowercase_ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=lowercase_ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=lowercase_ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.output_dir Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) UpperCamelCase = get_base_command(lowercase_ , lowercase_ ) # split each dimension into its --foo variations UpperCamelCase = [list(map(str.strip , re.split(R"\|" , lowercase_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty UpperCamelCase = list(map(str.strip , map(" ".join , itertools.product(*lowercase_ ) ) ) ) UpperCamelCase = max(len(lowercase_ ) for x in variations ) # split wanted keys UpperCamelCase = args.report_metric_keys.split() # capture prints into a log file for convenience UpperCamelCase = f'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) UpperCamelCase = Tee(lowercase_ ) print(f'''\n*** Running {len(lowercase_ )} benchmarks:''' ) print(f'''Base command: {" ".join(lowercase_ )}''' ) UpperCamelCase = "variation" UpperCamelCase = [] for id, variation in enumerate(tqdm(lowercase_ , desc="Total completion: " , leave=lowercase_ ) ): UpperCamelCase = base_cmd + variation.split() results.append( process_run( id + 1 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , args.target_metric_key , lowercase_ , args.repeat_times , lowercase_ , args.verbose , ) ) process_results(lowercase_ , args.target_metric_key , lowercase_ , args.base_variation , lowercase_ ) if __name__ == "__main__": main()
606
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _snake_case ( UpperCamelCase__ ): def lowerCAmelCase_ ( self ,UpperCamelCase ) -> float: return 0.0 def lowercase_ ( __snake_case : Dict , __snake_case : Dict ) -> str: '''simple docstring''' snake_case__ :Tuple = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) snake_case__ :Any = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowercase_ ( __snake_case : Dict , __snake_case : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case__ :int = 5_12 snake_case__ :str = [1] + [0] * (size - 1) snake_case__ :Any = [filter_type.process(__snake_case ) for item in inputs] snake_case__ :str = [0] * (samplerate - size) # zero-padding outputs += filler snake_case__ :List[Any] = np.abs(np.fft.fft(__snake_case ) ) snake_case__ :Optional[int] = 20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds snake_case__ :Any = get_bounds(__snake_case , __snake_case ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__snake_case ) plt.show() def lowercase_ ( __snake_case : Dict , __snake_case : List[str] ) -> Optional[int]: '''simple docstring''' snake_case__ :Optional[int] = 5_12 snake_case__ :Dict = [1] + [0] * (size - 1) snake_case__ :Dict = [filter_type.process(__snake_case ) for item in inputs] snake_case__ :int = [0] * (samplerate - size) # zero-padding outputs += filler snake_case__ :List[str] = np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__snake_case , -2 * pi ) ) plt.show()
241
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A_ ( UpperCamelCase__ ): def __init__( self : int , *snake_case__ : str , snake_case__ : List[str]=None , snake_case__ : int=None , **snake_case__ : Optional[Any] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase = eval_examples lowercase = post_process_function def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : Optional[Dataset] = None , snake_case__ : List[Any]=None , snake_case__ : Optional[List[str]] = None , snake_case__ : str = "eval" , **snake_case__ : int , ): lowercase = gen_kwargs.copy() lowercase = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) lowercase = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) lowercase = gen_kwargs lowercase = self.eval_dataset if eval_dataset is None else eval_dataset lowercase = self.get_eval_dataloader(UpperCamelCase_ ) lowercase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase = self.compute_metrics lowercase = None lowercase = time.time() lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase = eval_loop( UpperCamelCase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase = compute_metrics lowercase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowercase = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : List[str]=None , snake_case__ : str = "test" , **snake_case__ : Union[str, Any] ): lowercase = gen_kwargs.copy() lowercase = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase = self.compute_metrics lowercase = None lowercase = time.time() lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase = eval_loop( UpperCamelCase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase = compute_metrics lowercase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , """predict""" ) lowercase = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowercase = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
428
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = emb.weight.shape UpperCAmelCase_ : Optional[int] = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def lowerCamelCase__ ( _lowercase , _lowercase=None ): '''simple docstring''' UpperCAmelCase_ : Any = {} for old_key in state_dict.keys(): UpperCAmelCase_ : List[Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase_ : Union[str, Any] = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: UpperCAmelCase_ : Optional[int] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: UpperCAmelCase_ : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: UpperCAmelCase_ : Any = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: UpperCAmelCase_ : Any = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: UpperCAmelCase_ : Optional[int] = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: UpperCAmelCase_ : Dict = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) UpperCAmelCase_ : Tuple = state_dict[old_key] return new_dict def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = WEIGHTS_NAME ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Dict = 0 os.makedirs(_lowercase , exist_ok=_lowercase ) for expert in range(_lowercase ): UpperCAmelCase_ : int = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_lowercase ): UpperCAmelCase_ : List[Any] = torch.load(_lowercase )['''model'''] remove_ignore_keys_(_lowercase ) UpperCAmelCase_ : Dict = rename_fairseq_keys(_lowercase , _lowercase ) UpperCAmelCase_ : str = os.path.join( _lowercase , weights_name.replace('''.bin''' , f'''-{len(_lowercase )+1:05d}-of-???.bin''' ) ) torch.save(_lowercase , _lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowercase )[0]].dtype ) # Add the last block UpperCAmelCase_ : int = os.path.join(_lowercase , weights_name.replace('''.bin''' , f'''-{len(_lowercase )+1:05d}-of-???.bin''' ) ) UpperCAmelCase_ : Tuple = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_lowercase ) UpperCAmelCase_ : str = rename_fairseq_keys(_lowercase , _lowercase ) UpperCAmelCase_ : str = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowercase ) == 1: UpperCAmelCase_ : List[str] = os.path.join(_lowercase , _lowercase ) torch.save(_lowercase , _lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowercase , _lowercase ) # Otherwise, let's build the index UpperCAmelCase_ : List[Any] = {} for idx, shard in enumerate(_lowercase ): UpperCAmelCase_ : List[Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_lowercase ):05d}.bin''' ) UpperCAmelCase_ : Optional[int] = os.path.join(_lowercase , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowercase , os.path.join(_lowercase , _lowercase ) ) for key in shard: UpperCAmelCase_ : Union[str, Any] = shard_file # Add the metadata UpperCAmelCase_ : Dict = {'''total_size''': total_size} UpperCAmelCase_ : Dict = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_lowercase , _lowercase ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : Dict = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + '''\n''' f.write(_lowercase ) return metadata, index if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __a = parser.parse_args() __a ,__a = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __a = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __a = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
30
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
0
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def A_ ( _lowerCAmelCase : Any ): """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) UpperCAmelCase_ : Optional[Any] = parser.parse_args() UpperCAmelCase_ : Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
1
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.txt'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } UpperCAmelCase_ : List[Any] = { 'openbmb/cpm-ant-10b': 1024, } def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Tuple = collections.OrderedDict() with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as reader: _lowerCamelCase : List[Any] = reader.readlines() for index, token in enumerate(_lowerCAmelCase ): _lowerCamelCase : Any = token.rstrip("\n" ) _lowerCamelCase : Union[str, Any] = index return vocab class UpperCAmelCase__ ( A ): def __init__( self : List[str],__A : Union[str, Any],__A : List[Any]="<unk>",__A : List[str]=2_0_0 ): _lowerCamelCase : List[Any] = vocab _lowerCamelCase : Optional[Any] = unk_token _lowerCamelCase : List[str] = max_input_chars_per_word def lowerCamelCase_ ( self : Optional[int],__A : Any ): _lowerCamelCase : List[str] = list(__A ) if len(__A ) > self.max_input_chars_per_word: return [self.unk_token] _lowerCamelCase : List[str] = 0 _lowerCamelCase : Tuple = [] while start < len(__A ): _lowerCamelCase : List[str] = len(__A ) _lowerCamelCase : Any = None while start < end: _lowerCamelCase : Union[str, Any] = "".join(chars[start:end] ) if substr in self.vocab: _lowerCamelCase : Optional[int] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__A ) _lowerCamelCase : Dict = end return sub_tokens class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = False def __init__( self : List[str],__A : Dict,__A : Union[str, Any]="<d>",__A : Union[str, Any]="</d>",__A : Optional[Any]="<s>",__A : Any="</s>",__A : Optional[Any]="<pad>",__A : Tuple="<unk>",__A : Any="</n>",__A : Tuple="</_>",__A : Tuple="left",**__A : List[str],): requires_backends(self,["jieba"] ) super().__init__( bod_token=__A,eod_token=__A,bos_token=__A,eos_token=__A,pad_token=__A,unk_token=__A,line_token=__A,space_token=__A,padding_side=__A,**__A,) _lowerCamelCase : int = bod_token _lowerCamelCase : Any = eod_token _lowerCamelCase : Optional[Any] = load_vocab(__A ) _lowerCamelCase : Union[str, Any] = self.encoder[space_token] _lowerCamelCase : Optional[Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _lowerCamelCase : str = collections.OrderedDict(sorted(self.encoder.items(),key=lambda __A : x[1] ) ) _lowerCamelCase : List[str] = {v: k for k, v in self.encoder.items()} _lowerCamelCase : int = WordpieceTokenizer(vocab=self.encoder,unk_token=self.unk_token ) @property def lowerCamelCase_ ( self : Dict ): return self.encoder[self.bod_token] @property def lowerCamelCase_ ( self : List[str] ): return self.encoder[self.eod_token] @property def lowerCamelCase_ ( self : List[str] ): return self.encoder["\n"] @property def lowerCamelCase_ ( self : Any ): return len(self.encoder ) def lowerCamelCase_ ( self : Optional[Any] ): return dict(self.encoder,**self.added_tokens_encoder ) def lowerCamelCase_ ( self : str,__A : int ): _lowerCamelCase : Tuple = [] for x in jieba.cut(__A,cut_all=__A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__A ) ) return output_tokens def lowerCamelCase_ ( self : Optional[Any],__A : str,**__A : List[Any] ): _lowerCamelCase : List[str] = [i for i in token_ids if i >= 0] _lowerCamelCase : str = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__A,**__A ) def lowerCamelCase_ ( self : Tuple,__A : Optional[Any] ): return token in self.encoder def lowerCamelCase_ ( self : Any,__A : List[str] ): return "".join(__A ) def lowerCamelCase_ ( self : Tuple,__A : Optional[Any] ): return self.encoder.get(__A,self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Union[str, Any],__A : Union[str, Any] ): return self.decoder.get(__A,self.unk_token ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if os.path.isdir(__A ): _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: _lowerCamelCase : Optional[Any] = (filename_prefix + "-" if filename_prefix else "") + save_directory _lowerCamelCase : Any = 0 if " " in self.encoder: _lowerCamelCase : Optional[Any] = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: _lowerCamelCase : List[Any] = self.encoder["\n"] del self.encoder["\n"] _lowerCamelCase : str = collections.OrderedDict(sorted(self.encoder.items(),key=lambda __A : x[1] ) ) with open(__A,"w",encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) _lowerCamelCase : Dict = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None,__A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A,token_ids_a=__A,already_has_special_tokens=__A ) if token_ids_a is not None: return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) return [1] + ([0] * len(__A ))
44
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCAmelCase_ : List[str] = pd.read_csv('sample_data.csv', header=None) UpperCAmelCase_ : List[str] = df.shape[:1][0] # If you're using some other dataset input the target column UpperCAmelCase_ : Any = df.iloc[:, 1:2] UpperCAmelCase_ : int = actual_data.values.reshape(len_data, 1) UpperCAmelCase_ : Union[str, Any] = MinMaxScaler().fit_transform(actual_data) UpperCAmelCase_ : Optional[Any] = 10 UpperCAmelCase_ : Tuple = 5 UpperCAmelCase_ : List[Any] = 20 UpperCAmelCase_ : Tuple = len_data - periods * look_back UpperCAmelCase_ : Tuple = actual_data[:division] UpperCAmelCase_ : Union[str, Any] = actual_data[division - look_back :] UpperCAmelCase_, UpperCAmelCase_ : Any = [], [] UpperCAmelCase_, UpperCAmelCase_ : int = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCAmelCase_ : Dict = np.array(train_x) UpperCAmelCase_ : str = np.array(test_x) UpperCAmelCase_ : int = np.array([list(i.ravel()) for i in train_y]) UpperCAmelCase_ : List[str] = np.array([list(i.ravel()) for i in test_y]) UpperCAmelCase_ : Union[str, Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') UpperCAmelCase_ : Union[str, Any] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCAmelCase_ : List[Any] = model.predict(x_test)
44
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[int],__A : Any ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"],model_result["ss"] ): _lowerCamelCase : Optional[Any] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[Any] = "sshleifer/tiny-gpt2" _lowerCamelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],eager_mode=__A,multi_process=__A,) _lowerCamelCase : Optional[Any] = TensorFlowBenchmark(__A ) _lowerCamelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Optional[int] = "sgugger/tiny-distilbert-classification" _lowerCamelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,only_pretrain_model=__A,) _lowerCamelCase : Dict = TensorFlowBenchmark(__A ) _lowerCamelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[str] = "sshleifer/tiny-gpt2" _lowerCamelCase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : str = TensorFlowBenchmark(__A ) _lowerCamelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = "sshleifer/tiny-gpt2" _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],eager_mode=__A,multi_process=__A,) _lowerCamelCase : Any = TensorFlowBenchmark(__A,[config] ) _lowerCamelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = "sshleifer/tiny-gpt2" _lowerCamelCase : Tuple = AutoConfig.from_pretrained(__A ) _lowerCamelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : Optional[Any] = TensorFlowBenchmark(__A,[config] ) _lowerCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : int = "sshleifer/tiny-gpt2" _lowerCamelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : int = TensorFlowBenchmark(__A ) _lowerCamelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Dict = "sshleifer/tiny-gpt2" _lowerCamelCase : Dict = AutoConfig.from_pretrained(__A ) _lowerCamelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : Union[str, Any] = TensorFlowBenchmark(__A,[config] ) _lowerCamelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Optional[Any] = "patrickvonplaten/t5-tiny-random" _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__A ) _lowerCamelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : Dict = TensorFlowBenchmark(__A,configs=[config] ) _lowerCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0,"Cannot do xla on CPU." ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Tuple = "sshleifer/tiny-gpt2" _lowerCamelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],use_xla=__A,multi_process=__A,) _lowerCamelCase : str = TensorFlowBenchmark(__A ) _lowerCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : List[Any] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID],inference=__A,save_to_csv=__A,sequence_lengths=[8],batch_sizes=[1],inference_time_csv_file=os.path.join(__A,"inf_time.csv" ),inference_memory_csv_file=os.path.join(__A,"inf_mem.csv" ),env_info_csv_file=os.path.join(__A,"env.csv" ),multi_process=__A,) _lowerCamelCase : Dict = TensorFlowBenchmark(__A ) benchmark.run() self.assertTrue(Path(os.path.join(__A,"inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__A,"inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__A,"env.csv" ) ).exists() ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__A : List[Any] ): self.assertTrue(hasattr(__A,"sequential" ) ) self.assertTrue(hasattr(__A,"cumulative" ) ) self.assertTrue(hasattr(__A,"current" ) ) self.assertTrue(hasattr(__A,"total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID],inference=__A,sequence_lengths=[8],batch_sizes=[1],log_filename=os.path.join(__A,"log.txt" ),log_print=__A,trace_memory_line_by_line=__A,eager_mode=__A,multi_process=__A,) _lowerCamelCase : Tuple = TensorFlowBenchmark(__A ) _lowerCamelCase : str = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__A,"log.txt" ) ).exists() )
44
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
1
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'mobilenet_v2' def __init__( self : str,__A : Dict=3,__A : int=2_2_4,__A : List[Any]=1.0,__A : Any=8,__A : List[Any]=8,__A : Dict=6,__A : Tuple=3_2,__A : List[Any]=True,__A : Union[str, Any]=True,__A : int="relu6",__A : Tuple=True,__A : Optional[Any]=0.8,__A : List[Any]=0.02,__A : List[Any]=0.001,__A : str=2_5_5,**__A : Dict,): super().__init__(**__A ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Tuple = image_size _lowerCamelCase : Optional[Any] = depth_multiplier _lowerCamelCase : Optional[Any] = depth_divisible_by _lowerCamelCase : Any = min_depth _lowerCamelCase : Dict = expand_ratio _lowerCamelCase : Tuple = output_stride _lowerCamelCase : Tuple = first_layer_is_expansion _lowerCamelCase : Tuple = finegrained_output _lowerCamelCase : str = hidden_act _lowerCamelCase : List[Any] = tf_padding _lowerCamelCase : Dict = classifier_dropout_prob _lowerCamelCase : Any = initializer_range _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Any = semantic_loss_ignore_index class UpperCAmelCase__ ( A ): lowerCAmelCase_ = version.parse('1.11' ) @property def lowerCamelCase_ ( self : Dict ): return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowerCamelCase_ ( self : Dict ): if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowerCamelCase_ ( self : Dict ): return 1e-4
44
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : Optional[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'xlm-roberta-xl' def __init__( self : str,__A : Optional[Any]=2_5_0_8_8_0,__A : str=2_5_6_0,__A : Dict=3_6,__A : int=3_2,__A : int=1_0_2_4_0,__A : Union[str, Any]="gelu",__A : Optional[Any]=0.1,__A : Tuple=0.1,__A : Any=5_1_4,__A : int=1,__A : Dict=0.02,__A : Any=1e-05,__A : str=1,__A : Optional[int]=0,__A : Tuple=2,__A : Dict="absolute",__A : Dict=True,__A : str=None,**__A : Any,): super().__init__(pad_token_id=__A,bos_token_id=__A,eos_token_id=__A,**__A ) _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : int = use_cache _lowerCamelCase : str = classifier_dropout class UpperCAmelCase__ ( A ): @property def lowerCamelCase_ ( self : int ): if self.task == "multiple-choice": _lowerCamelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
44
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP UpperCAmelCase_ : Any = False try: UpperCAmelCase_ : Dict = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class UpperCAmelCase__ : def __init__( self : Union[str, Any],__A : str = None,__A : list = [] ): _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Tuple = choices _lowerCamelCase : str = prompt if sys.platform == "win32": _lowerCamelCase : List[str] = "*" else: _lowerCamelCase : int = "➔ " def lowerCamelCase_ ( self : Optional[Any],__A : Any,__A : str = "" ): if sys.platform != "win32": writeColor(self.choices[index],3_2,__A ) else: forceWrite(self.choices[index],__A ) def lowerCamelCase_ ( self : Union[str, Any],__A : int ): if index == self.position: forceWrite(f' {self.arrow_char} ' ) self.write_choice(__A ) else: forceWrite(f' {self.choices[index]}' ) reset_cursor() def lowerCamelCase_ ( self : Union[str, Any],__A : Direction,__A : int = 1 ): _lowerCamelCase : Any = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__A ) move_cursor(__A,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def lowerCamelCase_ ( self : str ): self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def lowerCamelCase_ ( self : Tuple ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def lowerCamelCase_ ( self : List[Any] ): move_cursor(len(self.choices ) - self.position,"DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def lowerCamelCase_ ( self : List[Any] ): move_cursor(len(self.choices ) - self.position,"DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__A )] for number in range(1_0 )] ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = int(chr(self.current_selection ) ) _lowerCamelCase : int = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP,-movement ) elif self.position < index: self.move_direction(Direction.DOWN,__A ) else: return else: return def lowerCamelCase_ ( self : Optional[int],__A : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt,"\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter","\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter","\n" ) _lowerCamelCase : List[str] = default_choice for i in range(len(self.choices ) ): self.print_choice(__A ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position,"UP" ) with cursor.hide(): while True: if in_colab: try: _lowerCamelCase : Optional[Any] = int(builtins.input() ) except ValueError: _lowerCamelCase : int = default_choice else: _lowerCamelCase : Union[str, Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1,"UP" ) clear_line() self.write_choice(__A,"\n" ) return choice
44
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
1
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase__ ( A ): def lowerCamelCase_ ( self : Optional[int],__A : str ): with open(__A,encoding="utf-8" ) as input_file: _lowerCamelCase : List[str] = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) _lowerCamelCase : List[str] = input_file.read() _lowerCamelCase : Union[str, Any] = regexp.search(__A ) return match def lowerCamelCase_ ( self : List[str],__A : str ): with open(__A,encoding="utf-8" ) as input_file: _lowerCamelCase : List[Any] = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()",re.DOTALL ) _lowerCamelCase : int = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _lowerCamelCase : Optional[Any] = regexp.finditer(__A ) _lowerCamelCase : Optional[Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : str = Path("./datasets" ) _lowerCamelCase : Optional[Any] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__A ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Any = Path("./datasets" ) _lowerCamelCase : Union[str, Any] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__A ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
44
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = None lowerCAmelCase_ = BloomTokenizerFast lowerCAmelCase_ = BloomTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = 'tokenizer_file' lowerCAmelCase_ = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def lowerCamelCase_ ( self : Optional[int] ): super().setUp() _lowerCamelCase : List[Any] = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Dict,**__A : Optional[Any] ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.get_rust_tokenizer() _lowerCamelCase : str = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] _lowerCamelCase : List[str] = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] _lowerCamelCase : str = tokenizer.batch_encode_plus(__A )["input_ids"] self.assertListEqual(__A,__A ) _lowerCamelCase : Tuple = tokenizer.batch_decode(__A ) self.assertListEqual(__A,__A ) def lowerCamelCase_ ( self : Tuple,__A : List[Any]=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _lowerCamelCase : Optional[int] = "This is a simple input" _lowerCamelCase : int = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : List[Any] = ("This is a simple input", "This is a pair") _lowerCamelCase : int = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(__A,max_length=__A ) tokenizer_r.encode_plus(__A,max_length=__A ) tokenizer_r.batch_encode_plus(__A,max_length=__A ) tokenizer_r.encode(__A,max_length=__A ) tokenizer_r.batch_encode_plus(__A,max_length=__A ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) _lowerCamelCase : Optional[Any] = None # Hotfixing padding = None self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : str ): _lowerCamelCase : str = self.get_rust_tokenizer() _lowerCamelCase : Dict = load_dataset("xnli","all_languages",split="test",streaming=__A ) _lowerCamelCase : Union[str, Any] = next(iter(__A ) )["premise"] # pick up one data _lowerCamelCase : List[Any] = list(sample_data.values() ) _lowerCamelCase : Optional[int] = list(map(tokenizer.encode,__A ) ) _lowerCamelCase : List[Any] = [tokenizer.decode(__A,clean_up_tokenization_spaces=__A ) for x in output_tokens] self.assertListEqual(__A,__A ) def lowerCamelCase_ ( self : List[Any] ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ),1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ),1 )
44
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any ): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=0 ): """simple docstring""" return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[column] ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=float("inf" ) ): """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): _lowerCamelCase : Optional[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCamelCase : Optional[int] = current_dis return min_dis def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : str=float("inf" ) ): """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): _lowerCamelCase : Any = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCamelCase : Optional[int] = current_dis return min_dis def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ): """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion _lowerCamelCase : int = points_counts // 2 _lowerCamelCase : Dict = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) _lowerCamelCase : Tuple = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = column_based_sort(_lowerCAmelCase , column=0 ) _lowerCamelCase : int = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase_ : Tuple = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
44
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'xmod' def __init__( self : Any,__A : Optional[int]=3_0_5_2_2,__A : str=7_6_8,__A : Tuple=1_2,__A : Union[str, Any]=1_2,__A : str=3_0_7_2,__A : int="gelu",__A : Optional[int]=0.1,__A : List[Any]=0.1,__A : Dict=5_1_2,__A : List[str]=2,__A : Tuple=0.02,__A : List[str]=1e-12,__A : int=1,__A : Dict=0,__A : str=2,__A : Optional[int]="absolute",__A : Any=True,__A : str=None,__A : int=False,__A : List[Any]=2,__A : Optional[int]=False,__A : Tuple=True,__A : str=True,__A : str=("en_XX",),__A : Union[str, Any]=None,**__A : Optional[Any],): super().__init__(pad_token_id=__A,bos_token_id=__A,eos_token_id=__A,**__A ) _lowerCamelCase : int = vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : int = hidden_act _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : List[str] = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : List[str] = classifier_dropout _lowerCamelCase : str = pre_norm _lowerCamelCase : Any = adapter_reduction_factor _lowerCamelCase : Union[str, Any] = adapter_layer_norm _lowerCamelCase : List[str] = adapter_reuse_layer_norm _lowerCamelCase : List[str] = ln_before_adapter _lowerCamelCase : List[Any] = list(__A ) _lowerCamelCase : Union[str, Any] = default_language class UpperCAmelCase__ ( A ): @property def lowerCamelCase_ ( self : str ): if self.task == "multiple-choice": _lowerCamelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
44
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): UpperCAmelCase_ : Union[str, Any] = True from torch.cuda.amp import autocast UpperCAmelCase_ : Tuple = logging.getLogger(__name__) def A_ ( _lowerCAmelCase : Any=None , _lowerCAmelCase : Union[str, Any]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_lowerCAmelCase ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowerCAmelCase_ = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) lowerCAmelCase_ = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) lowerCAmelCase_ = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) lowerCAmelCase_ = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) lowerCAmelCase_ = field( default=0.0_5 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) lowerCAmelCase_ = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase_ = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) lowerCAmelCase_ = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = True lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None def __call__( self : List[str],__A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _lowerCamelCase : Optional[Any] = [{"input_values": feature["input_values"]} for feature in features] _lowerCamelCase : List[str] = [{"input_ids": feature["labels"]} for feature in features] _lowerCamelCase : Union[str, Any] = self.processor.pad( __A,padding=self.padding,max_length=self.max_length,pad_to_multiple_of=self.pad_to_multiple_of,return_tensors="pt",) _lowerCamelCase : Union[str, Any] = self.processor.pad( labels=__A,padding=self.padding,max_length=self.max_length_labels,pad_to_multiple_of=self.pad_to_multiple_of_labels,return_tensors="pt",) # replace padding with -100 to ignore loss correctly _lowerCamelCase : Dict = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ),-1_0_0 ) _lowerCamelCase : Optional[Any] = labels return batch class UpperCAmelCase__ ( A ): def lowerCamelCase_ ( self : Dict,__A : nn.Module,__A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _lowerCamelCase : Dict = self._prepare_inputs(__A ) if self.use_amp: with autocast(): _lowerCamelCase : Union[str, Any] = self.compute_loss(__A,__A ) else: _lowerCamelCase : Union[str, Any] = self.compute_loss(__A,__A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowerCamelCase : Optional[int] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCamelCase : Union[str, Any] = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: _lowerCamelCase : int = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__A ).backward() elif self.use_apex: with amp.scale_loss(__A,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__A ) else: loss.backward() return loss.detach() def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowerCamelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _lowerCamelCase : List[str] = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) _lowerCamelCase : Any = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer _lowerCamelCase : List[str] = F'[{"".join(data_args.chars_to_ignore )}]' def remove_special_characters(_lowerCAmelCase : Optional[int] ): _lowerCamelCase : List[str] = re.sub(_lowerCAmelCase , "" , batch["sentence"] ).lower() + " " return batch _lowerCamelCase : int = train_dataset.map(_lowerCAmelCase , remove_columns=["sentence"] ) _lowerCamelCase : Optional[int] = eval_dataset.map(_lowerCAmelCase , remove_columns=["sentence"] ) def extract_all_chars(_lowerCAmelCase : Optional[Any] ): _lowerCamelCase : List[Any] = " ".join(batch["text"] ) _lowerCamelCase : List[Any] = list(set(_lowerCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} _lowerCamelCase : List[str] = train_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , batch_size=-1 , keep_in_memory=_lowerCAmelCase , remove_columns=train_dataset.column_names , ) _lowerCamelCase : List[str] = train_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , batch_size=-1 , keep_in_memory=_lowerCAmelCase , remove_columns=eval_dataset.column_names , ) _lowerCamelCase : Dict = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) _lowerCamelCase : Any = {v: k for k, v in enumerate(_lowerCAmelCase )} _lowerCamelCase : str = vocab_dict[" "] del vocab_dict[" "] _lowerCamelCase : List[str] = len(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = len(_lowerCAmelCase ) with open("vocab.json" , "w" ) as vocab_file: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : str = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) _lowerCamelCase : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _lowerCamelCase : List[Any] = min(len(_lowerCAmelCase ) , data_args.max_train_samples ) _lowerCamelCase : Any = train_dataset.select(range(_lowerCAmelCase ) ) if data_args.max_val_samples is not None: _lowerCamelCase : str = eval_dataset.select(range(data_args.max_val_samples ) ) _lowerCamelCase : Any = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_lowerCAmelCase : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Dict = torchaudio.load(batch["path"] ) _lowerCamelCase : Dict = resampler(_lowerCAmelCase ).squeeze().numpy() _lowerCamelCase : List[str] = 16000 _lowerCamelCase : str = batch["text"] return batch _lowerCamelCase : Optional[Any] = train_dataset.map( _lowerCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase : Optional[int] = eval_dataset.map( _lowerCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_lowerCAmelCase : List[str] ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), F'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.' _lowerCamelCase : str = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(_lowerCAmelCase ) return batch _lowerCamelCase : Tuple = train_dataset.map( _lowerCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase : Optional[int] = eval_dataset.map( _lowerCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowerCamelCase : Optional[Any] = datasets.load_metric("wer" ) def compute_metrics(_lowerCAmelCase : int ): _lowerCamelCase : Any = pred.predictions _lowerCamelCase : str = np.argmax(_lowerCAmelCase , axis=-1 ) _lowerCamelCase : Tuple = processor.tokenizer.pad_token_id _lowerCamelCase : str = processor.batch_decode(_lowerCAmelCase ) # we do not want to group tokens when computing the metrics _lowerCamelCase : Optional[int] = processor.batch_decode(pred.label_ids , group_tokens=_lowerCAmelCase ) _lowerCamelCase : str = wer_metric.compute(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowerCamelCase : Tuple = DataCollatorCTCWithPadding(processor=_lowerCAmelCase , padding=_lowerCAmelCase ) # Initialize our Trainer _lowerCamelCase : Any = CTCTrainer( model=_lowerCAmelCase , data_collator=_lowerCAmelCase , args=_lowerCAmelCase , compute_metrics=_lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowerCamelCase : str = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _lowerCamelCase : Optional[int] = model_args.model_name_or_path else: _lowerCamelCase : Optional[int] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _lowerCamelCase : Optional[int] = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) trainer.save_model() _lowerCamelCase : Union[str, Any] = train_result.metrics _lowerCamelCase : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCAmelCase ) ) _lowerCamelCase : List[str] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics("train" , _lowerCAmelCase ) trainer.save_metrics("train" , _lowerCAmelCase ) trainer.save_state() # Evaluation _lowerCamelCase : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate() _lowerCamelCase : Optional[int] = data_args.max_val_samples if data_args.max_val_samples is not None else len(_lowerCAmelCase ) _lowerCamelCase : List[str] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics("eval" , _lowerCAmelCase ) trainer.save_metrics("eval" , _lowerCAmelCase ) return results if __name__ == "__main__": main()
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase_ : Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : int = {} with open(_lowerCAmelCase , "r" ) as file: for line_number, line in enumerate(_lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = line.strip() if line: _lowerCamelCase : int = line.split() _lowerCamelCase : Optional[Any] = line_number _lowerCamelCase : Tuple = words[0] _lowerCamelCase : Optional[int] = value return result def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split("." ): _lowerCamelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : List[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): _lowerCamelCase : str = PARAM_MAPPING[full_name.split("." )[-1]] _lowerCamelCase : Any = "param" if weight_type is not None and weight_type != "param": _lowerCamelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCamelCase : List[Any] = hf_pointer for attribute in hf_param_name.split("." ): _lowerCamelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : List[str] = shape_pointer.shape # let's reduce dimension _lowerCamelCase : Optional[int] = value[0] else: _lowerCamelCase : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCamelCase : Union[str, Any] = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : Optional[Any] = value elif weight_type == "bias": _lowerCamelCase : Optional[int] = value elif weight_type == "param": for attribute in hf_param_name.split("." ): _lowerCamelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : str = value else: _lowerCamelCase : Optional[Any] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): _lowerCamelCase : str = PARAM_MAPPING[full_name.split("." )[-1]] _lowerCamelCase : List[Any] = "param" if weight_type is not None and weight_type != "param": _lowerCamelCase : Union[str, Any] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCamelCase : str = ".".join([key, hf_param_name] ) else: _lowerCamelCase : str = key _lowerCamelCase : Union[str, Any] = value if "lm_head" in full_key else value[0] UpperCAmelCase_ : Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[int]=None ): """simple docstring""" _lowerCamelCase : Union[str, Any] = False for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : List[str] = True if "*" in mapped_key: _lowerCamelCase : Optional[int] = name.split(_lowerCAmelCase )[0].split("." )[-2] _lowerCamelCase : Tuple = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: _lowerCamelCase : List[Any] = "weight_g" elif "weight_v" in name: _lowerCamelCase : int = "weight_v" elif "bias" in name: _lowerCamelCase : List[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : int = "weight" else: _lowerCamelCase : Union[str, Any] = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = [] _lowerCamelCase : str = fairseq_model.state_dict() _lowerCamelCase : List[str] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : str = True else: _lowerCamelCase : str = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Optional[Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCamelCase : List[str] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCamelCase : Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCamelCase : int = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCamelCase : Union[str, Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : str=None , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=False ): """simple docstring""" if config_path is not None: _lowerCamelCase : Tuple = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : List[str] = WavaVecaConfig() if is_seq_class: _lowerCamelCase : Tuple = read_txt_into_dict(_lowerCAmelCase ) _lowerCamelCase : str = idalabel _lowerCamelCase : int = WavaVecaForSequenceClassification(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: _lowerCamelCase : List[str] = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : str = target_dict.bos_index _lowerCamelCase : Tuple = target_dict.eos_index _lowerCamelCase : Optional[Any] = len(target_dict.symbols ) _lowerCamelCase : Optional[int] = os.path.join(_lowerCAmelCase , "vocab.json" ) if not os.path.isdir(_lowerCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = 1 with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Tuple = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCAmelCase , ) _lowerCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) _lowerCamelCase : Any = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _lowerCamelCase : List[str] = WavaVecaForCTC(_lowerCAmelCase ) else: _lowerCamelCase : List[str] = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : str = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Union[str, Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
44
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
1
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = None lowerCAmelCase_ = 1 lowerCAmelCase_ = None lowerCAmelCase_ = False lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase_ ( self : Any ): return self.__class__(**{k: copy.deepcopy(__A ) for k, v in self.__dict__.items()} )
44
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : str ): """simple docstring""" assert column_title.isupper() _lowerCamelCase : str = 0 _lowerCamelCase : Union[str, Any] = len(_lowerCAmelCase ) - 1 _lowerCamelCase : Optional[Any] = 0 while index >= 0: _lowerCamelCase : List[Any] = (ord(column_title[index] ) - 64) * pow(26 , _lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
44
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase_ : Any = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): lowerCAmelCase_ = 10000 lowerCAmelCase_ = None lowerCAmelCase_ = None class UpperCAmelCase__ ( datasets.ArrowBasedBuilder ): lowerCAmelCase_ = ParquetConfig def lowerCamelCase_ ( self : Any ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase_ ( self : Union[str, Any],__A : Tuple ): if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) _lowerCamelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__A,(str, list, tuple) ): _lowerCamelCase : List[Any] = data_files if isinstance(__A,__A ): _lowerCamelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCamelCase : Optional[int] = [dl_manager.iter_files(__A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN,gen_kwargs={"files": files} )] _lowerCamelCase : List[Any] = [] for split_name, files in data_files.items(): if isinstance(__A,__A ): _lowerCamelCase : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCamelCase : List[str] = [dl_manager.iter_files(__A ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__A ): with open(__A,"rb" ) as f: _lowerCamelCase : List[Any] = datasets.Features.from_arrow_schema(pq.read_schema(__A ) ) break splits.append(datasets.SplitGenerator(name=__A,gen_kwargs={"files": files} ) ) return splits def lowerCamelCase_ ( self : List[Any],__A : pa.Table ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCamelCase : Any = table_cast(__A,self.info.features.arrow_schema ) return pa_table def lowerCamelCase_ ( self : Union[str, Any],__A : Union[str, Any] ): _lowerCamelCase : Optional[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__A ) ): with open(__A,"rb" ) as f: _lowerCamelCase : int = pq.ParquetFile(__A ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size,columns=self.config.columns ) ): _lowerCamelCase : Optional[int] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(__A ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__A )}: {e}' ) raise
44
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _lowerCamelCase : Tuple = s_dict.pop(_lowerCAmelCase ) elif "subsample" in key: _lowerCamelCase : Tuple = s_dict.pop(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[int] = emb.weight.shape _lowerCamelCase : Optional[Any] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = emb.weight.data return lin_layer def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = torch.load(_lowerCAmelCase , map_location="cpu" ) _lowerCamelCase : Tuple = mam_aaa["args"] _lowerCamelCase : str = mam_aaa["model"] _lowerCamelCase : List[str] = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(_lowerCAmelCase ) rename_keys(_lowerCAmelCase ) _lowerCamelCase : int = state_dict["decoder.embed_tokens.weight"].shape[0] _lowerCamelCase : List[Any] = args.share_decoder_input_output_embed _lowerCamelCase : Union[str, Any] = [int(_lowerCAmelCase ) for i in args.conv_kernel_sizes.split("," )] _lowerCamelCase : Dict = SpeechaTextConfig( vocab_size=_lowerCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(_lowerCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=_lowerCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_lowerCAmelCase , num_beams=5 , max_length=200 , use_cache=_lowerCAmelCase , decoder_start_token_id=2 , early_stopping=_lowerCAmelCase , ) _lowerCamelCase : str = SpeechaTextForConditionalGeneration(_lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Dict = model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0 and not set(_lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F' but all the following weights are missing {missing}' ) if tie_embeds: _lowerCamelCase : Optional[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCamelCase : Tuple = lm_head_weights model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : int = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
44
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Dict = False def A_ ( _lowerCAmelCase : Namespace ): """simple docstring""" return TrainCommand(_lowerCAmelCase ) class UpperCAmelCase__ ( A ): @staticmethod def lowerCamelCase_ ( __A : ArgumentParser ): _lowerCamelCase : int = parser.add_parser("train",help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data",type=__A,required=__A,help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",) train_parser.add_argument( "--column_label",type=__A,default=0,help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text",type=__A,default=1,help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id",type=__A,default=2,help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row",action="store_true",help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data",type=__A,default="",help="path to validation dataset." ) train_parser.add_argument( "--validation_split",type=__A,default=0.1,help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",) train_parser.add_argument("--output",type=__A,default="./",help="path to saved the trained model." ) train_parser.add_argument( "--task",type=__A,default="text_classification",help="Task to train the model on." ) train_parser.add_argument( "--model",type=__A,default="bert-base-uncased",help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size",type=__A,default=3_2,help="Batch size for training." ) train_parser.add_argument("--valid_batch_size",type=__A,default=6_4,help="Batch size for validation." ) train_parser.add_argument("--learning_rate",type=__A,default=3e-5,help="Learning rate." ) train_parser.add_argument("--adam_epsilon",type=__A,default=1e-08,help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=__A ) def __init__( self : List[Any],__A : Namespace ): _lowerCamelCase : str = logging.get_logger("transformers-cli/training" ) _lowerCamelCase : Tuple = "tf" if is_tf_available() else "torch" os.makedirs(args.output,exist_ok=__A ) _lowerCamelCase : Dict = args.output _lowerCamelCase : List[str] = args.column_label _lowerCamelCase : Tuple = args.column_text _lowerCamelCase : Tuple = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": _lowerCamelCase : int = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) _lowerCamelCase : Optional[int] = Processor.create_from_csv( args.train_data,column_label=args.column_label,column_text=args.column_text,column_id=args.column_id,skip_first_row=args.skip_first_row,) _lowerCamelCase : Any = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) _lowerCamelCase : int = Processor.create_from_csv( args.validation_data,column_label=args.column_label,column_text=args.column_text,column_id=args.column_id,skip_first_row=args.skip_first_row,) _lowerCamelCase : Union[str, Any] = args.validation_split _lowerCamelCase : Any = args.train_batch_size _lowerCamelCase : Optional[int] = args.valid_batch_size _lowerCamelCase : List[Any] = args.learning_rate _lowerCamelCase : Union[str, Any] = args.adam_epsilon def lowerCamelCase_ ( self : List[str] ): if self.framework == "tf": return self.run_tf() return self.run_torch() def lowerCamelCase_ ( self : int ): raise NotImplementedError def lowerCamelCase_ ( self : Optional[Any] ): self.pipeline.fit( self.train_dataset,validation_data=self.valid_dataset,validation_split=self.validation_split,learning_rate=self.learning_rate,adam_epsilon=self.adam_epsilon,train_batch_size=self.train_batch_size,valid_batch_size=self.valid_batch_size,) # Save trained pipeline self.pipeline.save_pretrained(self.output )
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCAmelCase_ = Features({'text': Value('string' )} ) lowerCAmelCase_ = Features({} ) lowerCAmelCase_ = "text" @property def lowerCamelCase_ ( self : Tuple ): return {self.text_column: "text"}
44
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" while b: _lowerCamelCase , _lowerCamelCase : Optional[Any] = b, a % b return a def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(_lowerCAmelCase , a % b ) def A_ ( ): """simple docstring""" print(F'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(F'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(F'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(F'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(F'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(F'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(F'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(F'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple=False ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : int = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : int=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Any = "" else: _lowerCamelCase : List[Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : int = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : str = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : str = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : int = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=True ): """simple docstring""" _lowerCamelCase : Dict = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : Dict = 8 # set labels if required if not base_model: _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[str] = "huggingface/label-files" _lowerCamelCase : Optional[int] = "imagenet-1k-id2label.json" _lowerCamelCase : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Tuple = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Dict = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : Any = 384 _lowerCamelCase : Union[str, Any] = 1536 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Optional[int] = torch.hub.load("facebookresearch/dino:main" , _lowerCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Dict = original_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Dict = create_rename_keys(_lowerCAmelCase , base_model=_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[int] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ).eval() else: _lowerCamelCase : Optional[int] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Optional[int] = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[Any] = encoding["pixel_values"] _lowerCamelCase : Any = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : Optional[int] = original_model(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase : List[str] = original_model(_lowerCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) UpperCAmelCase_ : str = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
44
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : List[Any] = np.full((len(_lowerCAmelCase ), sequence_length, 2) , _lowerCAmelCase ) else: _lowerCamelCase : List[str] = np.full((len(_lowerCAmelCase ), sequence_length) , _lowerCAmelCase ) for i, tensor in enumerate(_lowerCAmelCase ): if padding_side == "right": if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : str = tensor[:sequence_length] else: _lowerCamelCase : Union[str, Any] = tensor[:sequence_length] else: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Optional[int] = tensor[:sequence_length] else: _lowerCamelCase : Dict = tensor[:sequence_length] return out_tensor.tolist() def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = ord(_lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True _lowerCamelCase : List[Any] = unicodedata.category(_lowerCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = True lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = -100 lowerCAmelCase_ = "pt" def lowerCamelCase_ ( self : str,__A : List[str] ): import torch _lowerCamelCase : Optional[int] = "label" if "label" in features[0].keys() else "labels" _lowerCamelCase : Tuple = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _lowerCamelCase : Optional[Any] = self.tokenizer.pad( __A,padding=self.padding,max_length=self.max_length,pad_to_multiple_of=self.pad_to_multiple_of,return_tensors="pt" if labels is None else None,) if labels is None: return batch _lowerCamelCase : List[Any] = torch.tensor(batch["entity_ids"] ).shape[1] _lowerCamelCase : List[str] = self.tokenizer.padding_side if padding_side == "right": _lowerCamelCase : Dict = [ list(__A ) + [self.label_pad_token_id] * (sequence_length - len(__A )) for label in labels ] else: _lowerCamelCase : Union[str, Any] = [ [self.label_pad_token_id] * (sequence_length - len(__A )) + list(__A ) for label in labels ] _lowerCamelCase : Tuple = [feature["ner_tags"] for feature in features] _lowerCamelCase : Any = padding_tensor(__A,-1,__A,__A ) _lowerCamelCase : Any = [feature["original_entity_spans"] for feature in features] _lowerCamelCase : Optional[Any] = padding_tensor(__A,(-1, -1),__A,__A ) _lowerCamelCase : Optional[int] = {k: torch.tensor(__A,dtype=torch.intaa ) for k, v in batch.items()} return batch
44
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("check_bouncy() accepts only integer arguments" ) _lowerCamelCase : Optional[int] = str(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "".join(sorted(_lowerCAmelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def A_ ( _lowerCAmelCase : float = 99 ): """simple docstring""" if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) _lowerCamelCase : Any = 0 _lowerCamelCase : Union[str, Any] = 1 while True: if check_bouncy(_lowerCAmelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
44
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = UniSpeechSatForSequenceClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _lowerCamelCase : Dict = downstream_dict["projector.weight"] _lowerCamelCase : Tuple = downstream_dict["projector.bias"] _lowerCamelCase : str = downstream_dict["model.post_net.linear.weight"] _lowerCamelCase : Tuple = downstream_dict["model.post_net.linear.bias"] return model def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = downstream_dict["model.linear.weight"] _lowerCamelCase : Optional[int] = downstream_dict["model.linear.bias"] return model def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = UniSpeechSatForXVector.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _lowerCamelCase : List[Any] = downstream_dict["connector.weight"] _lowerCamelCase : List[str] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCamelCase : List[Any] = downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] _lowerCamelCase : int = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] _lowerCamelCase : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _lowerCamelCase : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _lowerCamelCase : List[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _lowerCamelCase : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _lowerCamelCase : Tuple = downstream_dict["objective.W"] return model @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = torch.load(_lowerCAmelCase , map_location="cpu" ) _lowerCamelCase : str = checkpoint["Downstream"] _lowerCamelCase : str = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , do_normalize=_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _lowerCamelCase : List[str] = convert_classification(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForAudioFrameClassification" ): _lowerCamelCase : Optional[int] = convert_diarization(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForXVector" ): _lowerCamelCase : Dict = convert_xvector(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: _lowerCamelCase : List[str] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCAmelCase ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
44
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase_ : Optional[Any] = '\\n\n' UpperCAmelCase_ : Optional[int] = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' UpperCAmelCase_ : List[Any] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def lowerCamelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { "input_texts": datasets.Value("string" ), } ),reference_urls=["https://huggingface.co/docs/transformers/perplexity"],) def lowerCamelCase_ ( self : List[str],__A : Dict,__A : List[Any],__A : int = 1_6,__A : bool = True,__A : int=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _lowerCamelCase : int = "cuda" else: _lowerCamelCase : int = "cuda" if torch.cuda.is_available() else "cpu" _lowerCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained(__A ) _lowerCamelCase : Tuple = model.to(__A ) _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(__A ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _lowerCamelCase : Tuple = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__A ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _lowerCamelCase : int = model.config.max_length - 1 else: _lowerCamelCase : Tuple = model.config.max_length _lowerCamelCase : int = tokenizer( __A,add_special_tokens=__A,padding=__A,truncation=__A,max_length=__A,return_tensors="pt",return_attention_mask=__A,).to(__A ) _lowerCamelCase : Optional[Any] = encodings["input_ids"] _lowerCamelCase : Dict = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _lowerCamelCase : str = [] _lowerCamelCase : str = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0,len(__A ),__A ) ): _lowerCamelCase : int = min(start_index + batch_size,len(__A ) ) _lowerCamelCase : int = encoded_texts[start_index:end_index] _lowerCamelCase : Optional[Any] = attn_masks[start_index:end_index] if add_start_token: _lowerCamelCase : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__A ) _lowerCamelCase : Optional[int] = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) _lowerCamelCase : List[Any] = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__A ), attn_mask],dim=1 ) _lowerCamelCase : Dict = encoded_batch with torch.no_grad(): _lowerCamelCase : str = model(__A,attention_mask=__A ).logits _lowerCamelCase : List[str] = out_logits[..., :-1, :].contiguous() _lowerCamelCase : Optional[int] = labels[..., 1:].contiguous() _lowerCamelCase : Dict = attn_mask[..., 1:].contiguous() _lowerCamelCase : str = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__A ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__A )}
44
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
1
'''simple docstring''' from manim import * class UpperCAmelCase__ ( A ): def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = Rectangle(height=0.5,width=0.5 ) _lowerCamelCase : Tuple = Rectangle(height=0.46,width=0.46 ).set_stroke(width=0 ) _lowerCamelCase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowerCamelCase : Tuple = [mem.copy() for i in range(6 )] _lowerCamelCase : Tuple = VGroup(*__A ).arrange(__A,buff=0 ) _lowerCamelCase : Optional[Any] = VGroup(*__A ).arrange(__A,buff=0 ) _lowerCamelCase : str = VGroup(__A,__A ).arrange(__A,buff=0 ) _lowerCamelCase : str = Text("CPU",font_size=2_4 ) _lowerCamelCase : Any = Group(__A,__A ).arrange(__A,buff=0.5,aligned_edge=__A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__A ) _lowerCamelCase : Union[str, Any] = [mem.copy() for i in range(1 )] _lowerCamelCase : List[Any] = VGroup(*__A ).arrange(__A,buff=0 ) _lowerCamelCase : Union[str, Any] = Text("GPU",font_size=2_4 ) _lowerCamelCase : Tuple = Group(__A,__A ).arrange(__A,buff=0.5,aligned_edge=__A ) gpu.align_to(__A,__A ) gpu.set_x(gpu.get_x() - 1 ) self.add(__A ) _lowerCamelCase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowerCamelCase : Optional[int] = VGroup(*__A ).arrange(__A,buff=0 ) _lowerCamelCase : Optional[Any] = Text("Model",font_size=2_4 ) _lowerCamelCase : Optional[Any] = Group(__A,__A ).arrange(__A,buff=0.5,aligned_edge=__A ) model.move_to([3, -1.0, 0] ) self.play( Create(__A,run_time=1 ),Create(__A,run_time=1 ),Create(__A,run_time=1 ),) _lowerCamelCase : List[Any] = MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.',font_size=2_4,) _lowerCamelCase : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCamelCase : Dict = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model',font_size=1_8,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__A,run_time=2.5 ),Write(__A ),Write(__A ) ) self.add(__A ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = [] _lowerCamelCase : int = [] for i, rect in enumerate(__A ): _lowerCamelCase : Any = Rectangle(height=0.46,width=0.46 ).set_stroke(width=0.0 ).set_fill(__A,opacity=0.7 ) cpu_target.move_to(__A ) cpu_target.generate_target() _lowerCamelCase : Union[str, Any] = 0.46 / 4 _lowerCamelCase : Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ),buff=0.02,direction=__A ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target,direction=__A,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target,direction=__A,buff=0.0 ) cpu_targs.append(__A ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__A ) ) second_animations.append(MoveToTarget(__A,run_time=1.5 ) ) self.play(*__A ) self.play(*__A ) self.wait()
44
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = StableDiffusionSAGPipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = False def lowerCamelCase_ ( self : Any ): torch.manual_seed(0 ) _lowerCamelCase : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4),layers_per_block=2,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),cross_attention_dim=3_2,) _lowerCamelCase : Optional[int] = DDIMScheduler( beta_start=0.00085,beta_end=0.012,beta_schedule="scaled_linear",clip_sample=__A,set_alpha_to_one=__A,) torch.manual_seed(0 ) _lowerCamelCase : int = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,) _lowerCamelCase : List[Any] = CLIPTextModel(__A ) _lowerCamelCase : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCamelCase : Tuple = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCamelCase_ ( self : Optional[int],__A : int,__A : Any=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : Any = torch.manual_seed(__A ) else: _lowerCamelCase : List[Any] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : Optional[Any] = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def lowerCamelCase_ ( self : List[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : str ): _lowerCamelCase : Dict = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) _lowerCamelCase : List[str] = sag_pipe.to(__A ) sag_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : int = "." _lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = sag_pipe( [prompt],generator=__A,guidance_scale=7.5,sag_scale=1.0,num_inference_steps=2_0,output_type="np" ) _lowerCamelCase : str = output.images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : int = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCamelCase_ ( self : int ): _lowerCamelCase : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _lowerCamelCase : str = sag_pipe.to(__A ) sag_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : List[str] = "." _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = sag_pipe( [prompt],generator=__A,guidance_scale=7.5,sag_scale=1.0,num_inference_steps=2_0,output_type="np" ) _lowerCamelCase : Dict = output.images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : List[str] = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[str] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _lowerCamelCase : str = sag_pipe.to(__A ) sag_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : List[str] = "." _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = sag_pipe( [prompt],width=7_6_8,height=5_1_2,generator=__A,guidance_scale=7.5,sag_scale=1.0,num_inference_steps=2_0,output_type="np",) _lowerCamelCase : Tuple = output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
44
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase_ : int = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase_ : str = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Any = SavedModel() _lowerCamelCase : Union[str, Any] = [] with open(os.path.join(_lowerCAmelCase , "utils" , "tf_ops" , "onnx.json" ) ) as f: _lowerCamelCase : List[Any] = json.load(_lowerCAmelCase )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_lowerCAmelCase )] ) with open(_lowerCAmelCase , "rb" ) as f: saved_model.ParseFromString(f.read() ) _lowerCamelCase : Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _lowerCamelCase : List[str] = sorted(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_lowerCAmelCase ) if strict and len(_lowerCAmelCase ) > 0: raise Exception(F'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(_lowerCAmelCase ) > 0: print(F'Found the following incompatible ops for the opset {opset}:' ) print(*_lowerCAmelCase , sep="\n" ) else: print(F'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
44
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
1
'''simple docstring''' import math import sys import cva import numpy as np def A_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ): """simple docstring""" _lowerCamelCase : Dict = math.sqrt(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def A_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : float ): """simple docstring""" _lowerCamelCase : Optional[Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _lowerCAmelCase ): for j in range(0 , _lowerCAmelCase ): _lowerCamelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : int , ): """simple docstring""" _lowerCamelCase : Dict = np.zeros(img.shape ) _lowerCamelCase : Optional[Any] = get_gauss_kernel(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Any = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _lowerCamelCase : Optional[Any] = get_slice(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[int] = img_s - img_s[kernel_size // 2, kernel_size // 2] _lowerCamelCase : Any = vec_gaussian(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : List[Any] = np.multiply(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[int] = np.multiply(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Tuple = np.sum(_lowerCAmelCase ) / np.sum(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = val return imga def A_ ( _lowerCAmelCase : list ): """simple docstring""" _lowerCamelCase : Dict = args[1] if args[1:] else "../image_data/lena.jpg" _lowerCamelCase : List[str] = float(args[2] ) if args[2:] else 1.0 _lowerCamelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: _lowerCamelCase : List[str] = int(args[4] ) _lowerCamelCase : Union[str, Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: _lowerCamelCase : Optional[Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : str = parse_args(sys.argv) UpperCAmelCase_ : List[Any] = cva.imread(filename, 0) cva.imshow('input image', img) UpperCAmelCase_ : Tuple = img / 255 UpperCAmelCase_ : Optional[Any] = out.astype('float32') UpperCAmelCase_ : str = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) UpperCAmelCase_ : Optional[int] = out * 255 UpperCAmelCase_ : List[str] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
44
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Optional[Any] = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
1
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def A_ ( _lowerCAmelCase : bytes , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = F'{sampling_rate}' _lowerCamelCase : List[str] = "1" _lowerCamelCase : Union[str, Any] = "f32le" _lowerCamelCase : Union[str, Any] = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(_lowerCAmelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _lowerCamelCase : Dict = ffmpeg_process.communicate(_lowerCAmelCase ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error _lowerCamelCase : List[Any] = output_stream[0] _lowerCamelCase : Any = np.frombuffer(_lowerCAmelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : str = "f32le" , ): """simple docstring""" _lowerCamelCase : str = F'{sampling_rate}' _lowerCamelCase : Optional[int] = "1" if format_for_conversion == "s16le": _lowerCamelCase : List[str] = 2 elif format_for_conversion == "f32le": _lowerCamelCase : Union[str, Any] = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) _lowerCamelCase : List[Any] = platform.system() if system == "Linux": _lowerCamelCase : Dict = "alsa" _lowerCamelCase : int = "default" elif system == "Darwin": _lowerCamelCase : str = "avfoundation" _lowerCamelCase : Optional[int] = ":0" elif system == "Windows": _lowerCamelCase : Tuple = "dshow" _lowerCamelCase : Tuple = "default" _lowerCamelCase : Union[str, Any] = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] _lowerCamelCase : Union[str, Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _lowerCamelCase : Any = _ffmpeg_stream(_lowerCAmelCase , _lowerCAmelCase ) for item in iterator: yield item def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Union[Tuple[float, float], float]] = None , _lowerCAmelCase : str = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: _lowerCamelCase : Any = stream_chunk_s else: _lowerCamelCase : int = chunk_length_s _lowerCamelCase : int = ffmpeg_microphone(_lowerCAmelCase , _lowerCAmelCase , format_for_conversion=_lowerCAmelCase ) if format_for_conversion == "s16le": _lowerCamelCase : int = np.intaa _lowerCamelCase : Union[str, Any] = 2 elif format_for_conversion == "f32le": _lowerCamelCase : Optional[int] = np.floataa _lowerCamelCase : Dict = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: _lowerCamelCase : str = chunk_length_s / 6 _lowerCamelCase : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_lowerCAmelCase , (int, float) ): _lowerCamelCase : Optional[Any] = [stride_length_s, stride_length_s] _lowerCamelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _lowerCamelCase : Optional[int] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _lowerCamelCase : List[str] = datetime.datetime.now() _lowerCamelCase : Union[str, Any] = datetime.timedelta(seconds=_lowerCAmelCase ) for item in chunk_bytes_iter(_lowerCAmelCase , _lowerCAmelCase , stride=(stride_left, stride_right) , stream=_lowerCAmelCase ): # Put everything back in numpy scale _lowerCamelCase : Optional[int] = np.frombuffer(item["raw"] , dtype=_lowerCAmelCase ) _lowerCamelCase : Any = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) _lowerCamelCase : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple[int, int] , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Any = B"" _lowerCamelCase , _lowerCamelCase : Optional[int] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) _lowerCamelCase : Optional[int] = 0 for raw in iterator: acc += raw if stream and len(_lowerCAmelCase ) < chunk_len: _lowerCamelCase : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_lowerCAmelCase ) >= chunk_len: # We are flushing the accumulator _lowerCamelCase : str = (_stride_left, stride_right) _lowerCamelCase : Optional[Any] = {"raw": acc[:chunk_len], "stride": stride} if stream: _lowerCamelCase : Optional[int] = False yield item _lowerCamelCase : Tuple = stride_left _lowerCamelCase : List[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_lowerCAmelCase ) > stride_left: _lowerCamelCase : int = {"raw": acc, "stride": (_stride_left, 0)} if stream: _lowerCamelCase : Dict = False yield item def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = 2**24 # 16Mo try: with subprocess.Popen(_lowerCAmelCase , stdout=subprocess.PIPE , bufsize=_lowerCAmelCase ) as ffmpeg_process: while True: _lowerCamelCase : str = ffmpeg_process.stdout.read(_lowerCAmelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
44
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : def __init__( self : Tuple,__A : Union[str, Any],__A : Union[str, Any]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Union[str, Any]=True,__A : Tuple=True,__A : List[str]=True,__A : Union[str, Any]=9_9,__A : int=3_2,__A : List[str]=2,__A : Optional[int]=4,__A : int=3_7,__A : Union[str, Any]="gelu",__A : Optional[int]=0.1,__A : Optional[int]=0.1,__A : List[Any]=5_1_2,__A : int=1_6,__A : int=2,__A : str=0.02,__A : Tuple=3,__A : Union[str, Any]=4,__A : str=None,): _lowerCamelCase : List[str] = parent _lowerCamelCase : Dict = 1_3 _lowerCamelCase : Union[str, Any] = 7 _lowerCamelCase : int = True _lowerCamelCase : int = True _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 9_9 _lowerCamelCase : Dict = 3_2 _lowerCamelCase : int = 2 _lowerCamelCase : str = 4 _lowerCamelCase : List[str] = 3_7 _lowerCamelCase : List[str] = "gelu" _lowerCamelCase : List[Any] = 0.1 _lowerCamelCase : List[str] = 0.1 _lowerCamelCase : List[str] = 5_1_2 _lowerCamelCase : Optional[int] = 1_6 _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : Optional[int] = 0.02 _lowerCamelCase : Dict = 3 _lowerCamelCase : List[str] = 4 _lowerCamelCase : int = None def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : List[str] = None if self.use_input_mask: _lowerCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Dict = None if self.use_token_type_ids: _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : Any = RoFormerConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=__A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : Union[str, Any],__A : Dict,__A : Optional[Any],__A : Union[str, Any],__A : Dict,__A : int,__A : Union[str, Any],__A : List[Any] ): _lowerCamelCase : Any = TFRoFormerModel(config=__A ) _lowerCamelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCamelCase : Dict = [input_ids, input_mask] _lowerCamelCase : Optional[int] = model(__A ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str],__A : Union[str, Any],__A : Tuple,__A : Any,__A : Optional[Any],__A : int,__A : Optional[Any],__A : int ): _lowerCamelCase : Tuple = True _lowerCamelCase : Optional[int] = TFRoFormerForCausalLM(config=__A ) _lowerCamelCase : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Union[str, Any] = model(__A )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ),[self.batch_size, self.seq_length, self.vocab_size] ) def lowerCamelCase_ ( self : str,__A : Any,__A : Tuple,__A : str,__A : int,__A : Any,__A : Any,__A : str ): _lowerCamelCase : Optional[int] = TFRoFormerForMaskedLM(config=__A ) _lowerCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Any,__A : int,__A : Dict,__A : List[str],__A : Tuple,__A : List[str],__A : int,__A : Union[str, Any] ): _lowerCamelCase : int = self.num_labels _lowerCamelCase : int = TFRoFormerForSequenceClassification(config=__A ) _lowerCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Tuple,__A : Optional[Any],__A : Optional[Any],__A : int,__A : Dict,__A : Union[str, Any],__A : Optional[int],__A : Optional[int] ): _lowerCamelCase : Optional[Any] = self.num_choices _lowerCamelCase : Optional[int] = TFRoFormerForMultipleChoice(config=__A ) _lowerCamelCase : int = tf.tile(tf.expand_dims(__A,1 ),(1, self.num_choices, 1) ) _lowerCamelCase : int = tf.tile(tf.expand_dims(__A,1 ),(1, self.num_choices, 1) ) _lowerCamelCase : Any = tf.tile(tf.expand_dims(__A,1 ),(1, self.num_choices, 1) ) _lowerCamelCase : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCamelCase : Dict = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Optional[Any],__A : Union[str, Any],__A : List[Any],__A : Union[str, Any],__A : Optional[int],__A : Any,__A : Any,__A : Optional[Any] ): _lowerCamelCase : str = self.num_labels _lowerCamelCase : Optional[int] = TFRoFormerForTokenClassification(config=__A ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : List[str],__A : Union[str, Any],__A : Dict,__A : Optional[Any],__A : List[Any],__A : int,__A : Tuple,__A : Optional[int] ): _lowerCamelCase : Any = TFRoFormerForQuestionAnswering(config=__A ) _lowerCamelCase : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Dict = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str],__A : List[str],__A : List[Any],__A : int,__A : str,__A : Optional[int] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Dict = TFRoFormerModelTester(self ) _lowerCamelCase : List[Any] = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(__A ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) _lowerCamelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCamelCase : List[str] = model(__A )[0] # TODO Replace vocab size _lowerCamelCase : List[Any] = 5_0_0_0_0 _lowerCamelCase : List[Any] = [1, 6, vocab_size] self.assertEqual(output.shape,__A ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _lowerCamelCase : Any = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3],__A,atol=1e-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = 1E-4 def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = tf.constant([[4, 1_0]] ) _lowerCamelCase : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6,embedding_dim=6 ) _lowerCamelCase : int = emba(input_ids.shape ) _lowerCamelCase : Union[str, Any] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__A,__A,atol=self.tolerance ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _lowerCamelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2,embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) _lowerCamelCase : List[str] = emba.weight[:3, :5] tf.debugging.assert_near(__A,__A,atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = 1E-4 def lowerCamelCase_ ( self : int ): # 2,12,16,64 _lowerCamelCase : Optional[Any] = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4,dtype=tf.floataa ),shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 _lowerCamelCase : Union[str, Any] = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4,dtype=tf.floataa ),shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 _lowerCamelCase : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2,embedding_dim=6_4 ) _lowerCamelCase : Tuple = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] _lowerCamelCase , _lowerCamelCase : List[Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __A,__A,__A ) _lowerCamelCase : Union[str, Any] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _lowerCamelCase : Dict = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8],__A,atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8],__A,atol=self.tolerance )
44
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' from typing import Any class UpperCAmelCase__ : def __init__( self : Any,__A : Any ): _lowerCamelCase : Dict = data _lowerCamelCase : Tuple = None def __repr__( self : int ): return f'Node({self.data})' class UpperCAmelCase__ : def __init__( self : int ): _lowerCamelCase : Tuple = None def __iter__( self : Optional[Any] ): _lowerCamelCase : int = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next def __len__( self : int ): return sum(1 for _ in self ) def __repr__( self : Union[str, Any] ): return "->".join([str(__A ) for item in self] ) def __getitem__( self : Optional[Any],__A : int ): if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Union[str, Any],__A : int,__A : Any ): if not 0 <= index < len(self ): raise ValueError("list index out of range." ) _lowerCamelCase : Any = self.head for _ in range(__A ): _lowerCamelCase : List[Any] = current.next _lowerCamelCase : Tuple = data def lowerCamelCase_ ( self : Union[str, Any],__A : Any ): self.insert_nth(len(self ),__A ) def lowerCamelCase_ ( self : List[Any],__A : Any ): self.insert_nth(0,__A ) def lowerCamelCase_ ( self : Optional[int],__A : int,__A : Any ): if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) _lowerCamelCase : str = Node(__A ) if self.head is None: _lowerCamelCase : List[Any] = new_node elif index == 0: _lowerCamelCase : Any = self.head # link new_node to head _lowerCamelCase : List[Any] = new_node else: _lowerCamelCase : Tuple = self.head for _ in range(index - 1 ): _lowerCamelCase : Any = temp.next _lowerCamelCase : int = temp.next _lowerCamelCase : Optional[Any] = new_node def lowerCamelCase_ ( self : Optional[Any] ): # print every node data print(self ) def lowerCamelCase_ ( self : List[Any] ): return self.delete_nth(0 ) def lowerCamelCase_ ( self : List[Any] ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowerCamelCase_ ( self : List[Any],__A : int = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) _lowerCamelCase : Any = self.head # default first node if index == 0: _lowerCamelCase : str = self.head.next else: _lowerCamelCase : Optional[Any] = self.head for _ in range(index - 1 ): _lowerCamelCase : List[Any] = temp.next _lowerCamelCase : List[str] = temp.next _lowerCamelCase : Optional[int] = temp.next.next return delete_node.data def lowerCamelCase_ ( self : Dict ): return self.head is None def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = None _lowerCamelCase : List[Any] = self.head while current: # Store the current node's next node. _lowerCamelCase : Any = current.next # Make the current node's next point backwards _lowerCamelCase : Any = prev # Make the previous node be the current node _lowerCamelCase : List[str] = current # Make the current node the next node (to progress iteration) _lowerCamelCase : Tuple = next_node # Return prev in order to put the head at the end _lowerCamelCase : Optional[Any] = prev def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = LinkedList() assert linked_list.is_empty() is True assert str(_lowerCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowerCAmelCase ) == i linked_list.insert_nth(_lowerCAmelCase , i + 1 ) assert str(_lowerCAmelCase ) == "->".join(str(_lowerCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowerCAmelCase ) == "->".join(str(_lowerCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowerCAmelCase ) == 9 assert str(_lowerCAmelCase ) == "->".join(str(_lowerCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _lowerCamelCase : Dict = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowerCAmelCase ) == "->".join(str(_lowerCAmelCase ) for i in range(-8 , 1 ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : Any = [ -9, 100, Node(77345112 ), "dlrow olleH", 7, 5555, 0, -1_9_2.5_5_5_5_5, "Hello, world!", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] _lowerCamelCase : Any = LinkedList() for i in test_input: linked_list.insert_tail(_lowerCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowerCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _lowerCamelCase : Tuple = linked_list.delete_head() assert result == -9 assert ( str(_lowerCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _lowerCamelCase : Any = linked_list.delete_tail() assert result == 1_2.2 assert ( str(_lowerCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _lowerCamelCase : str = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowerCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(_lowerCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowerCAmelCase ) assert ( str(_lowerCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowerCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ): """simple docstring""" from doctest import testmod testmod() _lowerCamelCase : List[str] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(_lowerCAmelCase ) print("\nReading/changing Node data using indexing:" ) print(F'Element at Position 1: {linked_list[1]}' ) _lowerCamelCase : Optional[int] = input("Enter New Value: " ).strip() print("New list:" ) print(_lowerCAmelCase ) print(F'length of linked_list is : {len(_lowerCAmelCase )}' ) if __name__ == "__main__": main()
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , A , ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = RobertaConfig lowerCAmelCase_ = 'roberta' def __init__( self : int,__A : Optional[Any] ): super().__init__(__A ) _lowerCamelCase : int = RobertaEmbeddings(__A ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , A , ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = RobertaConfig lowerCAmelCase_ = 'roberta' def __init__( self : Dict,__A : int ): super().__init__(__A ) _lowerCamelCase : Tuple = config.num_labels _lowerCamelCase : Union[str, Any] = config.num_hidden_layers _lowerCamelCase : List[Any] = DeeRobertaModel(__A ) _lowerCamelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowerCamelCase : Any = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(__A ) def lowerCamelCase_ ( self : Tuple,__A : Dict=None,__A : List[str]=None,__A : Any=None,__A : List[str]=None,__A : Optional[int]=None,__A : Any=None,__A : List[str]=None,__A : List[str]=-1,__A : Dict=False,): _lowerCamelCase : Optional[Any] = self.num_layers try: _lowerCamelCase : Optional[Any] = self.roberta( __A,attention_mask=__A,token_type_ids=__A,position_ids=__A,head_mask=__A,inputs_embeds=__A,) _lowerCamelCase : int = outputs[1] _lowerCamelCase : str = self.dropout(__A ) _lowerCamelCase : Any = self.classifier(__A ) _lowerCamelCase : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCamelCase : Tuple = e.message _lowerCamelCase : Optional[Any] = e.exit_layer _lowerCamelCase : Union[str, Any] = outputs[0] if not self.training: _lowerCamelCase : Any = entropy(__A ) _lowerCamelCase : Any = [] _lowerCamelCase : List[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCamelCase : List[str] = MSELoss() _lowerCamelCase : List[str] = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: _lowerCamelCase : Tuple = CrossEntropyLoss() _lowerCamelCase : str = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits _lowerCamelCase : Union[str, Any] = [] for highway_exit in outputs[-1]: _lowerCamelCase : List[Any] = highway_exit[0] if not self.training: highway_logits_all.append(__A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCamelCase : Optional[Any] = MSELoss() _lowerCamelCase : Any = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: _lowerCamelCase : List[str] = CrossEntropyLoss() _lowerCamelCase : Optional[int] = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(__A ) if train_highway: _lowerCamelCase : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCamelCase : str = (loss,) + outputs if not self.training: _lowerCamelCase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCamelCase : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
44
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : list[list] ): """simple docstring""" _lowerCamelCase : List[str] = current_set.copy() for row_index, row in enumerate(_lowerCAmelCase ): _lowerCamelCase : Optional[int] = row[0] for column_index, column in enumerate(_lowerCAmelCase ): if magnitude == 0: _lowerCamelCase : Optional[Any] = column continue _lowerCamelCase : List[str] = column / magnitude # Subtract to cancel term _lowerCamelCase : List[str] = current_set[0] _lowerCamelCase : Dict = [first_row] _lowerCamelCase : Union[str, Any] = current_set[1::] for row in current_set: _lowerCamelCase : int = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_lowerCAmelCase ) continue for column_index in range(len(_lowerCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_lowerCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: _lowerCamelCase : Optional[Any] = final_set[0] _lowerCamelCase : List[str] = [] _lowerCamelCase : Optional[Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _lowerCamelCase : Optional[int] = simplify(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _lowerCAmelCase ) _lowerCamelCase : Any = resultant return final_set def A_ ( _lowerCAmelCase : list[list] ): """simple docstring""" if len(_lowerCAmelCase ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _lowerCamelCase : str = len(_lowerCAmelCase ) + 1 if any(len(_lowerCAmelCase ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(_lowerCAmelCase , (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(_lowerCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] _lowerCamelCase : int = equations.copy() if any(0 in row for row in data_set ): _lowerCamelCase : Union[str, Any] = data_set.copy() _lowerCamelCase : Optional[Any] = [] for row_index, row in enumerate(_lowerCAmelCase ): if 0 not in row: _lowerCamelCase : Dict = data_set.pop(_lowerCAmelCase ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 , _lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = data_set.copy() _lowerCamelCase : Union[str, Any] = simplify(_lowerCAmelCase ) _lowerCamelCase : int = simplified[::-1] _lowerCamelCase : list = [] for row in simplified: _lowerCamelCase : List[Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _lowerCamelCase : Optional[int] = row.copy()[: len(_lowerCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_lowerCAmelCase ) == 0: solutions.append(0 ) continue _lowerCamelCase : List[str] = temp_row[1::] _lowerCamelCase : Union[str, Any] = temp_row[::-1] for column_index, column in enumerate(_lowerCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_lowerCAmelCase ) _lowerCamelCase : Tuple = [] for item in solutions: final.append(float(round(_lowerCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
44
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase_ : Optional[int] = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
1