code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['image_processor', 'tokenizer'] lowerCAmelCase_ = 'ViltImageProcessor' lowerCAmelCase_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : str,__A : int=None,__A : Optional[int]=None,**__A : Union[str, Any] ): _lowerCamelCase : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.",__A,) _lowerCamelCase : Tuple = kwargs.pop("feature_extractor" ) _lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A,__A ) _lowerCamelCase : Tuple = self.image_processor def __call__( self : Optional[int],__A : int,__A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,__A : bool = True,__A : Union[bool, str, PaddingStrategy] = False,__A : Union[bool, str, TruncationStrategy] = None,__A : Optional[int] = None,__A : int = 0,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[bool] = None,__A : bool = False,__A : bool = False,__A : bool = False,__A : bool = False,__A : bool = True,__A : Optional[Union[str, TensorType]] = None,**__A : Union[str, Any],): _lowerCamelCase : Optional[int] = self.tokenizer( text=__A,add_special_tokens=__A,padding=__A,truncation=__A,max_length=__A,stride=__A,pad_to_multiple_of=__A,return_token_type_ids=__A,return_attention_mask=__A,return_overflowing_tokens=__A,return_special_tokens_mask=__A,return_offsets_mapping=__A,return_length=__A,verbose=__A,return_tensors=__A,**__A,) # add pixel_values + pixel_mask _lowerCamelCase : Dict = self.image_processor(__A,return_tensors=__A ) encoding.update(__A ) return encoding def lowerCamelCase_ ( self : List[Any],*__A : List[str],**__A : List[str] ): return self.tokenizer.batch_decode(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Union[str, Any],**__A : str ): return self.tokenizer.decode(*__A,**__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Tuple = self.tokenizer.model_input_names _lowerCamelCase : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase_ ( self : Dict ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",__A,) return self.image_processor_class @property def lowerCamelCase_ ( self : str ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",__A,) return self.image_processor
44
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=() , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Tuple="no" , _lowerCAmelCase : Tuple="29500" ): """simple docstring""" _lowerCamelCase : Any = False _lowerCamelCase : List[str] = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): _lowerCamelCase : Any = True elif "IPython" in sys.modules: _lowerCamelCase : Optional[Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: _lowerCamelCase : Union[str, Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , _lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: _lowerCamelCase : Optional[int] = 8 _lowerCamelCase : List[Any] = PrepareForLaunch(_lowerCAmelCase , distributed_type="TPU" ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*_lowerCAmelCase ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase , master_addr="127.0.01" , master_port=_lowerCAmelCase , mixed_precision=_lowerCAmelCase ): _lowerCamelCase : Tuple = PrepareForLaunch(_lowerCAmelCase , distributed_type="MULTI_GPU" ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _lowerCamelCase : Union[str, Any] = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict=() , _lowerCAmelCase : str=2 ): """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): _lowerCamelCase : int = PrepareForLaunch(_lowerCAmelCase , debug=_lowerCAmelCase ) start_processes(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="fork" )
44
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' import argparse import copy def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} with open(_lowerCAmelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowerCamelCase : Dict = [] _list.append([line.split()[1], line.split()[2]] ) _lowerCamelCase : List[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowerCamelCase : List[Any] = [] _list.append([line.split()[0], line.split()[2]] ) _lowerCamelCase : Dict = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): """simple docstring""" with open(_lowerCAmelCase ) as f: _lowerCamelCase : Optional[Any] = f.read(1 ) _lowerCamelCase : Optional[int] = start_node _lowerCamelCase : List[Any] = [] _lowerCamelCase : List[str] = start_node _lowerCamelCase : Optional[Any] = 0 while visiting not in first_solution: _lowerCamelCase : Any = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowerCAmelCase ) and k[0] not in first_solution: _lowerCamelCase : Optional[int] = k[1] _lowerCamelCase : Tuple = k[0] first_solution.append(_lowerCAmelCase ) _lowerCamelCase : Any = distance_of_first_solution + int(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = best_node first_solution.append(_lowerCAmelCase ) _lowerCamelCase : Any = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowerCamelCase : Optional[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = [] for n in solution[1:-1]: _lowerCamelCase : int = solution.index(_lowerCAmelCase ) for kn in solution[1:-1]: _lowerCamelCase : List[str] = solution.index(_lowerCAmelCase ) if n == kn: continue _lowerCamelCase : Dict = copy.deepcopy(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = kn _lowerCamelCase : List[Any] = n _lowerCamelCase : Any = 0 for k in _tmp[:-1]: _lowerCamelCase : Union[str, Any] = _tmp[_tmp.index(_lowerCAmelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowerCamelCase : int = distance + int(i[1] ) _tmp.append(_lowerCAmelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowerCamelCase : List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _lowerCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Dict = 1 _lowerCamelCase : Union[str, Any] = first_solution _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Optional[int] = distance_of_first_solution _lowerCamelCase : List[str] = solution while count <= iters: _lowerCamelCase : List[str] = find_neighborhood(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : List[Any] = neighborhood[index_of_best_solution] _lowerCamelCase : Optional[Any] = len(_lowerCAmelCase ) - 1 _lowerCamelCase : List[str] = False while not found: _lowerCamelCase : str = 0 while i < len(_lowerCAmelCase ): if best_solution[i] != solution[i]: _lowerCamelCase : str = best_solution[i] _lowerCamelCase : Any = solution[i] break _lowerCamelCase : List[Any] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowerCamelCase : Optional[int] = True _lowerCamelCase : Union[str, Any] = best_solution[:-1] _lowerCamelCase : Union[str, Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowerCamelCase : Tuple = cost _lowerCamelCase : List[str] = solution else: _lowerCamelCase : Dict = index_of_best_solution + 1 _lowerCamelCase : Any = neighborhood[index_of_best_solution] if len(_lowerCAmelCase ) >= size: tabu_list.pop(0 ) _lowerCamelCase : Union[str, Any] = count + 1 return best_solution_ever, best_cost def A_ ( _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Tuple = generate_neighbours(args.File ) _lowerCamelCase , _lowerCamelCase : Tuple = generate_first_solution( args.File , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : int = tabu_search( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.Iterations , args.Size , ) print(F'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Tuple = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
1
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : List[str] = logging.get_logger() def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : LevitConfig , _lowerCAmelCase : Path , _lowerCAmelCase : bool = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": _lowerCamelCase : Any = timm.create_model("levit_128s" , pretrained=_lowerCAmelCase ) else: _lowerCamelCase : Tuple = timm.create_model("levit_128" , pretrained=_lowerCAmelCase ) if hidden_sizes == 192: _lowerCamelCase : str = timm.create_model("levit_192" , pretrained=_lowerCAmelCase ) if hidden_sizes == 256: _lowerCamelCase : str = timm.create_model("levit_256" , pretrained=_lowerCAmelCase ) if hidden_sizes == 384: _lowerCamelCase : Tuple = timm.create_model("levit_384" , pretrained=_lowerCAmelCase ) from_model.eval() _lowerCamelCase : Any = LevitForImageClassificationWithTeacher(_lowerCAmelCase ).eval() _lowerCamelCase : Union[str, Any] = OrderedDict() _lowerCamelCase : Tuple = from_model.state_dict() _lowerCamelCase : Union[str, Any] = list(from_model.state_dict().keys() ) _lowerCamelCase : List[Any] = list(our_model.state_dict().keys() ) print(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for i in range(len(_lowerCAmelCase ) ): _lowerCamelCase : str = weights[og_keys[i]] our_model.load_state_dict(_lowerCAmelCase ) _lowerCamelCase : str = torch.randn((2, 3, 224, 224) ) _lowerCamelCase : Any = from_model(_lowerCAmelCase ) _lowerCamelCase : List[Any] = our_model(_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), "The model logits don't match the original one." _lowerCamelCase : Dict = name print(_lowerCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _lowerCamelCase : List[str] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def A_ ( _lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Union[str, Any] = 1000 _lowerCamelCase : str = (1, num_labels) _lowerCamelCase : List[str] = "huggingface/label-files" _lowerCamelCase : Optional[int] = num_labels _lowerCamelCase : List[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Union[str, Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : str = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) _lowerCamelCase : Any = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } _lowerCamelCase : str = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) UpperCAmelCase_ : Any = parser.parse_args() UpperCAmelCase_ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCAmelCase_ : List[str] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : Union[str, Any],*__A : Union[str, Any],**__A : Any ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead.",__A,) super().__init__(*__A,**__A )
44
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class UpperCAmelCase__ ( A ): def __init__( self : Any ): # test for the above condition self.test() def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = 0 _lowerCamelCase : List[str] = False while not completed: if counter == 1: self.reset() _lowerCamelCase : Any = self.advance() if not self.does_advance(__A ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = self.update(__A ) counter += 1 if counter > 1_0_0_0_0: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def lowerCamelCase_ ( self : Optional[int] ): raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self : str,__A : int ): raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self : Optional[Any],__A : int ): raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self : str ): raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self : Union[str, Any] ): raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self : int,__A : List[Any]=False ): raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase__ ( A ): def __init__( self : Dict,__A : List[int] ): super(__A,self ).__init__() if not isinstance(__A,__A ) or len(__A ) == 0: raise ValueError(f'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(__A,__A ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) _lowerCamelCase : Tuple = token_ids _lowerCamelCase : Dict = len(self.token_ids ) _lowerCamelCase : Tuple = -1 # the index of the currently fulfilled step _lowerCamelCase : Optional[int] = False def lowerCamelCase_ ( self : List[str] ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase_ ( self : List[Any],__A : int ): if not isinstance(__A,__A ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(__A )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase_ ( self : List[str],__A : int ): if not isinstance(__A,__A ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(__A )}' ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False if self.does_advance(__A ): self.fulfilled_idx += 1 _lowerCamelCase : Dict = True if self.fulfilled_idx == (self.seqlen - 1): _lowerCamelCase : Dict = True _lowerCamelCase : int = completed else: # failed to make progress. _lowerCamelCase : Optional[int] = True self.reset() return stepped, completed, reset def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = 0 def lowerCamelCase_ ( self : Optional[int] ): return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase_ ( self : str,__A : Any=False ): _lowerCamelCase : List[Any] = PhrasalConstraint(self.token_ids ) if stateful: _lowerCamelCase : List[Any] = self.seqlen _lowerCamelCase : List[str] = self.fulfilled_idx _lowerCamelCase : int = self.completed return new_constraint class UpperCAmelCase__ : def __init__( self : Union[str, Any],__A : List[List[int]],__A : Any=True ): _lowerCamelCase : List[str] = max([len(__A ) for one in nested_token_ids] ) _lowerCamelCase : Tuple = {} for token_ids in nested_token_ids: _lowerCamelCase : Optional[int] = root for tidx, token_id in enumerate(__A ): if token_id not in level: _lowerCamelCase : Any = {} _lowerCamelCase : Union[str, Any] = level[token_id] if no_subsets and self.has_subsets(__A,__A ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f' {nested_token_ids}.' ) _lowerCamelCase : str = root def lowerCamelCase_ ( self : Dict,__A : Any ): _lowerCamelCase : str = self.trie for current_token in current_seq: _lowerCamelCase : str = start[current_token] _lowerCamelCase : Optional[Any] = list(start.keys() ) return next_tokens def lowerCamelCase_ ( self : Any,__A : int ): _lowerCamelCase : Optional[Any] = self.next_tokens(__A ) return len(__A ) == 0 def lowerCamelCase_ ( self : List[Any],__A : Any ): _lowerCamelCase : Any = list(root.values() ) if len(__A ) == 0: return 1 else: return sum([self.count_leaves(__A ) for nn in next_nodes] ) def lowerCamelCase_ ( self : int,__A : Optional[Any],__A : Union[str, Any] ): _lowerCamelCase : Tuple = self.count_leaves(__A ) return len(__A ) != leaf_count class UpperCAmelCase__ ( A ): def __init__( self : str,__A : List[List[int]] ): super(__A,self ).__init__() if not isinstance(__A,__A ) or len(__A ) == 0: raise ValueError(f'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(__A,__A ) for token_ids in nested_token_ids ): raise ValueError(f'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(__A,__A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) _lowerCamelCase : Optional[Any] = DisjunctiveTrie(__A ) _lowerCamelCase : Dict = nested_token_ids _lowerCamelCase : Tuple = self.trie.max_height _lowerCamelCase : Optional[int] = [] _lowerCamelCase : str = False def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : List[str] = self.trie.next_tokens(self.current_seq ) if len(__A ) == 0: return None else: return token_list def lowerCamelCase_ ( self : Optional[Any],__A : int ): if not isinstance(__A,__A ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__A )}' ) _lowerCamelCase : Any = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase_ ( self : List[Any],__A : int ): if not isinstance(__A,__A ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__A )}' ) _lowerCamelCase : Any = False _lowerCamelCase : Any = False _lowerCamelCase : Any = False if self.does_advance(__A ): self.current_seq.append(__A ) _lowerCamelCase : Any = True else: _lowerCamelCase : Optional[int] = True self.reset() _lowerCamelCase : Union[str, Any] = self.trie.reached_leaf(self.current_seq ) _lowerCamelCase : Dict = completed return stepped, completed, reset def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = False _lowerCamelCase : int = [] def lowerCamelCase_ ( self : Tuple ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase_ ( self : Optional[int],__A : List[Any]=False ): _lowerCamelCase : str = DisjunctiveConstraint(self.token_ids ) if stateful: _lowerCamelCase : Union[str, Any] = self.seqlen _lowerCamelCase : Any = self.current_seq _lowerCamelCase : str = self.completed return new_constraint class UpperCAmelCase__ : def __init__( self : Optional[int],__A : List[Constraint] ): _lowerCamelCase : Dict = constraints # max # of steps required to fulfill a given constraint _lowerCamelCase : Optional[Any] = max([c.seqlen for c in constraints] ) _lowerCamelCase : str = len(__A ) _lowerCamelCase : Any = False self.init_state() def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Optional[Any] = [constraint.copy(stateful=__A ) for constraint in self.constraints] def lowerCamelCase_ ( self : int ): _lowerCamelCase : Any = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[Any] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _lowerCamelCase : Union[str, Any] = constraint.advance() if isinstance(__A,__A ): token_list.append(__A ) elif isinstance(__A,__A ): token_list.extend(__A ) else: _lowerCamelCase : Any = self.inprogress_constraint.advance() if isinstance(__A,__A ): token_list.append(__A ) elif isinstance(__A,__A ): token_list.extend(__A ) if len(__A ) == 0: return None else: return token_list def lowerCamelCase_ ( self : Optional[Any],__A : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _lowerCamelCase , _lowerCamelCase : Tuple = self.add(__A ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase_ ( self : int,__A : int ): if not isinstance(__A,__A ): raise ValueError(f'`token_id` should be an `int`, but is `{token_id}`.' ) _lowerCamelCase , _lowerCamelCase : Optional[int] = False, False if self.completed: _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Tuple = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = self.inprogress_constraint.update(__A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__A ) ) _lowerCamelCase : List[str] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _lowerCamelCase : Tuple = None if len(self.pending_constraints ) == 0: # we're done! _lowerCamelCase : int = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__A ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = pending_constraint.update(__A ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(__A ) _lowerCamelCase : Optional[Any] = None if not complete and stepped: _lowerCamelCase : Union[str, Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _lowerCamelCase : List[Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _lowerCamelCase : Dict = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase_ ( self : Any,__A : Union[str, Any]=True ): _lowerCamelCase : List[str] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _lowerCamelCase : List[Any] = [ constraint.copy(stateful=__A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _lowerCamelCase : Any = self.inprogress_constraint.copy(stateful=__A ) _lowerCamelCase : Tuple = [constraint.copy() for constraint in self.pending_constraints] return new_state
44
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = 1 for i in range(1 , num + 1 ): fact *= i return fact def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Any = 0 while number > 0: _lowerCamelCase : Optional[Any] = number % 10 sum_of_digits += last_digit _lowerCamelCase : Dict = number // 10 # Removing the last_digit from the given number return sum_of_digits def A_ ( _lowerCAmelCase : int = 100 ): """simple docstring""" _lowerCamelCase : List[str] = factorial(_lowerCAmelCase ) _lowerCamelCase : List[Any] = split_and_add(_lowerCAmelCase ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
44
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase__ ( A ): @staticmethod @abstractmethod def lowerCamelCase_ ( __A : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowerCamelCase_ ( self : int ): raise NotImplementedError()
44
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Tuple = emb.weight.shape _lowerCamelCase : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) _lowerCamelCase : int = emb.weight.data return lin_layer def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = torch.load(_lowerCAmelCase , map_location="cpu" ) _lowerCamelCase : List[Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"] _lowerCamelCase : Optional[Any] = mam_aaa["model"] remove_ignore_keys_(_lowerCAmelCase ) _lowerCamelCase : int = state_dict["encoder.embed_tokens.weight"].shape[0] _lowerCamelCase : str = MaMaaaConfig( vocab_size=_lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) _lowerCamelCase : Optional[int] = state_dict["decoder.embed_tokens.weight"] _lowerCamelCase : List[Any] = MaMaaaForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Optional[Any] = parser.parse_args() UpperCAmelCase_ : List[str] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
44
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
1
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCAmelCase_ : List[str] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self : int ): _lowerCamelCase : Any = False def lowerCamelCase_ ( self : str,__A : Dict,__A : List[str],__A : Optional[int],__A : int ): if not self.initialized: _lowerCamelCase : str = RagRetriever( __A,question_encoder_tokenizer=__A,generator_tokenizer=__A,index=__A,init_retrieval=__A,) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : Optional[int] ): self.retriever.index.init_index() def lowerCamelCase_ ( self : str,__A : int,__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Dict = self.retriever._main_retrieve(__A,__A ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A ): def __init__( self : Any,__A : Optional[int],__A : Tuple,__A : List[str],__A : List[str],__A : Tuple=None ): if index is not None and index.is_initialized() and len(__A ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( __A,question_encoder_tokenizer=__A,generator_tokenizer=__A,index=__A,init_retrieval=__A,) _lowerCamelCase : Optional[int] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__A,__A,__A,__A ) for worker in self.retrieval_workers ] ) def lowerCamelCase_ ( self : Optional[int] ): logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def lowerCamelCase_ ( self : Dict,__A : Any,__A : Optional[int] ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _lowerCamelCase : str = self.retrieval_workers[random.randint(0,len(self.retrieval_workers ) - 1 )] _lowerCamelCase , _lowerCamelCase : str = ray.get(random_worker.retrieve.remote(__A,__A ) ) else: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self._main_retrieve(__A,__A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__A ) @classmethod def lowerCamelCase_ ( cls : List[str],__A : Optional[int],__A : Any=None,**__A : Dict ): return super(__A,cls ).get_tokenizers(__A,__A,**__A ) @classmethod def lowerCamelCase_ ( cls : int,__A : Dict,__A : int,__A : Any=None,**__A : List[Any] ): _lowerCamelCase : Any = kwargs.pop("config",__A ) or RagConfig.from_pretrained(__A,**__A ) _lowerCamelCase : Optional[int] = RagTokenizer.from_pretrained(__A,config=__A ) _lowerCamelCase : Optional[int] = rag_tokenizer.question_encoder _lowerCamelCase : Optional[Any] = rag_tokenizer.generator if indexed_dataset is not None: _lowerCamelCase : Any = "custom" _lowerCamelCase : Union[str, Any] = CustomHFIndex(config.retrieval_vector_size,__A ) else: _lowerCamelCase : Optional[int] = cls._build_index(__A ) return cls( __A,question_encoder_tokenizer=__A,generator_tokenizer=__A,retrieval_workers=__A,index=__A,)
44
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase__ : def __init__( self : int,__A : List[str],__A : Tuple,__A : str,__A : str,__A : List[str],__A : int=0.2,__A : List[str]=0.2 ): _lowerCamelCase : int = bp_numa _lowerCamelCase : Optional[int] = bp_numa _lowerCamelCase : Optional[int] = bp_numa _lowerCamelCase : Union[str, Any] = conva_get[:2] _lowerCamelCase : Any = conva_get[2] _lowerCamelCase : int = size_pa _lowerCamelCase : Any = rate_w _lowerCamelCase : Any = rate_t _lowerCamelCase : str = [ np.mat(-1 * np.random.rand(self.conva[0],self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _lowerCamelCase : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa,self.num_bpa ) + 0.5 ) _lowerCamelCase : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa,self.num_bpa ) + 0.5 ) _lowerCamelCase : Any = -2 * np.random.rand(self.conva[1] ) + 1 _lowerCamelCase : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 _lowerCamelCase : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 def lowerCamelCase_ ( self : Tuple,__A : int ): # save model dict with pickle _lowerCamelCase : Any = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__A,"wb" ) as f: pickle.dump(__A,__A ) print(f'Model saved: {save_path}' ) @classmethod def lowerCamelCase_ ( cls : Any,__A : Dict ): # read saved model with open(__A,"rb" ) as f: _lowerCamelCase : List[str] = pickle.load(__A ) # noqa: S301 _lowerCamelCase : Tuple = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) _lowerCamelCase : List[str] = model_dic.get("size_pooling1" ) _lowerCamelCase : Dict = model_dic.get("num_bp1" ) _lowerCamelCase : List[str] = model_dic.get("num_bp2" ) _lowerCamelCase : Optional[Any] = model_dic.get("num_bp3" ) _lowerCamelCase : str = model_dic.get("rate_weight" ) _lowerCamelCase : Any = model_dic.get("rate_thre" ) # create model instance _lowerCamelCase : Union[str, Any] = CNN(__A,__A,__A,__A,__A,__A,__A ) # modify model parameter _lowerCamelCase : Dict = model_dic.get("w_conv1" ) _lowerCamelCase : Optional[int] = model_dic.get("wkj" ) _lowerCamelCase : Optional[Any] = model_dic.get("vji" ) _lowerCamelCase : Dict = model_dic.get("thre_conv1" ) _lowerCamelCase : Tuple = model_dic.get("thre_bp2" ) _lowerCamelCase : Optional[int] = model_dic.get("thre_bp3" ) return conv_ins def lowerCamelCase_ ( self : Optional[Any],__A : Optional[Any] ): return 1 / (1 + np.exp(-1 * x )) def lowerCamelCase_ ( self : Dict,__A : str ): return round(__A,3 ) def lowerCamelCase_ ( self : str,__A : int,__A : Any,__A : Union[str, Any],__A : Dict,__A : List[Any] ): # convolution process _lowerCamelCase : Optional[Any] = convs[0] _lowerCamelCase : List[Any] = convs[1] _lowerCamelCase : int = np.shape(__A )[0] # get the data slice of original image data, data_focus _lowerCamelCase : Tuple = [] for i_focus in range(0,size_data - size_conv + 1,__A ): for j_focus in range(0,size_data - size_conv + 1,__A ): _lowerCamelCase : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__A ) # calculate the feature map of every single kernel, and saved as list of matrix _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__A ): _lowerCamelCase : Optional[int] = [] for i_focus in range(len(__A ) ): _lowerCamelCase : List[Any] = ( np.sum(np.multiply(data_focus[i_focus],w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__A ) ) _lowerCamelCase : Union[str, Any] = np.asmatrix(__A ).reshape( __A,__A ) data_featuremap.append(__A ) # expanding the data slice to One dimenssion _lowerCamelCase : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__A ) ) _lowerCamelCase : Dict = np.asarray(__A ) return focus_list, data_featuremap def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[Any],__A : int="average_pool" ): # pooling process _lowerCamelCase : Tuple = len(featuremaps[0] ) _lowerCamelCase : Tuple = int(size_map / size_pooling ) _lowerCamelCase : int = [] for i_map in range(len(__A ) ): _lowerCamelCase : Optional[Any] = featuremaps[i_map] _lowerCamelCase : int = [] for i_focus in range(0,__A,__A ): for j_focus in range(0,__A,__A ): _lowerCamelCase : int = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__A ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__A ) ) _lowerCamelCase : Optional[Any] = np.asmatrix(__A ).reshape(__A,__A ) featuremap_pooled.append(__A ) return featuremap_pooled def lowerCamelCase_ ( self : Optional[Any],__A : List[str] ): # expanding three dimension data to one dimension list _lowerCamelCase : Union[str, Any] = [] for i in range(len(__A ) ): _lowerCamelCase : int = np.shape(data[i] ) _lowerCamelCase : List[str] = data[i].reshape(1,shapes[0] * shapes[1] ) _lowerCamelCase : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__A ) _lowerCamelCase : Tuple = np.asarray(__A ) return data_expanded def lowerCamelCase_ ( self : Tuple,__A : Optional[int] ): # expanding matrix to one dimension list _lowerCamelCase : int = np.asarray(__A ) _lowerCamelCase : List[str] = np.shape(__A ) _lowerCamelCase : Tuple = data_mat.reshape(1,shapes[0] * shapes[1] ) return data_expanded def lowerCamelCase_ ( self : List[str],__A : Any,__A : List[str],__A : List[Any],__A : Any,__A : Tuple ): _lowerCamelCase : Tuple = [] _lowerCamelCase : List[Any] = 0 for i_map in range(__A ): _lowerCamelCase : List[Any] = np.ones((size_map, size_map) ) for i in range(0,__A,__A ): for j in range(0,__A,__A ): _lowerCamelCase : int = pd_pool[ i_pool ] _lowerCamelCase : Dict = i_pool + 1 _lowerCamelCase : Any = np.multiply( __A,np.multiply(out_map[i_map],(1 - out_map[i_map]) ) ) pd_all.append(__A ) return pd_all def lowerCamelCase_ ( self : Union[str, Any],__A : Dict,__A : Optional[Any],__A : Union[str, Any],__A : Optional[Any],__A : Union[str, Any],__A : Tuple=bool ): # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(__A )) ) print((" - - Shape: Teach_Data ", np.shape(__A )) ) _lowerCamelCase : Tuple = 0 _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : List[str] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: _lowerCamelCase : List[Any] = 0 print(f'-------------Learning Time {rp}--------------' ) for p in range(len(__A ) ): # print('------------Learning Image: %d--------------'%p) _lowerCamelCase : List[str] = np.asmatrix(datas_train[p] ) _lowerCamelCase : Dict = np.asarray(datas_teach[p] ) _lowerCamelCase , _lowerCamelCase : int = self.convolute( __A,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) _lowerCamelCase : int = self.pooling(__A,self.size_poolinga ) _lowerCamelCase : List[str] = np.shape(__A ) _lowerCamelCase : Optional[Any] = self._expand(__A ) _lowerCamelCase : List[str] = data_bp_input _lowerCamelCase : Union[str, Any] = np.dot(__A,self.vji.T ) - self.thre_bpa _lowerCamelCase : Optional[int] = self.sig(__A ) _lowerCamelCase : Union[str, Any] = np.dot(__A,self.wkj.T ) - self.thre_bpa _lowerCamelCase : List[Any] = self.sig(__A ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _lowerCamelCase : Tuple = np.multiply( (data_teach - bp_outa),np.multiply(__A,(1 - bp_outa) ) ) _lowerCamelCase : List[str] = np.multiply( np.dot(__A,self.wkj ),np.multiply(__A,(1 - bp_outa) ) ) _lowerCamelCase : List[Any] = np.dot(__A,self.vji ) _lowerCamelCase : Optional[int] = pd_i_all / (self.size_poolinga * self.size_poolinga) _lowerCamelCase : int = pd_conva_pooled.T.getA().tolist() _lowerCamelCase : Optional[int] = self._calculate_gradient_from_pool( __A,__A,shape_featuremapa[0],shape_featuremapa[1],self.size_poolinga,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _lowerCamelCase : str = self._expand_mat(pd_conva_all[k_conv] ) _lowerCamelCase : Optional[int] = self.rate_weight * np.dot(__A,__A ) _lowerCamelCase : Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _lowerCamelCase : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _lowerCamelCase : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _lowerCamelCase : Dict = self.vji + pd_j_all.T * bp_outa * self.rate_weight _lowerCamelCase : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre _lowerCamelCase : Optional[int] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _lowerCamelCase : List[str] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _lowerCamelCase : List[Any] = rp + 1 _lowerCamelCase : str = error_count / patterns all_mse.append(__A ) def draw_error(): _lowerCamelCase : List[str] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__A,"+-" ) plt.plot(__A,"r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(__A,alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, f' - - Mse: {mse:.6f}') ) if draw_e: draw_error() return mse def lowerCamelCase_ ( self : int,__A : List[Any] ): # model predict _lowerCamelCase : Any = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(__A )) ) for p in range(len(__A ) ): _lowerCamelCase : Optional[int] = np.asmatrix(datas_test[p] ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.convolute( __A,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) _lowerCamelCase : Optional[int] = self.pooling(__A,self.size_poolinga ) _lowerCamelCase : int = self._expand(__A ) _lowerCamelCase : Any = data_bp_input _lowerCamelCase : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa _lowerCamelCase : Tuple = self.sig(__A ) _lowerCamelCase : Union[str, Any] = bp_outa * self.wkj.T - self.thre_bpa _lowerCamelCase : str = self.sig(__A ) produce_out.extend(bp_outa.getA().tolist() ) _lowerCamelCase : Union[str, Any] = [list(map(self.do_round,__A ) ) for each in produce_out] return np.asarray(__A ) def lowerCamelCase_ ( self : Any,__A : str ): # return the data of image after convoluting process so we can check it out _lowerCamelCase : Any = np.asmatrix(__A ) _lowerCamelCase , _lowerCamelCase : Optional[int] = self.convolute( __A,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) _lowerCamelCase : Optional[int] = self.pooling(__A,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
44
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : int = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' import math import unittest def A_ ( _lowerCAmelCase : int ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def lowerCamelCase_ ( self : Tuple ): with self.assertRaises(__A ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ),"Zero doesn't have any positive factors, primes must have exactly two.",) self.assertFalse( is_prime(1 ),"One only has 1 positive factor, primes must have exactly two.",) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
44
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _lowerCamelCase : Optional[int] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
44
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
1
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'WhisperFeatureExtractor' lowerCAmelCase_ = 'WhisperTokenizer' def __init__( self : List[str],__A : Tuple,__A : Any ): super().__init__(__A,__A ) _lowerCamelCase : List[str] = self.feature_extractor _lowerCamelCase : List[str] = False def lowerCamelCase_ ( self : List[Any],__A : Optional[Any]=None,__A : str=None,__A : Tuple=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A,language=__A,no_timestamps=__A ) def __call__( self : Union[str, Any],*__A : List[str],**__A : Any ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A,**__A ) _lowerCamelCase : Dict = kwargs.pop("audio",__A ) _lowerCamelCase : List[Any] = kwargs.pop("sampling_rate",__A ) _lowerCamelCase : Optional[Any] = kwargs.pop("text",__A ) if len(__A ) > 0: _lowerCamelCase : Dict = args[0] _lowerCamelCase : str = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _lowerCamelCase : Any = self.feature_extractor(__A,*__A,sampling_rate=__A,**__A ) if text is not None: _lowerCamelCase : Any = self.tokenizer(__A,**__A ) if text is None: return inputs elif audio is None: return encodings else: _lowerCamelCase : int = encodings["input_ids"] return inputs def lowerCamelCase_ ( self : Any,*__A : List[Any],**__A : Tuple ): return self.tokenizer.batch_decode(*__A,**__A ) def lowerCamelCase_ ( self : List[str],*__A : Optional[Any],**__A : Optional[int] ): return self.tokenizer.decode(*__A,**__A ) def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : List[str]="np" ): return self.tokenizer.get_prompt_ids(__A,return_tensors=__A )
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if number > 0: raise ValueError("input must be a negative integer" ) _lowerCamelCase : str = len(bin(_lowerCAmelCase )[3:] ) _lowerCamelCase : List[str] = bin(abs(_lowerCAmelCase ) - (1 << binary_number_length) )[3:] _lowerCamelCase : List[str] = ( ( "1" + "0" * (binary_number_length - len(_lowerCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
44
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A ): lowerCAmelCase_ = (PNDMScheduler,) lowerCAmelCase_ = (('num_inference_steps', 50),) def lowerCamelCase_ ( self : Tuple,**__A : Any ): _lowerCamelCase : Optional[Any] = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__A ) return config def lowerCamelCase_ ( self : Dict,__A : Tuple=0,**__A : int ): _lowerCamelCase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowerCamelCase : Tuple = kwargs.pop("num_inference_steps",__A ) _lowerCamelCase : Tuple = self.dummy_sample _lowerCamelCase : str = 0.1 * sample _lowerCamelCase : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCamelCase : List[str] = self.get_scheduler_config(**__A ) _lowerCamelCase : int = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals _lowerCamelCase : Optional[int] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) _lowerCamelCase : Optional[Any] = scheduler_class.from_pretrained(__A ) new_scheduler.set_timesteps(__A ) # copy over dummy past residuals _lowerCamelCase : Union[str, Any] = dummy_past_residuals[:] _lowerCamelCase : Union[str, Any] = scheduler.step_prk(__A,__A,__A,**__A ).prev_sample _lowerCamelCase : int = new_scheduler.step_prk(__A,__A,__A,**__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCamelCase : Tuple = scheduler.step_plms(__A,__A,__A,**__A ).prev_sample _lowerCamelCase : int = new_scheduler.step_plms(__A,__A,__A,**__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase_ ( self : str ): pass def lowerCamelCase_ ( self : List[Any],__A : List[Any]=0,**__A : Union[str, Any] ): _lowerCamelCase : Any = dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[int] = kwargs.pop("num_inference_steps",__A ) _lowerCamelCase : Tuple = self.dummy_sample _lowerCamelCase : Union[str, Any] = 0.1 * sample _lowerCamelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Dict = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) _lowerCamelCase : Optional[Any] = scheduler_class.from_pretrained(__A ) # copy over dummy past residuals new_scheduler.set_timesteps(__A ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase : Any = dummy_past_residuals[:] _lowerCamelCase : List[Any] = scheduler.step_prk(__A,__A,__A,**__A ).prev_sample _lowerCamelCase : Union[str, Any] = new_scheduler.step_prk(__A,__A,__A,**__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCamelCase : Any = scheduler.step_plms(__A,__A,__A,**__A ).prev_sample _lowerCamelCase : Optional[Any] = new_scheduler.step_plms(__A,__A,__A,**__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase_ ( self : int,**__A : Optional[Any] ): _lowerCamelCase : str = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__A ) _lowerCamelCase : str = scheduler_class(**__A ) _lowerCamelCase : Any = 1_0 _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__A ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCamelCase : Dict = model(__A,__A ) _lowerCamelCase : Optional[int] = scheduler.step_prk(__A,__A,__A ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCamelCase : List[Any] = model(__A,__A ) _lowerCamelCase : Dict = scheduler.step_plms(__A,__A,__A ).prev_sample return sample def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[Any] = kwargs.pop("num_inference_steps",__A ) for scheduler_class in self.scheduler_classes: _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**__A ) _lowerCamelCase : Any = self.dummy_sample _lowerCamelCase : Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(__A,"set_timesteps" ): scheduler.set_timesteps(__A ) elif num_inference_steps is not None and not hasattr(__A,"set_timesteps" ): _lowerCamelCase : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCamelCase : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCamelCase : List[Any] = dummy_past_residuals[:] _lowerCamelCase : List[Any] = scheduler.step_prk(__A,0,__A,**__A ).prev_sample _lowerCamelCase : Dict = scheduler.step_prk(__A,1,__A,**__A ).prev_sample self.assertEqual(output_a.shape,sample.shape ) self.assertEqual(output_a.shape,output_a.shape ) _lowerCamelCase : Dict = scheduler.step_plms(__A,0,__A,**__A ).prev_sample _lowerCamelCase : List[Any] = scheduler.step_plms(__A,1,__A,**__A ).prev_sample self.assertEqual(output_a.shape,sample.shape ) self.assertEqual(output_a.shape,output_a.shape ) def lowerCamelCase_ ( self : Optional[Any] ): for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__A ) def lowerCamelCase_ ( self : Optional[int] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : List[str] = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Optional[int] = scheduler_class(**__A ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps,torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ),) def lowerCamelCase_ ( self : str ): for beta_start, beta_end in zip([0.0001, 0.001],[0.002, 0.02] ): self.check_over_configs(beta_start=__A,beta_end=__A ) def lowerCamelCase_ ( self : List[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def lowerCamelCase_ ( self : str ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def lowerCamelCase_ ( self : List[Any] ): for t in [1, 5, 1_0]: self.check_over_forward(time_step=__A ) def lowerCamelCase_ ( self : Optional[int] ): for t, num_inference_steps in zip([1, 5, 1_0],[1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__A ) def lowerCamelCase_ ( self : Dict ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 _lowerCamelCase : List[str] = 2_7 for scheduler_class in self.scheduler_classes: _lowerCamelCase : List[Any] = self.dummy_sample _lowerCamelCase : str = 0.1 * sample _lowerCamelCase : Dict = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCamelCase : List[str] = scheduler.step_prk(__A,__A,__A ).prev_sample def lowerCamelCase_ ( self : Union[str, Any] ): with self.assertRaises(__A ): _lowerCamelCase : Optional[int] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__A ) scheduler.step_plms(self.dummy_sample,1,self.dummy_sample ).prev_sample def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : str = self.full_loop() _lowerCamelCase : str = torch.sum(torch.abs(__A ) ) _lowerCamelCase : Any = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Dict = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : int = torch.sum(torch.abs(__A ) ) _lowerCamelCase : int = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def lowerCamelCase_ ( self : Any ): # We specify different beta, so that the first alpha is 0.99 _lowerCamelCase : Optional[Any] = self.full_loop(set_alpha_to_one=__A,beta_start=0.01 ) _lowerCamelCase : str = torch.sum(torch.abs(__A ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def lowerCamelCase_ ( self : Tuple ): # We specify different beta, so that the first alpha is 0.99 _lowerCamelCase : Union[str, Any] = self.full_loop(set_alpha_to_one=__A,beta_start=0.01 ) _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__A ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
44
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
1
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" _lowerCamelCase : Tuple = True # 0 and 1 are none primes. if number <= 1: _lowerCamelCase : int = False for divisor in range(2 , int(round(sqrt(_lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _lowerCamelCase : Optional[int] = False break # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'status' must been from type bool" return status def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _lowerCamelCase : Dict = list(range(2 , n + 1 ) ) _lowerCamelCase : Dict = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_lowerCAmelCase ) ): for j in range(i + 1 , len(_lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _lowerCamelCase : List[Any] = 0 # filters actual prime numbers. _lowerCamelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" _lowerCamelCase : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_lowerCAmelCase ): ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase : Any ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" _lowerCamelCase : Tuple = [] # this list will be returns of the function. # potential prime number factors. _lowerCamelCase : Optional[Any] = 2 _lowerCamelCase : Optional[Any] = number if number == 0 or number == 1: ans.append(_lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_lowerCAmelCase ): while quotient != 1: if is_prime(_lowerCAmelCase ) and (quotient % factor == 0): ans.append(_lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _lowerCamelCase : Union[str, Any] = 0 # prime factorization of 'number' _lowerCamelCase : Tuple = prime_factorization(_lowerCAmelCase ) _lowerCamelCase : int = max(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _lowerCamelCase : int = 0 # prime factorization of 'number' _lowerCamelCase : List[Any] = prime_factorization(_lowerCAmelCase ) _lowerCamelCase : Any = min(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def A_ ( _lowerCAmelCase : Any ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (number > 2) and is_even(_lowerCAmelCase ) ), "'number' must been an int, even and > 2" _lowerCamelCase : int = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _lowerCamelCase : Any = get_prime_numbers(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = len(_lowerCAmelCase ) # run variable for while-loops. _lowerCamelCase : List[str] = 0 _lowerCamelCase : str = None # exit variable. for break up the loops _lowerCamelCase : List[Any] = True while i < len_pn and loop: _lowerCamelCase : List[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _lowerCamelCase : Optional[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (len(_lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple ): """simple docstring""" assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _lowerCamelCase : Optional[int] = 0 while numbera != 0: _lowerCamelCase : Tuple = numbera % numbera _lowerCamelCase : List[Any] = numbera _lowerCamelCase : str = rest # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple ): """simple docstring""" assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _lowerCamelCase : int = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _lowerCamelCase : Optional[int] = prime_factorization(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = prime_factorization(_lowerCAmelCase ) elif numbera == 1 or numbera == 1: _lowerCamelCase : List[str] = [] _lowerCamelCase : Any = [] _lowerCamelCase : Dict = max(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _lowerCamelCase : Any = prime_fac_a.count(_lowerCAmelCase ) _lowerCamelCase : int = prime_fac_a.count(_lowerCAmelCase ) for _ in range(max(_lowerCAmelCase , _lowerCAmelCase ) ): ans *= n else: _lowerCamelCase : str = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _lowerCamelCase : Optional[Any] = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A_ ( _lowerCAmelCase : Any ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" _lowerCamelCase : int = 0 _lowerCamelCase : Dict = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_lowerCAmelCase ): ans += 1 # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and is_prime( _lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" assert ( is_prime(_lowerCAmelCase ) and is_prime(_lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _lowerCamelCase : Any = p_number_a + 1 # jump to the next number _lowerCamelCase : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(_lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ans[0] != p_number_a and ans[len(_lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" _lowerCamelCase : int = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" _lowerCamelCase : Union[str, Any] = get_divisors(_lowerCAmelCase ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(_lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): """simple docstring""" assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _lowerCamelCase : Any = gcd(abs(_lowerCAmelCase ) , abs(_lowerCAmelCase ) ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" _lowerCamelCase : Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" _lowerCamelCase : int = 0 _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): _lowerCamelCase : str = ans ans += fiba _lowerCamelCase : Dict = tmp return ans
44
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
1
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase_ : Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase_ : Union[str, Any] = [0, 25, 50] UpperCAmelCase_ : int = [25, 50, 75] UpperCAmelCase_ : Dict = fuzz.membership.trimf(X, abca) UpperCAmelCase_ : Union[str, Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase_ : Optional[int] = np.ones(75) UpperCAmelCase_ : Optional[int] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase_ : int = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase_ : List[Any] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase_ : Optional[int] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase_ : Any = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase_ : str = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase_ : str = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase_ : int = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase_ : List[Any] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
44
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : int ): _lowerCamelCase : list[list[Edge]] = [[] for _ in range(__A )] _lowerCamelCase : str = size def __getitem__( self : Any,__A : int ): return iter(self._graph[vertex] ) @property def lowerCamelCase_ ( self : Optional[int] ): return self._size def lowerCamelCase_ ( self : Optional[Any],__A : int,__A : int,__A : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__A,__A ) ) def lowerCamelCase_ ( self : List[Any],__A : int,__A : int ): _lowerCamelCase : Tuple = deque([start_vertex] ) _lowerCamelCase : list[int | None] = [None] * self.size _lowerCamelCase : str = 0 while queue: _lowerCamelCase : Union[str, Any] = queue.popleft() _lowerCamelCase : Optional[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _lowerCamelCase : Union[str, Any] = current_distance + edge.weight _lowerCamelCase : Tuple = distances[edge.destination_vertex] if ( isinstance(__A,__A ) and new_distance >= dest_vertex_distance ): continue _lowerCamelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
44
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str]=False ): """simple docstring""" try: _lowerCamelCase : Tuple = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _lowerCamelCase : str = default else: # KEY is set, convert it to True or False. try: _lowerCamelCase : Optional[int] = strtobool(_lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ : Any = parse_flag_from_env('RUN_SLOW', default=False) def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" return unittest.skip("Test was skipped" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : str ): """simple docstring""" return unittest.skipUnless(_run_slow_tests , "test is slow" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[int]=None ): """simple docstring""" if test_case is None: return partial(_lowerCAmelCase , version=_lowerCAmelCase ) return unittest.skipUnless(is_torch_version(">=" , _lowerCAmelCase ) , F'test requires torch version >= {version}' )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(_lowerCAmelCase ) UpperCAmelCase_ : Optional[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCAmelCase ) class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = True @classmethod def lowerCamelCase_ ( cls : Any ): _lowerCamelCase : List[str] = tempfile.mkdtemp() @classmethod def lowerCamelCase_ ( cls : Tuple ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCamelCase_ ( self : Optional[int] ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__A ) class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : int,__A : Union[mock.Mock, List[mock.Mock]] ): _lowerCamelCase : Tuple = mocks if isinstance(__A,(tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Tuple = AcceleratorState() _lowerCamelCase : str = tensor[None].clone().to(state.device ) _lowerCamelCase : List[Any] = gather(_lowerCAmelCase ).cpu() _lowerCamelCase : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _lowerCAmelCase ): return False return True class UpperCAmelCase__ : def __init__( self : int,__A : Any,__A : List[Any],__A : str ): _lowerCamelCase : Tuple = returncode _lowerCamelCase : List[str] = stdout _lowerCamelCase : Any = stderr async def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : int ): """simple docstring""" while True: _lowerCamelCase : Optional[Any] = await stream.readline() if line: callback(_lowerCAmelCase ) else: break async def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" if echo: print("\nRunning: " , " ".join(_lowerCAmelCase ) ) _lowerCamelCase : List[str] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _lowerCamelCase : List[Any] = [] _lowerCamelCase : List[str] = [] def tee(_lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int="" ): _lowerCamelCase : Optional[Any] = line.decode("utf-8" ).rstrip() sink.append(_lowerCAmelCase ) if not quiet: print(_lowerCAmelCase , _lowerCAmelCase , file=_lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCAmelCase : tee(_lowerCAmelCase , _lowerCAmelCase , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCAmelCase : tee(_lowerCAmelCase , _lowerCAmelCase , sys.stderr , label="stderr:" ) ) ), ] , timeout=_lowerCAmelCase , ) return _RunOutput(await p.wait() , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , _lowerCAmelCase : int=None , _lowerCAmelCase : List[Any]=180 , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=True ): """simple docstring""" _lowerCamelCase : Dict = asyncio.get_event_loop() _lowerCamelCase : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCAmelCase , env=_lowerCAmelCase , stdin=_lowerCAmelCase , timeout=_lowerCAmelCase , quiet=_lowerCAmelCase , echo=_lowerCAmelCase ) ) _lowerCamelCase : List[str] = " ".join(_lowerCAmelCase ) if result.returncode > 0: _lowerCamelCase : int = "\n".join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) return result class UpperCAmelCase__ ( A ): pass def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple=False ): """simple docstring""" try: _lowerCamelCase : Optional[Any] = subprocess.check_output(_lowerCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_lowerCAmelCase , "decode" ): _lowerCamelCase : List[str] = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'Command `{" ".join(_lowerCAmelCase )}` failed with the following error:\n\n{e.output.decode()}' ) from e
44
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' import math import sys def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = "" try: with open(_lowerCAmelCase , "rb" ) as binary_file: _lowerCamelCase : List[Any] = binary_file.read() for dat in data: _lowerCamelCase : Optional[Any] = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[int] = {"0": "0", "1": "1"} _lowerCamelCase , _lowerCamelCase : List[str] = "", "" _lowerCamelCase : List[Any] = len(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCamelCase : Optional[Any] = lexicon[curr_string] result += last_match_id _lowerCamelCase : List[str] = last_match_id + "0" if math.loga(_lowerCAmelCase ).is_integer(): _lowerCamelCase : Dict = {} for curr_key in list(_lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = lexicon.pop(_lowerCAmelCase ) _lowerCamelCase : List[str] = new_lex _lowerCamelCase : Union[str, Any] = last_match_id + "1" index += 1 _lowerCamelCase : Union[str, Any] = "" return result def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : str = 8 try: with open(_lowerCAmelCase , "wb" ) as opened_file: _lowerCamelCase : int = [ to_write[i : i + byte_length] for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowerCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 _lowerCamelCase : Tuple = data_bits[counter:] _lowerCamelCase : int = data_bits[counter + 1 :] return data_bits def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = read_file_binary(_lowerCAmelCase ) _lowerCamelCase : List[str] = remove_prefix(_lowerCAmelCase ) _lowerCamelCase : List[Any] = decompress_data(_lowerCAmelCase ) write_file_binary(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : int = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = ['OwlViTFeatureExtractor'] UpperCAmelCase_ : Tuple = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
1
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'char' lowerCAmelCase_ = 'bpe' lowerCAmelCase_ = 'wp' UpperCAmelCase_ : Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['image_processor', 'char_tokenizer'] lowerCAmelCase_ = 'ViTImageProcessor' lowerCAmelCase_ = 'MgpstrTokenizer' def __init__( self : List[str],__A : Union[str, Any]=None,__A : Optional[Any]=None,**__A : int ): _lowerCamelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.",__A,) _lowerCamelCase : Dict = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : str = tokenizer _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__A,__A ) def __call__( self : Union[str, Any],__A : List[str]=None,__A : Optional[Any]=None,__A : str=None,**__A : Optional[int] ): if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : List[Any] = self.image_processor(__A,return_tensors=__A,**__A ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__A,return_tensors=__A,**__A ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : List[str] = encodings["input_ids"] return inputs def lowerCamelCase_ ( self : Tuple,__A : str ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = sequences _lowerCamelCase : List[str] = char_preds.size(0 ) _lowerCamelCase , _lowerCamelCase : Any = self._decode_helper(__A,"char" ) _lowerCamelCase , _lowerCamelCase : Any = self._decode_helper(__A,"bpe" ) _lowerCamelCase , _lowerCamelCase : Optional[int] = self._decode_helper(__A,"wp" ) _lowerCamelCase : Tuple = [] _lowerCamelCase : str = [] for i in range(__A ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : Any = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Dict = scores.index(max(__A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : str = {} _lowerCamelCase : str = final_strs _lowerCamelCase : Any = final_scores _lowerCamelCase : int = char_strs _lowerCamelCase : Any = bpe_strs _lowerCamelCase : Union[str, Any] = wp_strs return out def lowerCamelCase_ ( self : int,__A : Tuple,__A : Optional[Any] ): if format == DecodeType.CHARACTER: _lowerCamelCase : Tuple = self.char_decode _lowerCamelCase : Tuple = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : Dict = 2 _lowerCamelCase : int = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : str = self.wp_decode _lowerCamelCase : str = 1_0_2 _lowerCamelCase : Optional[int] = "[SEP]" else: raise ValueError(f'Format {format} is not supported.' ) _lowerCamelCase , _lowerCamelCase : Dict = [], [] _lowerCamelCase : str = pred_logits.size(0 ) _lowerCamelCase : str = pred_logits.size(1 ) _lowerCamelCase , _lowerCamelCase : int = pred_logits.topk(1,dim=-1,largest=__A,sorted=__A ) _lowerCamelCase : str = preds_index.view(-1,__A )[:, 1:] _lowerCamelCase : int = decoder(__A ) _lowerCamelCase , _lowerCamelCase : str = torch.nn.functional.softmax(__A,dim=2 ).max(dim=2 ) _lowerCamelCase : Dict = preds_max_prob[:, 1:] for index in range(__A ): _lowerCamelCase : List[Any] = preds_str[index].find(__A ) _lowerCamelCase : Union[str, Any] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__A ) if eos_token in pred_index else -1 _lowerCamelCase : Tuple = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : str = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__A ) conf_scores.append(__A ) return dec_strs, conf_scores def lowerCamelCase_ ( self : List[str],__A : List[Any] ): _lowerCamelCase : str = [seq.replace(" ","" ) for seq in self.char_tokenizer.batch_decode(__A )] return decode_strs def lowerCamelCase_ ( self : Optional[Any],__A : str ): return self.bpe_tokenizer.batch_decode(__A ) def lowerCamelCase_ ( self : Dict,__A : List[str] ): _lowerCamelCase : List[Any] = [seq.replace(" ","" ) for seq in self.wp_tokenizer.batch_decode(__A )] return decode_strs
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = StableDiffusionPanoramaPipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self : Tuple ): torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),cross_attention_dim=3_2,) _lowerCamelCase : List[Any] = DDIMScheduler() torch.manual_seed(0 ) _lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) torch.manual_seed(0 ) _lowerCamelCase : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,) _lowerCamelCase : Tuple = CLIPTextModel(__A ) _lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCamelCase : Tuple = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCamelCase_ ( self : Optional[int],__A : Any,__A : Optional[int]=0 ): _lowerCamelCase : Tuple = torch.manual_seed(__A ) _lowerCamelCase : Any = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Optional[int] = self.get_dummy_components() _lowerCamelCase : str = StableDiffusionPanoramaPipeline(**__A ) _lowerCamelCase : List[str] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Dict = self.get_dummy_inputs(__A ) _lowerCamelCase : Tuple = sd_pipe(**__A ).images _lowerCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase : Tuple = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : int ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self : Tuple ): super().test_inference_batch_single_identical(batch_size=2,expected_max_diff=3.25e-3 ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : int = StableDiffusionPanoramaPipeline(**__A ) _lowerCamelCase : Union[str, Any] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Any = self.get_dummy_inputs(__A ) _lowerCamelCase : Tuple = "french fries" _lowerCamelCase : Tuple = sd_pipe(**__A,negative_prompt=__A ) _lowerCamelCase : Dict = output.images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase : Union[str, Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Optional[Any] = self.get_dummy_components() _lowerCamelCase : Union[str, Any] = StableDiffusionPanoramaPipeline(**__A ) _lowerCamelCase : int = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Any = self.get_dummy_inputs(__A ) _lowerCamelCase : Any = sd_pipe(**__A,view_batch_size=2 ) _lowerCamelCase : Tuple = output.images _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase : List[Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : List[Any] = self.get_dummy_components() _lowerCamelCase : Optional[int] = EulerAncestralDiscreteScheduler( beta_start=0.00085,beta_end=0.012,beta_schedule="scaled_linear" ) _lowerCamelCase : Any = StableDiffusionPanoramaPipeline(**__A ) _lowerCamelCase : Any = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Any = self.get_dummy_inputs(__A ) _lowerCamelCase : Union[str, Any] = sd_pipe(**__A ).images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase : str = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Dict = self.get_dummy_components() _lowerCamelCase : Optional[int] = PNDMScheduler( beta_start=0.00085,beta_end=0.012,beta_schedule="scaled_linear",skip_prk_steps=__A ) _lowerCamelCase : Union[str, Any] = StableDiffusionPanoramaPipeline(**__A ) _lowerCamelCase : List[Any] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Tuple = self.get_dummy_inputs(__A ) _lowerCamelCase : Dict = sd_pipe(**__A ).images _lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase : List[Any] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[str],__A : Dict=0 ): _lowerCamelCase : List[Any] = torch.manual_seed(__A ) _lowerCamelCase : Union[str, Any] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[str] = "stabilityai/stable-diffusion-2-base" _lowerCamelCase : Any = DDIMScheduler.from_pretrained(__A,subfolder="scheduler" ) _lowerCamelCase : Tuple = StableDiffusionPanoramaPipeline.from_pretrained(__A,scheduler=__A,safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() _lowerCamelCase : str = self.get_inputs() _lowerCamelCase : int = pipe(**__A ).images _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) _lowerCamelCase : List[Any] = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base",safety_checker=__A ) _lowerCamelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() _lowerCamelCase : List[Any] = self.get_inputs() _lowerCamelCase : Tuple = pipe(**__A ).images _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) _lowerCamelCase : List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCamelCase_ ( self : str ): _lowerCamelCase : Any = 0 def callback_fn(__A : int,__A : int,__A : torch.FloatTensor ) -> None: _lowerCamelCase : str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowerCamelCase : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) _lowerCamelCase : Dict = latents[0, -3:, -3:, -1] _lowerCamelCase : str = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _lowerCamelCase : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) _lowerCamelCase : Optional[int] = latents[0, -3:, -3:, -1] _lowerCamelCase : Tuple = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _lowerCamelCase : List[str] = False _lowerCamelCase : Optional[int] = "stabilityai/stable-diffusion-2-base" _lowerCamelCase : Optional[Any] = DDIMScheduler.from_pretrained(__A,subfolder="scheduler" ) _lowerCamelCase : Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained(__A,scheduler=__A,safety_checker=__A ) _lowerCamelCase : Union[str, Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() _lowerCamelCase : int = self.get_inputs() pipe(**__A,callback=__A,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCamelCase_ ( self : Tuple ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase : int = "stabilityai/stable-diffusion-2-base" _lowerCamelCase : Tuple = DDIMScheduler.from_pretrained(__A,subfolder="scheduler" ) _lowerCamelCase : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__A,scheduler=__A,safety_checker=__A ) _lowerCamelCase : Optional[Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCamelCase : Optional[Any] = self.get_inputs() _lowerCamelCase : str = pipe(**__A ) _lowerCamelCase : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 1_0**9
44
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : def __init__( self : str,__A : int,__A : Union[str, Any]=1_3,__A : Optional[int]=7,__A : Dict=True,__A : Dict=True,__A : Optional[int]=True,__A : List[str]=True,__A : int=True,__A : int=False,__A : List[Any]=False,__A : Union[str, Any]=False,__A : Union[str, Any]=2,__A : str=9_9,__A : List[str]=0,__A : Any=3_2,__A : Optional[Any]=5,__A : Union[str, Any]=4,__A : List[Any]=0.1,__A : Tuple=0.1,__A : Dict=5_1_2,__A : Optional[int]=2,__A : List[str]=0.02,__A : Tuple=2,__A : Optional[int]=4,__A : List[Any]="last",__A : Optional[Any]=True,__A : Any=None,__A : Optional[Any]=0,): _lowerCamelCase : Any = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : int = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Any = use_input_lengths _lowerCamelCase : Any = use_token_type_ids _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : Union[str, Any] = gelu_activation _lowerCamelCase : Optional[Any] = sinusoidal_embeddings _lowerCamelCase : Optional[int] = causal _lowerCamelCase : str = asm _lowerCamelCase : Optional[int] = n_langs _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = n_special _lowerCamelCase : Any = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : Tuple = type_sequence_label_size _lowerCamelCase : Any = initializer_range _lowerCamelCase : Tuple = num_labels _lowerCamelCase : Any = num_choices _lowerCamelCase : List[str] = summary_type _lowerCamelCase : Union[str, Any] = use_proj _lowerCamelCase : Dict = scope _lowerCamelCase : List[Any] = bos_token_id def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Tuple = None if self.use_input_lengths: _lowerCamelCase : Optional[Any] = ( ids_tensor([self.batch_size],vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _lowerCamelCase : Union[str, Any] = None if self.use_token_type_ids: _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length],self.n_langs ) _lowerCamelCase : Optional[int] = None _lowerCamelCase : Dict = None _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : int = ids_tensor([self.batch_size],2 ).float() _lowerCamelCase : Dict = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase_ ( self : Union[str, Any] ): return XLMConfig( vocab_size=self.vocab_size,n_special=self.n_special,emb_dim=self.hidden_size,n_layers=self.num_hidden_layers,n_heads=self.num_attention_heads,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,gelu_activation=self.gelu_activation,sinusoidal_embeddings=self.sinusoidal_embeddings,asm=self.asm,causal=self.causal,n_langs=self.n_langs,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,summary_type=self.summary_type,use_proj=self.use_proj,num_labels=self.num_labels,bos_token_id=self.bos_token_id,) def lowerCamelCase_ ( self : Union[str, Any],__A : Optional[int],__A : Optional[int],__A : int,__A : List[Any],__A : List[str],__A : Optional[Any],__A : Optional[int],__A : Union[str, Any],__A : List[Any],): _lowerCamelCase : List[Any] = XLMModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : int = model(__A,lengths=__A,langs=__A ) _lowerCamelCase : str = model(__A,langs=__A ) _lowerCamelCase : str = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Dict,__A : Optional[int],__A : int,__A : Optional[int],__A : Union[str, Any],__A : Union[str, Any],__A : int,__A : Optional[int],__A : int,__A : List[str],): _lowerCamelCase : List[str] = XLMWithLMHeadModel(__A ) model.to(__A ) model.eval() _lowerCamelCase : List[Any] = model(__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.loss.shape,() ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Optional[int],__A : int,__A : List[Any],__A : Optional[int],__A : Union[str, Any],__A : str,__A : Tuple,__A : List[Any],__A : str,__A : List[Any],): _lowerCamelCase : List[str] = XLMForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model(__A ) _lowerCamelCase : str = model(__A,start_positions=__A,end_positions=__A ) _lowerCamelCase : Optional[int] = outputs self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Tuple,__A : int,__A : Union[str, Any],__A : Optional[Any],__A : Optional[int],__A : Optional[Any],__A : Dict,__A : int,__A : Union[str, Any],__A : List[Any],): _lowerCamelCase : List[str] = XLMForQuestionAnswering(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model(__A ) _lowerCamelCase : Dict = model( __A,start_positions=__A,end_positions=__A,cls_index=__A,is_impossible=__A,p_mask=__A,) _lowerCamelCase : str = model( __A,start_positions=__A,end_positions=__A,cls_index=__A,is_impossible=__A,) ((_lowerCamelCase) , ) : int = result_with_labels.to_tuple() _lowerCamelCase : int = model(__A,start_positions=__A,end_positions=__A ) ((_lowerCamelCase) , ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape,() ) self.parent.assertEqual(result.start_top_log_probs.shape,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape,(self.batch_size,) ) def lowerCamelCase_ ( self : List[Any],__A : Optional[int],__A : str,__A : int,__A : Any,__A : str,__A : str,__A : Tuple,__A : int,__A : List[str],): _lowerCamelCase : Union[str, Any] = XLMForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Any = model(__A,labels=__A ) self.parent.assertEqual(result.loss.shape,() ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : List[Any],__A : Dict,__A : Union[str, Any],__A : List[str],__A : List[str],__A : Optional[int],__A : Optional[Any],__A : List[str],__A : str,__A : Optional[int],): _lowerCamelCase : int = self.num_labels _lowerCamelCase : List[Any] = XLMForTokenClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,attention_mask=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Optional[Any],__A : Dict,__A : Dict,__A : Union[str, Any],__A : Any,__A : int,__A : Tuple,__A : Any,__A : Union[str, Any],__A : List[Any],): _lowerCamelCase : Optional[int] = self.num_choices _lowerCamelCase : List[Any] = XLMForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : str = model( __A,attention_mask=__A,token_type_ids=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : str = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[int] = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowerCAmelCase_ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCAmelCase_ = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase_ ( self : int,__A : Tuple,__A : Union[str, Any],__A : Optional[int],__A : Union[str, Any],__A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase_ ( self : List[Any],__A : List[Any],__A : Dict,__A : Union[str, Any]=False ): _lowerCamelCase : List[str] = super()._prepare_for_class(__A,__A,return_labels=__A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _lowerCamelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) _lowerCamelCase : Dict = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) return inputs_dict def lowerCamelCase_ ( self : str ): _lowerCamelCase : int = XLMModelTester(self ) _lowerCamelCase : Optional[int] = ConfigTester(self,config_class=__A,emb_dim=3_7 ) def lowerCamelCase_ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__A ) def lowerCamelCase_ ( self : str,__A : Optional[Any],__A : str,__A : List[str],__A : Tuple,__A : Optional[Any],__A : Optional[int]=False,__A : Optional[int]=1 ): self.assertIsInstance(__A,__A ) self.assertListEqual( [isinstance(__A,__A ) for iter_attentions in attentions],[True] * len(__A ) ) self.assertEqual(len(__A ),(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__A ): # adds PAD dummy token _lowerCamelCase : Optional[Any] = min_length + idx + 1 _lowerCamelCase : int = min_length + idx + 1 _lowerCamelCase : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions],[expected_shape] * len(__A ) ) def lowerCamelCase_ ( self : Optional[Any],__A : Union[str, Any],__A : Dict,__A : List[Any],__A : Dict,__A : List[str],__A : Union[str, Any]=False,__A : Dict=1 ): self.assertIsInstance(__A,__A ) self.assertListEqual( [isinstance(__A,__A ) for iter_hidden_states in hidden_states],[True] * len(__A ),) self.assertEqual(len(__A ),(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__A ): # adds PAD dummy token _lowerCamelCase : int = min_length + idx + 1 _lowerCamelCase : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],[expected_shape] * len(__A ),) pass @slow def lowerCamelCase_ ( self : Tuple ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = XLMModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : int = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(__A ) _lowerCamelCase : int = torch.tensor([[1_4, 4_4_7]],dtype=torch.long,device=__A ) # the president _lowerCamelCase : Optional[Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _lowerCamelCase : Optional[Any] = model.generate(__A,do_sample=__A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist(),__A )
44
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase_ : Optional[int] = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'facebook/nllb-200-distilled-600M' lowerCAmelCase_ = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) lowerCAmelCase_ = 'translator' lowerCAmelCase_ = AutoTokenizer lowerCAmelCase_ = AutoModelForSeqaSeqLM lowerCAmelCase_ = LANGUAGE_CODES lowerCAmelCase_ = ['text', 'text', 'text'] lowerCAmelCase_ = ['text'] def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Optional[Any],__A : int ): if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) _lowerCamelCase : List[str] = self.lang_to_code[src_lang] _lowerCamelCase : str = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __A,return_tensors="pt",src_lang=__A,tgt_lang=__A ) def lowerCamelCase_ ( self : Dict,__A : str ): return self.model.generate(**__A ) def lowerCamelCase_ ( self : int,__A : Optional[Any] ): return self.post_processor.decode(outputs[0].tolist(),skip_special_tokens=__A )
44
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
1
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : list ): """simple docstring""" if len(_lowerCAmelCase ) < 2: return collection def circle_sort_util(_lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> bool: _lowerCamelCase : str = False if low == high: return swapped _lowerCamelCase : str = low _lowerCamelCase : Dict = high while left < right: if collection[left] > collection[right]: _lowerCamelCase , _lowerCamelCase : Optional[int] = ( collection[right], collection[left], ) _lowerCamelCase : List[Any] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _lowerCamelCase , _lowerCamelCase : Any = ( collection[right + 1], collection[left], ) _lowerCamelCase : Optional[int] = True _lowerCamelCase : List[Any] = low + int((high - low) / 2 ) _lowerCamelCase : List[Any] = circle_sort_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Any = circle_sort_util(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) return swapped or left_swap or right_swap _lowerCamelCase : str = True while is_not_sorted is True: _lowerCamelCase : str = circle_sort_util(_lowerCAmelCase , 0 , len(_lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase_ : List[Any] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Tuple = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
44
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def A_ ( _lowerCAmelCase : Callable[[int | float], int | float] , _lowerCAmelCase : int | float , _lowerCAmelCase : int | float , _lowerCAmelCase : int = 100 , ): """simple docstring""" _lowerCamelCase : Optional[Any] = x_start _lowerCamelCase : List[str] = fnc(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length _lowerCamelCase : Optional[Any] = (x_end - x_start) / steps + xa _lowerCamelCase : List[str] = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step _lowerCamelCase : Any = xa _lowerCamelCase : Union[str, Any] = fxa return length if __name__ == "__main__": def A_ ( _lowerCAmelCase : str ): """simple docstring""" return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') UpperCAmelCase_ : Union[str, Any] = 10 while i <= 10_0000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
44
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Tuple = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def A_ ( _lowerCAmelCase : Optional[Any]=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A ) ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase_ ( self : Union[str, Any],__A : str,__A : int ): with TemporaryDirectory() as tmp_dir: _lowerCamelCase : Union[str, Any] = dataset_module_factory(__A,cache_dir=__A ) _lowerCamelCase : Any = import_main_class(dataset_module.module_path,dataset=__A ) _lowerCamelCase : DatasetBuilder = builder_cls( cache_dir=__A,config_name=__A,hash=dataset_module.hash,) _lowerCamelCase : List[Any] = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep,"/" ), config.DATASET_INFO_FILENAME, ] ) _lowerCamelCase : Any = cached_path(__A,cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" _lowerCamelCase : str = dataset_module_factory("wikipedia" , cache_dir=_lowerCAmelCase ) _lowerCamelCase : List[str] = import_main_class(dataset_module.module_path ) _lowerCamelCase : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _lowerCamelCase : List[str] = None builder_instance.download_and_prepare() _lowerCamelCase : str = builder_instance.as_dataset() assert ds @pytest.mark.integration def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : List[Any] = dataset_module_factory("wikipedia" , cache_dir=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) _lowerCamelCase : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) _lowerCamelCase : str = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds["train"] , _lowerCAmelCase ) assert next(iter(ds["train"] ) )
44
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list ): """simple docstring""" if not nums: raise ValueError("List is empty" ) return sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
44
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
1
'''simple docstring''' UpperCAmelCase_ : Any = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_ ( _lowerCAmelCase : dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Any = set() # keep track of all the paths to be checked _lowerCamelCase : Tuple = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCamelCase : Tuple = queue.pop(0 ) # get the last node from the path _lowerCamelCase : List[Any] = path[-1] if node not in explored: _lowerCamelCase : Optional[Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCamelCase : Any = list(_lowerCAmelCase ) new_path.append(_lowerCAmelCase ) queue.append(_lowerCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_lowerCAmelCase ) # in case there's no path between the 2 nodes return [] def A_ ( _lowerCAmelCase : dict , _lowerCAmelCase : Any , _lowerCAmelCase : int ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCamelCase : Tuple = [start] _lowerCamelCase : List[str] = set(_lowerCAmelCase ) # Keep tab on distances from `start` node. _lowerCamelCase : Dict = {start: 0, target: -1} while queue: _lowerCamelCase : Any = queue.pop(0 ) if node == target: _lowerCamelCase : Optional[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_lowerCAmelCase ) queue.append(_lowerCAmelCase ) _lowerCamelCase : Dict = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
44
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = inspect.getfile(accelerate.test_utils ) lowerCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) lowerCAmelCase_ = ['accelerate', 'launch'] lowerCAmelCase_ = Path.home() / '.cache/huggingface/accelerate' lowerCAmelCase_ = 'default_config.yaml' lowerCAmelCase_ = config_folder / config_file lowerCAmelCase_ = config_folder / '_default_config.yaml' lowerCAmelCase_ = Path('tests/test_configs' ) @classmethod def lowerCamelCase_ ( cls : Dict ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCamelCase_ ( cls : str ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Tuple = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path],env=os.environ.copy() ) def lowerCamelCase_ ( self : Tuple ): for config in sorted(self.test_config_path.glob("**/*.yaml" ) ): with self.subTest(config_file=__A ): execute_subprocess_async( self.base_cmd + ["--config_file", str(__A ), self.test_file_path],env=os.environ.copy() ) def lowerCamelCase_ ( self : Dict ): execute_subprocess_async(["accelerate", "test"],env=os.environ.copy() ) class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = 'test-tpu' lowerCAmelCase_ = 'us-central1-a' lowerCAmelCase_ = 'ls' lowerCAmelCase_ = ['accelerate', 'tpu-config'] lowerCAmelCase_ = 'cd /usr/share' lowerCAmelCase_ = 'tests/test_samples/test_command_file.sh' lowerCAmelCase_ = 'Running gcloud compute tpus tpu-vm ssh' def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"],return_stdout=__A,) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all',__A,) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Dict = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ],return_stdout=__A,) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all',__A,) def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"],return_stdout=__A ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all',__A,) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : List[Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"],return_stdout=__A,) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all',__A,) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ],return_stdout=__A,) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all',__A,) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Tuple = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"],return_stdout=__A,) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all',__A,) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ],return_stdout=__A,) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all',__A,) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Optional[Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"],return_stdout=__A,) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all',__A,) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Union[str, Any] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ],return_stdout=__A,) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all',__A,)
44
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase_ : Any = threading.Lock() UpperCAmelCase_ : Optional[logging.Handler] = None UpperCAmelCase_ : str = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } UpperCAmelCase_ : int = logging.WARNING UpperCAmelCase_ : Optional[Any] = True def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = os.getenv("TRANSFORMERS_VERBOSITY" , _lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def A_ ( ): """simple docstring""" return __name__.split("." )[0] def A_ ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def A_ ( ): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowerCamelCase : int = logging.StreamHandler() # Set sys.stderr as stream. _lowerCamelCase : Tuple = sys.stderr.flush # Apply our default configuration to the library root logger. _lowerCamelCase : Optional[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowerCamelCase : Dict = False def A_ ( ): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _lowerCamelCase : Dict = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowerCamelCase : int = None def A_ ( ): """simple docstring""" return log_levels def A_ ( _lowerCAmelCase : Optional[str] = None ): """simple docstring""" if name is None: _lowerCamelCase : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def A_ ( _lowerCAmelCase : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def A_ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def A_ ( _lowerCAmelCase : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() _lowerCamelCase : str = False def A_ ( ): """simple docstring""" _configure_library_root_logger() _lowerCamelCase : int = True def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = _get_library_root_logger().handlers for handler in handlers: _lowerCamelCase : str = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _lowerCamelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_lowerCAmelCase ) def A_ ( self : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , _lowerCAmelCase ) if no_advisory_warnings: return self.warning(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : int = warning_advice @functools.lru_cache(_lowerCAmelCase ) def A_ ( self : int , *_lowerCAmelCase : str , **_lowerCAmelCase : Tuple ): """simple docstring""" self.warning(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : Dict = warning_once class UpperCAmelCase__ : def __init__( self : Any,*__A : str,**__A : Tuple ): # pylint: disable=unused-argument _lowerCamelCase : Any = args[0] if args else None def __iter__( self : List[Any] ): return iter(self._iterator ) def __getattr__( self : Any,__A : int ): def empty_fn(*__A : int,**__A : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[int] ): return self def __exit__( self : List[Any],__A : List[str],__A : List[str],__A : List[str] ): return class UpperCAmelCase__ : def __call__( self : List[Any],*__A : Dict,**__A : List[str] ): if _tqdm_active: return tqdm_lib.tqdm(*__A,**__A ) else: return EmptyTqdm(*__A,**__A ) def lowerCamelCase_ ( self : Any,*__A : Tuple,**__A : List[Any] ): _lowerCamelCase : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__A,**__A ) def lowerCamelCase_ ( self : Any ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase_ : str = _tqdm_cls() def A_ ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def A_ ( ): """simple docstring""" global _tqdm_active _lowerCamelCase : Any = True hf_hub_utils.enable_progress_bars() def A_ ( ): """simple docstring""" global _tqdm_active _lowerCamelCase : Any = False hf_hub_utils.disable_progress_bars()
44
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCAmelCase_ : Tuple = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCAmelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['pixel_values'] def __init__( self : Dict,__A : bool = True,__A : Dict[str, int] = None,__A : PILImageResampling = PILImageResampling.BILINEAR,__A : bool = True,__A : Dict[str, int] = None,__A : bool = True,__A : Union[int, float] = 1 / 2_5_5,__A : bool = True,__A : bool = True,__A : Optional[Union[float, List[float]]] = None,__A : Optional[Union[float, List[float]]] = None,**__A : Optional[int],): super().__init__(**__A ) _lowerCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 2_5_6} _lowerCamelCase : int = get_size_dict(__A,default_to_square=__A ) _lowerCamelCase : Optional[int] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _lowerCamelCase : Tuple = get_size_dict(__A,param_name="crop_size" ) _lowerCamelCase : Tuple = do_resize _lowerCamelCase : List[str] = size _lowerCamelCase : List[str] = do_center_crop _lowerCamelCase : Any = crop_size _lowerCamelCase : int = resample _lowerCamelCase : str = do_rescale _lowerCamelCase : int = rescale_factor _lowerCamelCase : Optional[int] = offset _lowerCamelCase : Tuple = do_normalize _lowerCamelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self : Dict,__A : np.ndarray,__A : Dict[str, int],__A : PILImageResampling = PILImageResampling.BILINEAR,__A : Optional[Union[str, ChannelDimension]] = None,**__A : Dict,): _lowerCamelCase : Any = get_size_dict(__A,default_to_square=__A ) if "shortest_edge" in size: _lowerCamelCase : int = get_resize_output_image_size(__A,size["shortest_edge"],default_to_square=__A ) elif "height" in size and "width" in size: _lowerCamelCase : str = (size["height"], size["width"]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__A,size=__A,resample=__A,data_format=__A,**__A ) def lowerCamelCase_ ( self : Tuple,__A : np.ndarray,__A : Dict[str, int],__A : Optional[Union[str, ChannelDimension]] = None,**__A : List[Any],): _lowerCamelCase : Tuple = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__A,size=(size["height"], size["width"]),data_format=__A,**__A ) def lowerCamelCase_ ( self : List[Any],__A : np.ndarray,__A : Union[int, float],__A : bool = True,__A : Optional[Union[str, ChannelDimension]] = None,**__A : Tuple,): _lowerCamelCase : List[str] = image.astype(np.floataa ) if offset: _lowerCamelCase : Any = image - (scale / 2) return rescale(__A,scale=__A,data_format=__A,**__A ) def lowerCamelCase_ ( self : Optional[Any],__A : np.ndarray,__A : Union[float, List[float]],__A : Union[float, List[float]],__A : Optional[Union[str, ChannelDimension]] = None,**__A : Optional[Any],): return normalize(__A,mean=__A,std=__A,data_format=__A,**__A ) def lowerCamelCase_ ( self : Any,__A : ImageInput,__A : bool = None,__A : Dict[str, int] = None,__A : PILImageResampling = None,__A : bool = None,__A : Dict[str, int] = None,__A : bool = None,__A : float = None,__A : bool = None,__A : bool = None,__A : Optional[Union[float, List[float]]] = None,__A : Optional[Union[float, List[float]]] = None,__A : Optional[ChannelDimension] = ChannelDimension.FIRST,): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _lowerCamelCase : Optional[int] = to_numpy_array(__A ) if do_resize: _lowerCamelCase : Tuple = self.resize(image=__A,size=__A,resample=__A ) if do_center_crop: _lowerCamelCase : Any = self.center_crop(__A,size=__A ) if do_rescale: _lowerCamelCase : List[str] = self.rescale(image=__A,scale=__A,offset=__A ) if do_normalize: _lowerCamelCase : Optional[Any] = self.normalize(image=__A,mean=__A,std=__A ) _lowerCamelCase : Dict = to_channel_dimension_format(__A,__A ) return image def lowerCamelCase_ ( self : Dict,__A : ImageInput,__A : bool = None,__A : Dict[str, int] = None,__A : PILImageResampling = None,__A : bool = None,__A : Dict[str, int] = None,__A : bool = None,__A : float = None,__A : bool = None,__A : bool = None,__A : Optional[Union[float, List[float]]] = None,__A : Optional[Union[float, List[float]]] = None,__A : Optional[Union[str, TensorType]] = None,__A : ChannelDimension = ChannelDimension.FIRST,**__A : Optional[Any],): _lowerCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : int = resample if resample is not None else self.resample _lowerCamelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Union[str, Any] = offset if offset is not None else self.offset _lowerCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Union[str, Any] = image_std if image_std is not None else self.image_std _lowerCamelCase : Any = size if size is not None else self.size _lowerCamelCase : Any = get_size_dict(__A,default_to_square=__A ) _lowerCamelCase : str = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Optional[Any] = get_size_dict(__A,param_name="crop_size" ) if not valid_images(__A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _lowerCamelCase : str = make_batched(__A ) _lowerCamelCase : int = [ [ self._preprocess_image( image=__A,do_resize=__A,size=__A,resample=__A,do_center_crop=__A,crop_size=__A,do_rescale=__A,rescale_factor=__A,offset=__A,do_normalize=__A,image_mean=__A,image_std=__A,data_format=__A,) for img in video ] for video in videos ] _lowerCamelCase : Any = {"pixel_values": videos} return BatchFeature(data=__A,tensor_type=__A )
44
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' UpperCAmelCase_ : List[Any] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCAmelCase_ : str = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCAmelCase_ : str = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCAmelCase_ : Optional[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCAmelCase_ : int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCAmelCase_ : Optional[int] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCAmelCase_ : Optional[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCAmelCase_ : List[str] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
44
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ : List[str] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase__ : lowerCAmelCase_ = PegasusConfig lowerCAmelCase_ = {} lowerCAmelCase_ = 'gelu' def __init__( self : Optional[int],__A : Tuple,__A : Dict=1_3,__A : List[Any]=7,__A : int=True,__A : Optional[int]=False,__A : Any=9_9,__A : Any=3_2,__A : Any=5,__A : List[Any]=4,__A : Tuple=3_7,__A : int=0.1,__A : Optional[Any]=0.1,__A : int=2_0,__A : Optional[Any]=2,__A : List[Any]=1,__A : Optional[int]=0,): _lowerCamelCase : List[str] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Dict = seq_length _lowerCamelCase : Dict = is_training _lowerCamelCase : Dict = use_labels _lowerCamelCase : int = vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : Tuple = eos_token_id _lowerCamelCase : Optional[int] = pad_token_id _lowerCamelCase : Union[str, Any] = bos_token_id def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length - 1],self.vocab_size ).clip(3,self.vocab_size ) _lowerCamelCase : Optional[int] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ),1 ) _lowerCamelCase : List[str] = np.concatenate([input_ids, eos_tensor],axis=1 ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Any = self.config_cls( vocab_size=self.vocab_size,d_model=self.hidden_size,encoder_layers=self.num_hidden_layers,decoder_layers=self.num_hidden_layers,encoder_attention_heads=self.num_attention_heads,decoder_attention_heads=self.num_attention_heads,encoder_ffn_dim=self.intermediate_size,decoder_ffn_dim=self.intermediate_size,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,eos_token_ids=[2],bos_token_id=self.bos_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.pad_token_id,**self.config_updates,) _lowerCamelCase : List[Any] = prepare_pegasus_inputs_dict(__A,__A,__A ) return config, inputs_dict def lowerCamelCase_ ( self : str,__A : List[Any],__A : List[str],__A : Dict ): _lowerCamelCase : Union[str, Any] = 2_0 _lowerCamelCase : List[str] = model_class_name(__A ) _lowerCamelCase : Optional[Any] = model.encode(inputs_dict["input_ids"] ) _lowerCamelCase , _lowerCamelCase : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _lowerCamelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0],__A,__A ) _lowerCamelCase : List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length),dtype="i4" ) _lowerCamelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :],(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),) _lowerCamelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1],__A,decoder_attention_mask=__A,past_key_values=__A,decoder_position_ids=__A,) _lowerCamelCase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]],dtype="i4" ) _lowerCamelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:],__A,decoder_attention_mask=__A,past_key_values=outputs_cache.past_key_values,decoder_position_ids=__A,) _lowerCamelCase : List[Any] = model.decode(__A,__A ) _lowerCamelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3,msg=f'Max diff is {diff}' ) def lowerCamelCase_ ( self : Any,__A : List[str],__A : Tuple,__A : Dict ): _lowerCamelCase : str = 2_0 _lowerCamelCase : Union[str, Any] = model_class_name(__A ) _lowerCamelCase : Dict = model.encode(inputs_dict["input_ids"] ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _lowerCamelCase : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ],axis=-1,) _lowerCamelCase : Optional[int] = model.init_cache(decoder_input_ids.shape[0],__A,__A ) _lowerCamelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :],(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),) _lowerCamelCase : Tuple = model.decode( decoder_input_ids[:, :-1],__A,decoder_attention_mask=__A,past_key_values=__A,decoder_position_ids=__A,) _lowerCamelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]],dtype="i4" ) _lowerCamelCase : int = model.decode( decoder_input_ids[:, -1:],__A,past_key_values=outputs_cache.past_key_values,decoder_attention_mask=__A,decoder_position_ids=__A,) _lowerCamelCase : Optional[Any] = model.decode(__A,__A,decoder_attention_mask=__A ) _lowerCamelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3,msg=f'Max diff is {diff}' ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : int=None , _lowerCAmelCase : Tuple=None , ): """simple docstring""" if attention_mask is None: _lowerCamelCase : List[str] = np.not_equal(_lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _lowerCamelCase : List[Any] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCAmelCase_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = FlaxPegasusModelTester(self ) _lowerCamelCase : Dict = ConfigTester(self,config_class=__A ) def lowerCamelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : str ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__A,__A,__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__A,__A,__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Optional[int] = self._prepare_for_class(__A,__A ) _lowerCamelCase : Union[str, Any] = model_class(__A ) @jax.jit def encode_jitted(__A : Union[str, Any],__A : Dict=None,**__A : Union[str, Any] ): return model.encode(input_ids=__A,attention_mask=__A ) with self.subTest("JIT Enabled" ): _lowerCamelCase : Dict = encode_jitted(**__A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _lowerCamelCase : List[str] = encode_jitted(**__A ).to_tuple() self.assertEqual(len(__A ),len(__A ) ) for jitted_output, output in zip(__A,__A ): self.assertEqual(jitted_output.shape,output.shape ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : Optional[Any] = model.encode(inputs_dict["input_ids"],inputs_dict["attention_mask"] ) _lowerCamelCase : Optional[int] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__A : Optional[int],__A : str,__A : Optional[Any] ): return model.decode( decoder_input_ids=__A,decoder_attention_mask=__A,encoder_outputs=__A,) with self.subTest("JIT Enabled" ): _lowerCamelCase : Any = decode_jitted(**__A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _lowerCamelCase : List[str] = decode_jitted(**__A ).to_tuple() self.assertEqual(len(__A ),len(__A ) ) for jitted_output, output in zip(__A,__A ): self.assertEqual(jitted_output.shape,output.shape ) @slow def lowerCamelCase_ ( self : Dict ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("google/pegasus-large",from_pt=__A ) _lowerCamelCase : Union[str, Any] = np.ones((1, 1) ) _lowerCamelCase : Optional[Any] = model(__A ) self.assertIsNotNone(__A ) @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : str = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) _lowerCamelCase : Dict = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) _lowerCamelCase : Any = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _lowerCamelCase : Dict = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] _lowerCamelCase : Optional[Any] = tokenizer(__A,return_tensors="np",truncation=__A,max_length=5_1_2,padding=__A ) _lowerCamelCase : int = model.generate(**__A,num_beams=2 ).sequences _lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(__A,skip_special_tokens=__A ) assert tgt_text == decoded
44
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
1
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'M-CLIP' def __init__( self : List[Any],__A : Dict=1_0_2_4,__A : List[Any]=7_6_8,**__A : Optional[int] ): _lowerCamelCase : Union[str, Any] = transformerDimSize _lowerCamelCase : List[Any] = imageDimSize super().__init__(**__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = MCLIPConfig def __init__( self : List[str],__A : Any,*__A : Optional[int],**__A : Dict ): super().__init__(__A,*__A,**__A ) _lowerCamelCase : Optional[Any] = XLMRobertaModel(__A ) _lowerCamelCase : str = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def lowerCamelCase_ ( self : str,__A : Dict,__A : Optional[Any] ): _lowerCamelCase : Optional[Any] = self.transformer(input_ids=__A,attention_mask=__A )[0] _lowerCamelCase : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__A ), embs
44
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
1
'''simple docstring''' # using dfs for finding eulerian path traversal def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None ): """simple docstring""" _lowerCamelCase : Optional[int] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _lowerCamelCase , _lowerCamelCase : Optional[Any] = True, True _lowerCamelCase : str = dfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return path def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = 0 _lowerCamelCase : List[Any] = -1 for i in range(_lowerCAmelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _lowerCamelCase : Dict = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _lowerCamelCase , _lowerCamelCase : Dict = check_circuit_or_path(_lowerCAmelCase , _lowerCAmelCase ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return _lowerCamelCase : str = 1 if check == 2: _lowerCamelCase : int = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) _lowerCamelCase : List[Any] = dfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _lowerCamelCase : Union[str, Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _lowerCamelCase : Tuple = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _lowerCamelCase : Dict = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _lowerCamelCase : List[Any] = { 1: [], 2: [] # all degree is zero } _lowerCamelCase : Optional[Any] = 10 check_euler(_lowerCAmelCase , _lowerCAmelCase ) check_euler(_lowerCAmelCase , _lowerCAmelCase ) check_euler(_lowerCAmelCase , _lowerCAmelCase ) check_euler(_lowerCAmelCase , _lowerCAmelCase ) check_euler(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
44
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class UpperCAmelCase__ : def __init__( self : int,__A : int ): _lowerCamelCase : List[str] = value _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None class UpperCAmelCase__ : def __init__( self : str,__A : Node ): _lowerCamelCase : Union[str, Any] = tree def lowerCamelCase_ ( self : int,__A : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Optional[Any] ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
44
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Union[str, Any]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_lowerCAmelCase ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) lowerCAmelCase_ = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) lowerCAmelCase_ = list_field( default=[8, 32, 128, 512] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Use FP16 to accelerate inference.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Benchmark training of model'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Verbose memory tracing'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Trace memory line by line'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Save result to a CSV file'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Save all print statements in a log file'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to print environment information'} ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) lowerCAmelCase_ = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) lowerCAmelCase_ = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) lowerCAmelCase_ = field( default=F'''train_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) lowerCAmelCase_ = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) lowerCAmelCase_ = field( default=F'''env_info_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving environment information.'} , ) lowerCAmelCase_ = field( default=F'''log_{round(time() )}.csv''' , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) lowerCAmelCase_ = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def lowerCamelCase_ ( self : Dict ): warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models.",__A,) def lowerCamelCase_ ( self : Union[str, Any] ): return json.dumps(dataclasses.asdict(self ),indent=2 ) @property def lowerCamelCase_ ( self : Tuple ): if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def lowerCamelCase_ ( self : List[str] ): if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
44
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['image_processor', 'tokenizer'] lowerCAmelCase_ = 'AutoImageProcessor' lowerCAmelCase_ = 'AutoTokenizer' def __init__( self : str,__A : List[str]=None,__A : Optional[Any]=None,**__A : str ): _lowerCamelCase : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.",__A,) _lowerCamelCase : Optional[int] = kwargs.pop("feature_extractor" ) _lowerCamelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A,__A ) _lowerCamelCase : Any = self.image_processor _lowerCamelCase : str = False def __call__( self : List[Any],*__A : Tuple,**__A : Optional[int] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A,**__A ) _lowerCamelCase : List[str] = kwargs.pop("images",__A ) _lowerCamelCase : Any = kwargs.pop("text",__A ) if len(__A ) > 0: _lowerCamelCase : Dict = args[0] _lowerCamelCase : Tuple = args[1:] if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : str = self.image_processor(__A,*__A,**__A ) if text is not None: _lowerCamelCase : Optional[int] = self.tokenizer(__A,**__A ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Union[str, Any] = encodings["input_ids"] return inputs def lowerCamelCase_ ( self : int,*__A : List[str],**__A : Any ): return self.tokenizer.batch_decode(*__A,**__A ) def lowerCamelCase_ ( self : Dict,*__A : List[Any],**__A : List[str] ): return self.tokenizer.decode(*__A,**__A ) @contextmanager def lowerCamelCase_ ( self : Optional[Any] ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your images inputs, or in a separate call." ) _lowerCamelCase : Tuple = True _lowerCamelCase : Optional[int] = self.tokenizer yield _lowerCamelCase : Any = self.image_processor _lowerCamelCase : List[str] = False def lowerCamelCase_ ( self : List[Any],__A : str,__A : int=False,__A : int=None ): if added_vocab is None: _lowerCamelCase : List[Any] = self.tokenizer.get_added_vocab() _lowerCamelCase : str = {} while tokens: _lowerCamelCase : Tuple = re.search(r"<s_(.*?)>",__A,re.IGNORECASE ) if start_token is None: break _lowerCamelCase : Any = start_token.group(1 ) _lowerCamelCase : Optional[Any] = re.search(rf'</s_{key}>',__A,re.IGNORECASE ) _lowerCamelCase : int = start_token.group() if end_token is None: _lowerCamelCase : Any = tokens.replace(__A,"" ) else: _lowerCamelCase : Dict = end_token.group() _lowerCamelCase : Union[str, Any] = re.escape(__A ) _lowerCamelCase : Union[str, Any] = re.escape(__A ) _lowerCamelCase : Union[str, Any] = re.search(f'{start_token_escaped}(.*?){end_token_escaped}',__A,re.IGNORECASE ) if content is not None: _lowerCamelCase : str = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _lowerCamelCase : Union[str, Any] = self.tokenajson(__A,is_inner_value=__A,added_vocab=__A ) if value: if len(__A ) == 1: _lowerCamelCase : Optional[Any] = value[0] _lowerCamelCase : Dict = value else: # leaf nodes _lowerCamelCase : Tuple = [] for leaf in content.split(r"<sep/>" ): _lowerCamelCase : List[Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _lowerCamelCase : int = leaf[1:-2] # for categorical special tokens output[key].append(__A ) if len(output[key] ) == 1: _lowerCamelCase : Any = output[key][0] _lowerCamelCase : List[Any] = tokens[tokens.find(__A ) + len(__A ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:],is_inner_value=__A,added_vocab=__A ) if len(__A ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowerCamelCase_ ( self : Any ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",__A,) return self.image_processor_class @property def lowerCamelCase_ ( self : Dict ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",__A,) return self.image_processor
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": UpperCAmelCase_ : List[str] = input('Enter image url: ').strip() print(f'''Downloading image from {url} ...''') UpperCAmelCase_ : int = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image UpperCAmelCase_ : Any = soup.find('meta', {'property': 'og:image'})['content'] UpperCAmelCase_ : List[str] = requests.get(image_url).content UpperCAmelCase_ : Tuple = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, 'wb') as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
44
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
1
'''simple docstring''' UpperCAmelCase_ : Tuple = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : def __init__( self : List[str],__A : int,__A : Optional[int]=1_3,__A : Any=7,__A : Union[str, Any]=True,__A : Optional[int]=True,__A : List[str]=True,__A : Tuple=True,__A : Any=9_9,__A : Any=3_2,__A : Any=5,__A : Tuple=4,__A : List[str]=3_7,__A : Union[str, Any]="gelu",__A : Tuple=0.1,__A : Tuple=0.1,__A : Optional[int]=5_1_2,__A : Union[str, Any]=1_6,__A : Dict=2,__A : Any=0.02,__A : Optional[Any]=3,__A : int=4,__A : Optional[Any]=None,): _lowerCamelCase : Optional[int] = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Any = seq_length _lowerCamelCase : int = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : Any = use_token_type_ids _lowerCamelCase : int = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = type_sequence_label_size _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : str = num_labels _lowerCamelCase : List[str] = num_choices _lowerCamelCase : Dict = scope def lowerCamelCase_ ( self : Any ): _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : int = None if self.use_input_mask: _lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = None if self.use_token_type_ids: _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Dict = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Dict = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : Any = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : List[Any] ): return NystromformerConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) def lowerCamelCase_ ( self : str,__A : str,__A : Dict,__A : List[str],__A : List[Any],__A : Dict,__A : Optional[Any],__A : Any ): _lowerCamelCase : int = NystromformerModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model(__A,attention_mask=__A,token_type_ids=__A ) _lowerCamelCase : Optional[Any] = model(__A,token_type_ids=__A ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Any,__A : Union[str, Any],__A : Dict,__A : Union[str, Any],__A : Optional[int],__A : Tuple,__A : Union[str, Any],__A : List[Any] ): _lowerCamelCase : str = NystromformerForMaskedLM(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Union[str, Any],__A : List[Any],__A : Any,__A : Tuple,__A : List[str],__A : Union[str, Any],__A : Tuple,__A : Optional[int] ): _lowerCamelCase : str = NystromformerForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Any = model( __A,attention_mask=__A,token_type_ids=__A,start_positions=__A,end_positions=__A,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict,__A : Dict,__A : str,__A : List[Any],__A : List[str],__A : Union[str, Any],__A : Tuple,__A : Any ): _lowerCamelCase : List[Any] = self.num_labels _lowerCamelCase : int = NystromformerForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A,attention_mask=__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : List[Any],__A : str,__A : Dict,__A : Tuple,__A : Optional[int],__A : Any,__A : Optional[Any],__A : List[Any] ): _lowerCamelCase : int = self.num_labels _lowerCamelCase : str = NystromformerForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,attention_mask=__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Union[str, Any],__A : int,__A : str,__A : List[Any],__A : Union[str, Any],__A : Optional[int],__A : Tuple,__A : List[str] ): _lowerCamelCase : Optional[int] = self.num_choices _lowerCamelCase : Dict = NystromformerForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : List[Any] = model( __A,attention_mask=__A,token_type_ids=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Any = config_and_inputs _lowerCamelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = NystromformerModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : List[str] = type self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def lowerCamelCase_ ( self : str ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = NystromformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Dict = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) _lowerCamelCase : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(__A )[0] _lowerCamelCase : int = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape,__A ) _lowerCamelCase : str = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3],__A,atol=1e-4 ) ) @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : Optional[int] = "the [MASK] of Belgium is Brussels" _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) _lowerCamelCase : Dict = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) _lowerCamelCase : Optional[Any] = tokenizer(__A,return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : Union[str, Any] = model(encoding.input_ids ).logits _lowerCamelCase : Optional[Any] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__A ),"capital" )
44
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase_ : Dict = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A_ ( ): """simple docstring""" _lowerCamelCase : str = os.path.dirname(os.path.realpath(_lowerCAmelCase ) ) _lowerCamelCase : Tuple = os.path.join(_lowerCAmelCase , "words.txt" ) _lowerCamelCase : Dict = "" with open(_lowerCAmelCase ) as f: _lowerCamelCase : Optional[int] = f.readline() _lowerCamelCase : Optional[Any] = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _lowerCamelCase : Optional[int] = [ word for word in [sum(ord(_lowerCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
44
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : str,**__A : List[Any] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCamelCase : Any = deprecated_arg[3:] setattr(self,__A,not kwargs.pop(__A ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) _lowerCamelCase : str = kwargs.pop("torchscript",self.torchscript ) _lowerCamelCase : Tuple = kwargs.pop("torch_xla_tpu_print_metrics",self.torch_xla_tpu_print_metrics ) _lowerCamelCase : str = kwargs.pop("fp16_opt_level",self.fpaa_opt_level ) super().__init__(**__A ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Trace the models using torchscript'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) lowerCAmelCase_ = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def lowerCamelCase_ ( self : Any ): requires_backends(self,["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: _lowerCamelCase : Union[str, Any] = torch.device("cpu" ) _lowerCamelCase : List[str] = 0 elif is_torch_tpu_available(): _lowerCamelCase : Dict = xm.xla_device() _lowerCamelCase : Dict = 0 else: _lowerCamelCase : Union[str, Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _lowerCamelCase : Any = torch.cuda.device_count() return device, n_gpu @property def lowerCamelCase_ ( self : Any ): return is_torch_tpu_available() and self.tpu @property def lowerCamelCase_ ( self : Optional[Any] ): requires_backends(self,["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowerCamelCase_ ( self : Dict ): requires_backends(self,["torch"] ) return self._setup_devices[0] @property def lowerCamelCase_ ( self : Optional[int] ): requires_backends(self,["torch"] ) return self._setup_devices[1] @property def lowerCamelCase_ ( self : str ): return self.n_gpu > 0
44
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] , _lowerCAmelCase : list[list[str]] , _lowerCAmelCase : int , ): """simple docstring""" _lowerCamelCase : Dict = len(_lowerCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCAmelCase , _lowerCAmelCase , ) def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCAmelCase , _lowerCAmelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCAmelCase ) print("" ) print(len(_lowerCAmelCase ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
44
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : int = "" for i in table: res += inp[i - 1] return res def A_ ( _lowerCAmelCase : Any ): """simple docstring""" return data[1:] + data[0] def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = "" for i in range(len(_lowerCAmelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = int("0b" + data[0] + data[-1] , 2 ) _lowerCamelCase : str = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = message[:4] _lowerCamelCase : Optional[Any] = message[4:] _lowerCamelCase : int = apply_table(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : List[str] = xor(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : List[str] = apply_sbox(_lowerCAmelCase , temp[:4] ) # noqa: E741 _lowerCamelCase : int = apply_sbox(_lowerCAmelCase , temp[4:] ) _lowerCamelCase : Optional[int] = "0" * (2 - len(_lowerCAmelCase )) + l # noqa: E741 _lowerCamelCase : int = "0" * (2 - len(_lowerCAmelCase )) + r _lowerCamelCase : str = apply_table(l + r , _lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = xor(_lowerCAmelCase , _lowerCAmelCase ) return temp + right if __name__ == "__main__": UpperCAmelCase_ : Dict = input('Enter 10 bit key: ') UpperCAmelCase_ : str = input('Enter 8 bit message: ') UpperCAmelCase_ : List[str] = [6, 3, 7, 4, 8, 5, 10, 9] UpperCAmelCase_ : List[Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCAmelCase_ : int = [2, 4, 3, 1] UpperCAmelCase_ : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] UpperCAmelCase_ : Dict = [4, 1, 3, 5, 7, 2, 8, 6] UpperCAmelCase_ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCAmelCase_ : Optional[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCAmelCase_ : Optional[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCAmelCase_ : List[str] = apply_table(key, paa_table) UpperCAmelCase_ : Union[str, Any] = temp[:5] UpperCAmelCase_ : Union[str, Any] = temp[5:] UpperCAmelCase_ : Optional[int] = left_shift(left) UpperCAmelCase_ : Optional[int] = left_shift(right) UpperCAmelCase_ : Optional[Any] = apply_table(left + right, pa_table) UpperCAmelCase_ : Optional[Any] = left_shift(left) UpperCAmelCase_ : Optional[Any] = left_shift(right) UpperCAmelCase_ : Union[str, Any] = left_shift(left) UpperCAmelCase_ : List[str] = left_shift(right) UpperCAmelCase_ : List[Any] = apply_table(left + right, pa_table) # encryption UpperCAmelCase_ : Optional[Any] = apply_table(message, IP) UpperCAmelCase_ : int = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ : Tuple = temp[4:] + temp[:4] UpperCAmelCase_ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ : str = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption UpperCAmelCase_ : Union[str, Any] = apply_table(CT, IP) UpperCAmelCase_ : Any = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ : Optional[int] = temp[4:] + temp[:4] UpperCAmelCase_ : Tuple = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ : Optional[Any] = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
44
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def A_ ( *_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Union[Dict, Any]] = None , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=2 ): """simple docstring""" from .. import __version__ _lowerCamelCase : Union[str, Any] = take_from _lowerCamelCase : Union[str, Any] = () if not isinstance(args[0] , _lowerCAmelCase ): _lowerCamelCase : int = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCAmelCase ).base_version ) >= version.parse(_lowerCAmelCase ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) _lowerCamelCase : Dict = None if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCAmelCase ),) _lowerCamelCase : Optional[int] = F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(_lowerCAmelCase , _lowerCAmelCase ): values += (getattr(_lowerCAmelCase , _lowerCAmelCase ),) _lowerCamelCase : Tuple = F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: _lowerCamelCase : int = F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: _lowerCamelCase : List[Any] = warning + " " if standard_warn else "" warnings.warn(warning + message , _lowerCAmelCase , stacklevel=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) > 0: _lowerCamelCase : Optional[Any] = inspect.getouterframes(inspect.currentframe() )[1] _lowerCamelCase : Optional[Any] = call_frame.filename _lowerCamelCase : Dict = call_frame.lineno _lowerCamelCase : int = call_frame.function _lowerCamelCase , _lowerCamelCase : Any = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(_lowerCAmelCase ) == 0: return elif len(_lowerCAmelCase ) == 1: return values[0] return values
44
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' UpperCAmelCase_ : Dict = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase_ : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase_ : Tuple = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
44
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
1
'''simple docstring''' UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.6_0217_6634E-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.35_5818, } def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : float ): """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _lowerCamelCase : List[str] = ( F'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' F'Valid values are: {", ".join(_lowerCAmelCase )}' ) raise ValueError(_lowerCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
44
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase_ ( self : Dict ): _lowerCamelCase , _lowerCamelCase : int = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2",revision="bf16",dtype=jnp.bfloataa,) _lowerCamelCase : Optional[Any] = "A painting of a squirrel eating a burger" _lowerCamelCase : Tuple = jax.device_count() _lowerCamelCase : Dict = num_samples * [prompt] _lowerCamelCase : int = sd_pipe.prepare_inputs(__A ) _lowerCamelCase : Union[str, Any] = replicate(__A ) _lowerCamelCase : Any = shard(__A ) _lowerCamelCase : Dict = jax.random.PRNGKey(0 ) _lowerCamelCase : List[str] = jax.random.split(__A,jax.device_count() ) _lowerCamelCase : List[Any] = sd_pipe(__A,__A,__A,num_inference_steps=2_5,jit=__A )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _lowerCamelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : Optional[int] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowerCamelCase : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : int = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = "stabilityai/stable-diffusion-2" _lowerCamelCase , _lowerCamelCase : int = FlaxDPMSolverMultistepScheduler.from_pretrained(__A,subfolder="scheduler" ) _lowerCamelCase , _lowerCamelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( __A,scheduler=__A,revision="bf16",dtype=jnp.bfloataa,) _lowerCamelCase : List[str] = scheduler_params _lowerCamelCase : List[str] = "A painting of a squirrel eating a burger" _lowerCamelCase : List[str] = jax.device_count() _lowerCamelCase : Dict = num_samples * [prompt] _lowerCamelCase : Tuple = sd_pipe.prepare_inputs(__A ) _lowerCamelCase : Any = replicate(__A ) _lowerCamelCase : Any = shard(__A ) _lowerCamelCase : Tuple = jax.random.PRNGKey(0 ) _lowerCamelCase : Optional[Any] = jax.random.split(__A,jax.device_count() ) _lowerCamelCase : Optional[Any] = sd_pipe(__A,__A,__A,num_inference_steps=2_5,jit=__A )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _lowerCamelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : int = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowerCamelCase : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : str = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
44
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'marian' lowerCAmelCase_ = ['past_key_values'] lowerCAmelCase_ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any],__A : str=5_8_1_0_1,__A : str=None,__A : List[str]=1_0_2_4,__A : int=1_2,__A : int=4_0_9_6,__A : List[Any]=1_6,__A : int=1_2,__A : List[str]=4_0_9_6,__A : Union[str, Any]=1_6,__A : Any=0.0,__A : Optional[int]=0.0,__A : Any=True,__A : Tuple=True,__A : List[Any]="gelu",__A : List[str]=1_0_2_4,__A : Any=0.1,__A : Dict=0.0,__A : Tuple=0.0,__A : Any=0.02,__A : int=5_8_1_0_0,__A : List[Any]=False,__A : List[str]=5_8_1_0_0,__A : List[Any]=0,__A : List[Any]=0,__A : Optional[int]=True,**__A : str,): _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Tuple = decoder_vocab_size or vocab_size _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : List[str] = d_model _lowerCamelCase : Any = encoder_ffn_dim _lowerCamelCase : List[str] = encoder_layers _lowerCamelCase : Optional[Any] = encoder_attention_heads _lowerCamelCase : Optional[Any] = decoder_ffn_dim _lowerCamelCase : Optional[int] = decoder_layers _lowerCamelCase : List[str] = decoder_attention_heads _lowerCamelCase : Optional[int] = dropout _lowerCamelCase : Optional[Any] = attention_dropout _lowerCamelCase : Union[str, Any] = activation_dropout _lowerCamelCase : Union[str, Any] = activation_function _lowerCamelCase : Union[str, Any] = init_std _lowerCamelCase : Optional[int] = encoder_layerdrop _lowerCamelCase : Union[str, Any] = decoder_layerdrop _lowerCamelCase : str = use_cache _lowerCamelCase : str = encoder_layers _lowerCamelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : Optional[Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=__A,eos_token_id=__A,is_encoder_decoder=__A,decoder_start_token_id=__A,forced_eos_token_id=__A,**__A,) class UpperCAmelCase__ ( A ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCamelCase_ ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Dict = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCamelCase : int = {0: "batch"} _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} _lowerCamelCase : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__A,direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCamelCase : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCamelCase , _lowerCamelCase : int = self.num_layers for i in range(__A ): _lowerCamelCase : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} _lowerCamelCase : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: _lowerCamelCase : List[str] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCamelCase_ ( self : Tuple ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Optional[int] = super().outputs else: _lowerCamelCase : int = super(__A,self ).outputs if self.use_past: _lowerCamelCase , _lowerCamelCase : Optional[int] = self.num_layers for i in range(__A ): _lowerCamelCase : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} _lowerCamelCase : List[Any] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCamelCase_ ( self : Tuple,__A : PreTrainedTokenizer,__A : int = -1,__A : int = -1,__A : bool = False,__A : Optional[TensorType] = None,): _lowerCamelCase : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( __A,__A,__A,__A,__A ) # Generate decoder inputs _lowerCamelCase : Tuple = seq_length if not self.use_past else 1 _lowerCamelCase : Dict = self._generate_dummy_inputs_for_encoder_and_decoder( __A,__A,__A,__A,__A ) _lowerCamelCase : Union[str, Any] = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _lowerCamelCase : List[Any] = dict(**__A,**__A ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCamelCase , _lowerCamelCase : Tuple = common_inputs["input_ids"].shape _lowerCamelCase : Tuple = common_inputs["decoder_input_ids"].shape[1] _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.num_attention_heads _lowerCamelCase : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : str = decoder_seq_length + 3 _lowerCamelCase : List[str] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCamelCase : Optional[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__A,__A )],dim=1 ) _lowerCamelCase : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCamelCase , _lowerCamelCase : Tuple = self.num_layers _lowerCamelCase : Optional[int] = min(__A,__A ) _lowerCamelCase : Optional[Any] = max(__A,__A ) - min_num_layers _lowerCamelCase : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__A ): common_inputs["past_key_values"].append( ( torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), ) ) # TODO: test this. _lowerCamelCase : Optional[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__A,__A ): common_inputs["past_key_values"].append((torch.zeros(__A ), torch.zeros(__A )) ) return common_inputs def lowerCamelCase_ ( self : Tuple,__A : PreTrainedTokenizer,__A : int = -1,__A : int = -1,__A : bool = False,__A : Optional[TensorType] = None,): _lowerCamelCase : Any = self._generate_dummy_inputs_for_encoder_and_decoder( __A,__A,__A,__A,__A ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCamelCase , _lowerCamelCase : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCamelCase : Union[str, Any] = seqlen + 2 _lowerCamelCase , _lowerCamelCase : Any = self.num_layers _lowerCamelCase , _lowerCamelCase : Any = self.num_attention_heads _lowerCamelCase : int = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : List[str] = common_inputs["attention_mask"].dtype _lowerCamelCase : Any = torch.cat( [common_inputs["attention_mask"], torch.ones(__A,__A,dtype=__A )],dim=1 ) _lowerCamelCase : List[Any] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(__A ) ] return common_inputs def lowerCamelCase_ ( self : Optional[Any],__A : PreTrainedTokenizer,__A : int = -1,__A : int = -1,__A : bool = False,__A : Optional[TensorType] = None,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase : List[str] = compute_effective_axis_dimension( __A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase : Any = tokenizer.num_special_tokens_to_add(__A ) _lowerCamelCase : List[str] = compute_effective_axis_dimension( __A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase : Optional[Any] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCamelCase : str = dict(tokenizer(__A,return_tensors=__A ) ) return common_inputs def lowerCamelCase_ ( self : Union[str, Any],__A : PreTrainedTokenizer,__A : int = -1,__A : int = -1,__A : bool = False,__A : Optional[TensorType] = None,): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Any = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __A,batch_size=__A,seq_length=__A,is_pair=__A,framework=__A ) else: _lowerCamelCase : Dict = self._generate_dummy_inputs_for_causal_lm( __A,batch_size=__A,seq_length=__A,is_pair=__A,framework=__A ) return common_inputs def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[int],__A : str,__A : Any ): if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : int = super()._flatten_past_key_values_(__A,__A,__A,__A ) else: _lowerCamelCase : Union[str, Any] = super(__A,self )._flatten_past_key_values_( __A,__A,__A,__A ) @property def lowerCamelCase_ ( self : List[str] ): return 1e-4
44
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
1
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Tuple = F'Input value of [number={number}] must be an integer' raise TypeError(_lowerCAmelCase ) if number < 1: _lowerCamelCase : Any = F'Input value of [number={number}] must be > 0' raise ValueError(_lowerCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: _lowerCamelCase : int = int(math.log(number // 3 , 2 ) ) + 2 _lowerCamelCase : str = [3, 5] _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : Union[str, Any] = 3 for block in range(1 , _lowerCAmelCase ): for _ in range(_lowerCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): UpperCAmelCase_ : int = 0 try: UpperCAmelCase_ : List[Any] = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
44
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCAmelCase_ : Union[str, Any] = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : str,__A : str,__A : bool,__A : str = None,__A : list = None ): _lowerCamelCase : List[str] = None _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.join("examples","by_feature" ) ) _lowerCamelCase : Optional[Any] = os.path.abspath("examples" ) for item in os.listdir(__A ): if item not in EXCLUDE_EXAMPLES: _lowerCamelCase : Any = os.path.join(__A,__A ) if os.path.isfile(__A ) and ".py" in item_path: with self.subTest( tested_script=__A,feature_script=__A,tested_section="main()" if parser_only else "training_function()",): _lowerCamelCase : List[Any] = compare_against_test( os.path.join(__A,__A ),__A,__A,__A ) _lowerCamelCase : Optional[Any] = "\n".join(__A ) if special_strings is not None: for string in special_strings: _lowerCamelCase : Union[str, Any] = diff.replace(__A,"" ) self.assertEqual(__A,"" ) def lowerCamelCase_ ( self : Union[str, Any] ): self.one_complete_example("complete_nlp_example.py",__A ) self.one_complete_example("complete_nlp_example.py",__A ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = os.path.abspath(os.path.join("examples","cv_example.py" ) ) _lowerCamelCase : Tuple = [ " " * 1_6 + "{\n\n", " " * 2_0 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 2_0 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 2_0 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 2_0 + "\"epoch\": epoch,\n\n", " " * 1_6 + "},\n\n", " " * 1_6 + "step=epoch,\n", " " * 1_2, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py",__A,__A,__A ) self.one_complete_example("complete_cv_example.py",__A,__A,__A ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = False @classmethod def lowerCamelCase_ ( cls : int ): super().setUpClass() _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : List[Any] = os.path.join(cls._tmpdir,"default_config.yml" ) write_basic_config(save_location=cls.configPath ) _lowerCamelCase : str = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowerCamelCase_ ( cls : Tuple ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Tuple = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir,"epoch_0" ) ) ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[str] = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() _lowerCamelCase : List[str] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir,"step_2" ) ) ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Optional[Any] = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir,"epoch_0" )}\n '.split() _lowerCamelCase : Optional[Any] = run_command(self._launch_args + testargs,return_stdout=__A ) self.assertNotIn("epoch 0:",__A ) self.assertIn("epoch 1:",__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir,"step_2" )}\n '.split() _lowerCamelCase : List[Any] = run_command(self._launch_args + testargs,return_stdout=__A ) if torch.cuda.is_available(): _lowerCamelCase : Union[str, Any] = torch.cuda.device_count() else: _lowerCamelCase : Any = 1 if num_processes > 1: self.assertNotIn("epoch 0:",__A ) self.assertIn("epoch 1:",__A ) else: self.assertIn("epoch 0:",__A ) self.assertIn("epoch 1:",__A ) @slow def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : List[str] = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ,{"TESTING_MOCKED_DATALOADERS": "0"} ): _lowerCamelCase : Optional[Any] = run_command(self._launch_args + testargs,return_stdout=__A ) _lowerCamelCase : List[Any] = re.findall("({.+})",__A ) _lowerCamelCase : int = [r for r in results if "accuracy" in r][-1] _lowerCamelCase : Optional[Any] = ast.literal_eval(__A ) self.assertGreaterEqual(results["accuracy"],0.75 ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Tuple = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ,{"WANDB_MODE": "offline"} ) def lowerCamelCase_ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdir: _lowerCamelCase : Tuple = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__A,"tracking" ) ) ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : str = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ : int = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off UpperCAmelCase_ : List[str] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = NllbTokenizer lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self : Dict,__A : Any=None,__A : List[Any]=None,__A : List[str]="<s>",__A : Union[str, Any]="</s>",__A : Optional[int]="</s>",__A : str="<s>",__A : List[Any]="<unk>",__A : Any="<pad>",__A : List[str]="<mask>",__A : Any=None,__A : List[Any]=None,__A : Union[str, Any]=None,__A : Dict=False,**__A : Union[str, Any],): # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : Optional[int] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else mask_token _lowerCamelCase : Tuple = legacy_behaviour super().__init__( vocab_file=__A,tokenizer_file=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,src_lang=__A,tgt_lang=__A,additional_special_tokens=__A,legacy_behaviour=__A,**__A,) _lowerCamelCase : Dict = vocab_file _lowerCamelCase : int = False if not self.vocab_file else True _lowerCamelCase : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) _lowerCamelCase : Dict = { lang_code: self.convert_tokens_to_ids(__A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCamelCase : Union[str, Any] = src_lang if src_lang is not None else "eng_Latn" _lowerCamelCase : Optional[int] = self.convert_tokens_to_ids(self._src_lang ) _lowerCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase_ ( self : Optional[int] ): return self._src_lang @src_lang.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : str,__A : Tuple,__A : str,__A : Optional[str],__A : Optional[str],**__A : str ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _lowerCamelCase : int = src_lang _lowerCamelCase : Optional[int] = self(__A,add_special_tokens=__A,return_tensors=__A,**__A ) _lowerCamelCase : Optional[Any] = self.convert_tokens_to_ids(__A ) _lowerCamelCase : Any = tgt_lang_id return inputs def lowerCamelCase_ ( self : int,__A : List[str],__A : str = "eng_Latn",__A : Optional[List[str]] = None,__A : str = "fra_Latn",**__A : Tuple,): _lowerCamelCase : Any = src_lang _lowerCamelCase : Tuple = tgt_lang return super().prepare_seqaseq_batch(__A,__A,**__A ) def lowerCamelCase_ ( self : List[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self : Optional[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self : Any,__A : str ): _lowerCamelCase : int = self.convert_tokens_to_ids(__A ) if self.legacy_behaviour: _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCamelCase : Optional[int] = [self.cur_lang_code] _lowerCamelCase : Any = [self.eos_token_id] _lowerCamelCase : int = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCamelCase : int = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str,pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str,self.prefix_tokens + self.suffix_tokens ) ),) def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Dict = self.convert_tokens_to_ids(__A ) if self.legacy_behaviour: _lowerCamelCase : Dict = [] _lowerCamelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: _lowerCamelCase : List[Any] = [self.cur_lang_code] _lowerCamelCase : Tuple = [self.eos_token_id] _lowerCamelCase : int = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCamelCase : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCamelCase : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str,pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str,self.prefix_tokens + self.suffix_tokens ) ),) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCamelCase : List[str] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
44
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = SwinvaConfig() _lowerCamelCase : List[Any] = swinva_name.split("_" ) _lowerCamelCase : Optional[int] = name_split[1] if "to" in name_split[3]: _lowerCamelCase : Optional[int] = int(name_split[3][-3:] ) else: _lowerCamelCase : Tuple = int(name_split[3] ) if "to" in name_split[2]: _lowerCamelCase : str = int(name_split[2][-2:] ) else: _lowerCamelCase : str = int(name_split[2][6:] ) if model_size == "tiny": _lowerCamelCase : Optional[Any] = 96 _lowerCamelCase : List[Any] = (2, 2, 6, 2) _lowerCamelCase : int = (3, 6, 12, 24) elif model_size == "small": _lowerCamelCase : Optional[int] = 96 _lowerCamelCase : int = (2, 2, 18, 2) _lowerCamelCase : List[str] = (3, 6, 12, 24) elif model_size == "base": _lowerCamelCase : Dict = 128 _lowerCamelCase : List[str] = (2, 2, 18, 2) _lowerCamelCase : Dict = (4, 8, 16, 32) else: _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Any = (2, 2, 18, 2) _lowerCamelCase : Optional[int] = (6, 12, 24, 48) if "to" in swinva_name: _lowerCamelCase : Optional[int] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _lowerCamelCase : Dict = 21841 _lowerCamelCase : List[Any] = "huggingface/label-files" _lowerCamelCase : List[Any] = "imagenet-22k-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : int = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Union[str, Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} else: _lowerCamelCase : str = 1000 _lowerCamelCase : int = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Dict = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Tuple = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Union[str, Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = img_size _lowerCamelCase : Tuple = num_classes _lowerCamelCase : Any = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : List[Any] = num_heads _lowerCamelCase : List[Any] = window_size return config def A_ ( _lowerCAmelCase : int ): """simple docstring""" if "patch_embed.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: _lowerCamelCase : List[str] = "encoder." + name if "attn.proj" in name: _lowerCamelCase : Optional[Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _lowerCamelCase : int = name.replace("attn" , "attention.self" ) if "norm1" in name: _lowerCamelCase : str = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _lowerCamelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _lowerCamelCase : str = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCamelCase : int = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: _lowerCamelCase : Union[str, Any] = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: _lowerCamelCase : List[Any] = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: _lowerCamelCase : Any = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: _lowerCamelCase : Any = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": _lowerCamelCase : List[str] = "layernorm.weight" if name == "norm.bias": _lowerCamelCase : List[Any] = "layernorm.bias" if "head" in name: _lowerCamelCase : Tuple = name.replace("head" , "classifier" ) else: _lowerCamelCase : Any = "swinv2." + name return name def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Any = orig_state_dict.pop(_lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: _lowerCamelCase : str = key.split("." ) _lowerCamelCase : Any = int(key_split[1] ) _lowerCamelCase : Optional[Any] = int(key_split[3] ) _lowerCamelCase : Tuple = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase : Optional[int] = val[:dim, :] _lowerCamelCase : Dict = val[dim : dim * 2, :] _lowerCamelCase : Union[str, Any] = val[-dim:, :] else: _lowerCamelCase : int = val[:dim] _lowerCamelCase : str = val[ dim : dim * 2 ] _lowerCamelCase : str = val[-dim:] else: _lowerCamelCase : List[Any] = val return orig_state_dict def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : List[str] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() _lowerCamelCase : Dict = get_swinva_config(_lowerCAmelCase ) _lowerCamelCase : Any = SwinvaForImageClassification(_lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[int] = convert_state_dict(timm_model.state_dict() , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) _lowerCamelCase : Tuple = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) _lowerCamelCase : Any = image_processor(images=_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Dict = timm_model(inputs["pixel_values"] ) _lowerCamelCase : List[Any] = model(**_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
44
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : List[str] = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
1
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : str = len(_lowerCAmelCase ) + 1 _lowerCamelCase : Dict = len(_lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _lowerCamelCase : List[Any] = [[0 for i in range(_lowerCAmelCase )] for j in range(_lowerCAmelCase )] # since string of zero length match pattern of zero length _lowerCamelCase : Optional[int] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowerCAmelCase ): _lowerCamelCase : List[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowerCAmelCase ): _lowerCamelCase : List[Any] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowerCAmelCase ): for j in range(1 , _lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _lowerCamelCase : List[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _lowerCamelCase : Tuple = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _lowerCamelCase : Tuple = dp[i - 1][j] else: _lowerCamelCase : Dict = 0 else: _lowerCamelCase : int = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") UpperCAmelCase_ : Optional[Any] = 'aab' UpperCAmelCase_ : List[str] = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
44
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase_ : Tuple = getLogger(__name__) UpperCAmelCase_ : Dict = 'cuda' if torch.cuda.is_available() else 'cpu' def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int = 8 , _lowerCAmelCase : str = DEFAULT_DEVICE , _lowerCAmelCase : Dict=False , _lowerCAmelCase : str="summarization" , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : Tuple , ): """simple docstring""" _lowerCamelCase : Optional[Any] = Path(_lowerCAmelCase ).open("w" , encoding="utf-8" ) _lowerCamelCase : str = str(_lowerCAmelCase ) _lowerCamelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: _lowerCamelCase : int = model.half() _lowerCamelCase : Any = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. _lowerCamelCase : Union[str, Any] = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: _lowerCamelCase : str = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): _lowerCamelCase : Tuple = [prefix + text for text in examples_chunk] _lowerCamelCase : Any = tokenizer(_lowerCAmelCase , return_tensors="pt" , truncation=_lowerCAmelCase , padding="longest" ).to(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) _lowerCamelCase : Tuple = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() _lowerCamelCase : Any = int(time.time() - start_time ) # seconds _lowerCamelCase : Optional[int] = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ): """simple docstring""" return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def A_ ( _lowerCAmelCase : Dict=True ): """simple docstring""" _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("model_name" , type=_lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=_lowerCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=_lowerCAmelCase , help="where to save summaries" ) parser.add_argument("--reference_path" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=_lowerCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="batch size" ) parser.add_argument( "--n_obs" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=_lowerCAmelCase , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _lowerCamelCase , _lowerCamelCase : List[Any] = parser.parse_known_args() _lowerCamelCase : List[str] = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(F'parsed the following generate kwargs: {parsed_args}' ) _lowerCamelCase : Optional[int] = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _lowerCamelCase : Optional[Any] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) _lowerCamelCase : int = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores _lowerCamelCase : List[str] = calculate_bleu if "translation" in args.task else calculate_rouge _lowerCamelCase : Any = [x.rstrip() for x in open(args.save_path ).readlines()] _lowerCamelCase : List[Any] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] _lowerCamelCase : dict = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: _lowerCamelCase : Union[str, Any] = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
44
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'MCTCTFeatureExtractor' lowerCAmelCase_ = 'AutoTokenizer' def __init__( self : Union[str, Any],__A : int,__A : Tuple ): super().__init__(__A,__A ) _lowerCamelCase : Any = self.feature_extractor _lowerCamelCase : Dict = False def __call__( self : Optional[Any],*__A : int,**__A : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A,**__A ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _lowerCamelCase : int = kwargs.pop("raw_speech" ) else: _lowerCamelCase : int = kwargs.pop("audio",__A ) _lowerCamelCase : Optional[Any] = kwargs.pop("sampling_rate",__A ) _lowerCamelCase : Tuple = kwargs.pop("text",__A ) if len(__A ) > 0: _lowerCamelCase : List[Any] = args[0] _lowerCamelCase : int = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _lowerCamelCase : Tuple = self.feature_extractor(__A,*__A,sampling_rate=__A,**__A ) if text is not None: _lowerCamelCase : Optional[Any] = self.tokenizer(__A,**__A ) if text is None: return inputs elif audio is None: return encodings else: _lowerCamelCase : str = encodings["input_ids"] return inputs def lowerCamelCase_ ( self : Optional[Any],*__A : Tuple,**__A : List[str] ): return self.tokenizer.batch_decode(*__A,**__A ) def lowerCamelCase_ ( self : Union[str, Any],*__A : List[Any],**__A : Optional[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__A,**__A ) _lowerCamelCase : Optional[int] = kwargs.pop("input_features",__A ) _lowerCamelCase : int = kwargs.pop("labels",__A ) if len(__A ) > 0: _lowerCamelCase : str = args[0] _lowerCamelCase : str = args[1:] if input_features is not None: _lowerCamelCase : Tuple = self.feature_extractor.pad(__A,*__A,**__A ) if labels is not None: _lowerCamelCase : Optional[int] = self.tokenizer.pad(__A,**__A ) if labels is None: return input_features elif input_features is None: return labels else: _lowerCamelCase : List[Any] = labels["input_ids"] return input_features def lowerCamelCase_ ( self : int,*__A : Dict,**__A : List[str] ): return self.tokenizer.decode(*__A,**__A ) @contextmanager def lowerCamelCase_ ( self : List[Any] ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Union[str, Any] = self.tokenizer yield _lowerCamelCase : List[str] = self.feature_extractor _lowerCamelCase : Optional[Any] = False
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCAmelCase__ : def __init__( self : Union[str, Any],__A : Optional[int],__A : Union[str, Any]=1_3,__A : str=7,__A : str=True,__A : Dict=True,__A : int=False,__A : str=True,__A : Optional[Any]=9_9,__A : int=6_4,__A : Tuple=5,__A : Union[str, Any]=4,__A : Tuple=6_4,__A : Union[str, Any]="gelu",__A : Dict=0.1,__A : int=0.1,__A : List[str]=5_1_2,__A : Tuple=1_6,__A : List[str]=2,__A : int=0.02,__A : int=3,__A : int=4,__A : Any=None,): _lowerCamelCase : Dict = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : str = seq_length _lowerCamelCase : Any = is_training _lowerCamelCase : Dict = use_input_mask _lowerCamelCase : int = use_token_type_ids _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : int = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : int = type_vocab_size _lowerCamelCase : List[Any] = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Any = num_labels _lowerCamelCase : str = num_choices _lowerCamelCase : Optional[int] = scope def lowerCamelCase_ ( self : str ): return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Optional[Any] = None if self.use_input_mask: _lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : int = None _lowerCamelCase : Dict = None _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : str ): return MPNetConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, Any],__A : Any,__A : Dict,__A : List[Any],__A : Optional[int],__A : str ): _lowerCamelCase : Any = MPNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A,__A ) _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : str,__A : Tuple,__A : List[str],__A : List[Any],__A : str,__A : Optional[Any],__A : Union[str, Any] ): _lowerCamelCase : Tuple = MPNetForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model( __A,attention_mask=__A,start_positions=__A,end_positions=__A,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Any,__A : Any,__A : int,__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : Dict = MPNetForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Tuple = model(__A,attention_mask=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Union[str, Any],__A : Optional[int],__A : List[Any],__A : Tuple,__A : int,__A : Tuple,__A : Any ): _lowerCamelCase : Union[str, Any] = self.num_choices _lowerCamelCase : Optional[Any] = MPNetForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : int = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : Union[str, Any] = model( __A,attention_mask=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : List[Any],__A : str,__A : List[str],__A : int,__A : Optional[int],__A : Any,__A : Any ): _lowerCamelCase : Any = self.num_labels _lowerCamelCase : List[Any] = MPNetForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A,attention_mask=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : int = self.prepare_config_and_inputs() ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) : List[Any] = config_and_inputs _lowerCamelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = True def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Any = MPNetModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*__A ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = MPNetModel.from_pretrained("microsoft/mpnet-base" ) _lowerCamelCase : Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Dict = model(__A )[0] _lowerCamelCase : int = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape,__A ) _lowerCamelCase : int = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3],__A,atol=1e-4 ) )
44
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : Optional[Any] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : str = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'gpt_neox' def __init__( self : Optional[Any],__A : Any=5_0_4_3_2,__A : Optional[Any]=6_1_4_4,__A : Optional[int]=4_4,__A : int=6_4,__A : List[str]=2_4_5_7_6,__A : Union[str, Any]="gelu",__A : Optional[int]=0.25,__A : List[str]=1_0_0_0_0,__A : Optional[Any]=0.0,__A : Optional[Any]=0.0,__A : Tuple=0.1,__A : List[Any]=2_0_4_8,__A : int=0.02,__A : Tuple=1e-5,__A : Dict=True,__A : int=0,__A : Optional[int]=2,__A : int=False,__A : List[Any]=True,__A : List[Any]=None,**__A : Dict,): super().__init__(bos_token_id=__A,eos_token_id=__A,**__A ) _lowerCamelCase : int = vocab_size _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : List[str] = rotary_pct _lowerCamelCase : Tuple = rotary_emb_base _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : List[Any] = hidden_dropout _lowerCamelCase : str = classifier_dropout _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : Dict = use_cache _lowerCamelCase : Dict = tie_word_embeddings _lowerCamelCase : List[str] = use_parallel_residual _lowerCamelCase : Tuple = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def lowerCamelCase_ ( self : Optional[Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling,__A ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'got {self.rope_scaling}' ) _lowerCamelCase : Union[str, Any] = self.rope_scaling.get("type",__A ) _lowerCamelCase : Tuple = self.rope_scaling.get("factor",__A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(__A,__A ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
44
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
1
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCAmelCase_ : Optional[int] = 'http://www.mocksite.com/file1.txt' UpperCAmelCase_ : Any = '"text": ["foo", "foo"]' UpperCAmelCase_ : int = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class UpperCAmelCase__ : lowerCAmelCase_ = 200 lowerCAmelCase_ = {'Content-Length': '100'} lowerCAmelCase_ = {} def lowerCamelCase_ ( self : int,**__A : List[str] ): return [bytes(__A,"utf-8" )] def A_ ( *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : List[Any] ): """simple docstring""" return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" import requests monkeypatch.setattr(_lowerCAmelCase , "request" , _lowerCAmelCase ) _lowerCamelCase : Dict = URL if issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : str = url elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = [url] elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Optional[Any] = {"train": url} _lowerCamelCase : List[str] = "dummy" _lowerCamelCase : List[Any] = "downloads" _lowerCamelCase : Dict = tmp_path _lowerCamelCase : Any = DownloadConfig( cache_dir=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , use_etag=_lowerCAmelCase , ) _lowerCamelCase : Optional[int] = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase ) _lowerCamelCase : str = dl_manager.download(_lowerCAmelCase ) _lowerCamelCase : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Dict = [downloaded_paths] _lowerCamelCase : Dict = [urls] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): assert "train" in downloaded_paths.keys() _lowerCamelCase : List[Any] = downloaded_paths.values() _lowerCamelCase : Optional[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCAmelCase , _lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _lowerCamelCase : List[Any] = Path(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _lowerCamelCase : Optional[Any] = downloaded_path.read_text() assert content == CONTENT _lowerCamelCase : Any = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() _lowerCamelCase : int = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = str(_lowerCAmelCase ) if issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : str = filename elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : str = [filename] elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : str = {"train": filename} _lowerCamelCase : Any = "dummy" _lowerCamelCase : int = xz_file.parent _lowerCamelCase : Optional[Any] = "extracted" _lowerCamelCase : int = DownloadConfig( cache_dir=_lowerCAmelCase , use_etag=_lowerCAmelCase , ) _lowerCamelCase : int = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase ) _lowerCamelCase : str = dl_manager.extract(_lowerCAmelCase ) _lowerCamelCase : str = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Optional[int] = [extracted_paths] _lowerCamelCase : str = [paths] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): assert "train" in extracted_paths.keys() _lowerCamelCase : Tuple = extracted_paths.values() _lowerCamelCase : List[str] = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCAmelCase , _lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _lowerCamelCase : Optional[int] = Path(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCAmelCase , etag=_lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _lowerCamelCase : List[str] = extracted_path.read_text() _lowerCamelCase : Tuple = text_file.read_text() assert extracted_file_content == expected_file_content def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int ): """simple docstring""" assert path.endswith(".jsonl" ) for num_items, line in enumerate(_lowerCAmelCase , start=1 ): _lowerCamelCase : Dict = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = request.getfixturevalue(_lowerCAmelCase ) _lowerCamelCase : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): _test_jsonl(_lowerCAmelCase , _lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = request.getfixturevalue(_lowerCAmelCase ) _lowerCamelCase : List[Any] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): _test_jsonl(_lowerCAmelCase , _lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Any = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCAmelCase ) , start=1 ): assert os.path.basename(_lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
44
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase_ : Optional[int] = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' UpperCAmelCase_ : Tuple = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' UpperCAmelCase_ : Tuple = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def lowerCamelCase_ ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string",id="token" ),id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string",id="token" ),id="sequence" ),id="references" ), } ),) def lowerCamelCase_ ( self : int,__A : List[List[List[str]]],__A : List[List[str]],__A : int = 1,__A : int = 4,): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__A,hypotheses=__A,min_len=__A,max_len=__A ) }
44
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import argparse import os import re UpperCAmelCase_ : int = 'src/transformers' # Pattern that looks at the indentation in a line. UpperCAmelCase_ : int = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. UpperCAmelCase_ : Optional[int] = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCAmelCase_ : Any = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. UpperCAmelCase_ : int = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCAmelCase_ : List[Any] = re.compile(R'\[([^\]]+)\]') def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[str] = _re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]="" , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Union[str, Any]=None ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Dict = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 _lowerCamelCase : List[Any] = ["\n".join(lines[:index] )] else: _lowerCamelCase : Tuple = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCamelCase : Optional[Any] = [lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: _lowerCamelCase : List[str] = [lines[index + 1]] index += 1 else: _lowerCamelCase : Any = [] else: blocks.append("\n".join(_lowerCAmelCase ) ) _lowerCamelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("\n".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("\n".join(lines[index:] ) ) return blocks def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" def _inner(_lowerCAmelCase : List[str] ): return key(_lowerCAmelCase ).lower().replace("_" , "" ) return _inner def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=None ): """simple docstring""" def noop(_lowerCAmelCase : int ): return x if key is None: _lowerCamelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCamelCase : List[str] = [obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCamelCase : Optional[int] = [obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCamelCase : Optional[int] = [obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] _lowerCamelCase : Dict = ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" def _replace(_lowerCAmelCase : List[Any] ): _lowerCamelCase : Tuple = match.groups()[0] if "," not in imports: return F'[{imports}]' _lowerCamelCase : Optional[int] = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : Optional[Any] = keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(_lowerCAmelCase )] ) + "]" _lowerCamelCase : int = import_statement.split("\n" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCamelCase : Dict = 2 if lines[1].strip() == "[" else 1 _lowerCamelCase : List[Any] = [(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCamelCase : Optional[Any] = sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) _lowerCamelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCamelCase : List[Any] = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCamelCase : int = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : int = keys[:-1] _lowerCamelCase : str = get_indent(lines[1] ) + ", ".join([F'"{k}"' for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCamelCase : List[Any] = _re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=True ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Tuple = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCamelCase : int = split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCamelCase : List[Any] = main_blocks[block_idx] _lowerCamelCase : Tuple = block.split("\n" ) # Get to the start of the imports. _lowerCamelCase : Tuple = 0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCamelCase : str = len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCamelCase : Dict = "\n".join(block_lines[line_idx:-1] ) _lowerCamelCase : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCamelCase : Dict = split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCamelCase : List[str] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCamelCase : str = [(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] _lowerCamelCase : Optional[int] = [x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCamelCase : Dict = 0 _lowerCamelCase : List[str] = [] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCamelCase : Optional[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write("\n".join(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Optional[int]=True ): """simple docstring""" _lowerCamelCase : Any = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: _lowerCamelCase : Optional[Any] = sort_imports(os.path.join(_lowerCAmelCase , "__init__.py" ) , check_only=_lowerCAmelCase ) if result: _lowerCamelCase : Optional[int] = [os.path.join(_lowerCAmelCase , "__init__.py" )] if len(_lowerCAmelCase ) > 0: raise ValueError(F'Would overwrite {len(_lowerCAmelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') UpperCAmelCase_ : str = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
44
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' import math from datetime import datetime, timedelta def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[str] = year % 19 _lowerCamelCase : Dict = year % 4 _lowerCamelCase : str = year % 7 _lowerCamelCase : Any = math.floor(year / 100 ) _lowerCamelCase : Union[str, Any] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _lowerCamelCase : str = leap_day_inhibits / 4 _lowerCamelCase : Tuple = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _lowerCamelCase : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _lowerCamelCase : str = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _lowerCamelCase : Any = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_lowerCAmelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_lowerCAmelCase , 4 , 18 ) else: return datetime(_lowerCAmelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCAmelCase_ : Any = 'will be' if year > datetime.now().year else 'was' print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
44
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Dict,**__A : Optional[int] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCamelCase : Tuple = deprecated_arg[3:] _lowerCamelCase : Union[str, Any] = not kwargs.pop(__A ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) _lowerCamelCase : List[Any] = kwargs.pop("tpu_name",self.tpu_name ) _lowerCamelCase : Union[str, Any] = kwargs.pop("device_idx",self.device_idx ) _lowerCamelCase : Any = kwargs.pop("eager_mode",self.eager_mode ) _lowerCamelCase : Tuple = kwargs.pop("use_xla",self.use_xla ) super().__init__(**__A ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Name of TPU'} , ) lowerCAmelCase_ = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Benchmark models in eager model.'} ) lowerCAmelCase_ = field( default=A , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def lowerCamelCase_ ( self : Optional[Any] ): requires_backends(self,["tf"] ) _lowerCamelCase : Optional[int] = None if self.tpu: try: if self.tpu_name: _lowerCamelCase : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _lowerCamelCase : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _lowerCamelCase : int = None return tpu @cached_property def lowerCamelCase_ ( self : Optional[Any] ): requires_backends(self,["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _lowerCamelCase : str = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx],"GPU" ) _lowerCamelCase : str = tf.distribute.OneDeviceStrategy(device=f'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([],"GPU" ) # disable GPU _lowerCamelCase : Tuple = tf.distribute.OneDeviceStrategy(device=f'/cpu:{self.device_idx}' ) return strategy @property def lowerCamelCase_ ( self : Any ): requires_backends(self,["tf"] ) return self._setup_tpu is not None @property def lowerCamelCase_ ( self : List[str] ): requires_backends(self,["tf"] ) return self._setup_strategy @property def lowerCamelCase_ ( self : Tuple ): requires_backends(self,["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def lowerCamelCase_ ( self : int ): requires_backends(self,["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCamelCase_ ( self : Dict ): return self.n_gpu > 0
44
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'luke' def __init__( self : Tuple,__A : str=5_0_2_6_7,__A : List[Any]=5_0_0_0_0_0,__A : int=7_6_8,__A : Optional[int]=2_5_6,__A : Optional[Any]=1_2,__A : Optional[Any]=1_2,__A : Dict=3_0_7_2,__A : int="gelu",__A : List[Any]=0.1,__A : Tuple=0.1,__A : Any=5_1_2,__A : List[Any]=2,__A : int=0.02,__A : Union[str, Any]=1e-12,__A : Any=True,__A : Any=None,__A : Optional[Any]=1,__A : Any=0,__A : Union[str, Any]=2,**__A : Any,): super().__init__(pad_token_id=__A,bos_token_id=__A,eos_token_id=__A,**__A ) _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = entity_vocab_size _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Dict = entity_emb_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : str = hidden_act _lowerCamelCase : str = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : Optional[Any] = type_vocab_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = use_entity_aware_attention _lowerCamelCase : Dict = classifier_dropout
44
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCAmelCase_ : int = False class UpperCAmelCase__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : int = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion",torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : List[Any] = pipe.dual_guided( prompt="first prompt",image=__A,text_to_image_strength=0.75,generator=__A,guidance_scale=7.5,num_inference_steps=2,output_type="numpy",).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__A ) _lowerCamelCase : Dict = VersatileDiffusionPipeline.from_pretrained(__A,torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Tuple = generator.manual_seed(0 ) _lowerCamelCase : Optional[Any] = pipe.dual_guided( prompt="first prompt",image=__A,text_to_image_strength=0.75,generator=__A,guidance_scale=7.5,num_inference_steps=2,output_type="numpy",).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowerCamelCase_ ( self : str ): _lowerCamelCase : Dict = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion",torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Tuple = "cyberpunk 2077" _lowerCamelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : Tuple = pipe.dual_guided( prompt=__A,image=__A,text_to_image_strength=0.75,generator=__A,guidance_scale=7.5,num_inference_steps=5_0,output_type="numpy",).images _lowerCamelCase : int = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Union[str, Any] = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _lowerCamelCase : List[str] = "A painting of a squirrel eating a burger " _lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCamelCase : Any = pipe.text_to_image( prompt=__A,generator=__A,guidance_scale=7.5,num_inference_steps=5_0,output_type="numpy" ).images _lowerCamelCase : Optional[int] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Tuple = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _lowerCamelCase : int = pipe.image_variation(__A,generator=__A,output_type="numpy" ).images _lowerCamelCase : int = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
44
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) _lowerCamelCase : Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _lowerCamelCase : Any = 1 if upper_limit > 0: _lowerCamelCase : List[str] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(_lowerCAmelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: UpperCAmelCase_ : Optional[Any] = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int=False ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : int = len(set_a.intersection(_lowerCAmelCase ) ) if alternative_union: _lowerCamelCase : str = len(_lowerCAmelCase ) + len(_lowerCAmelCase ) else: _lowerCamelCase : List[Any] = len(set_a.union(_lowerCAmelCase ) ) return intersection / union if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(_lowerCAmelCase , (list, tuple) ): _lowerCamelCase : Dict = [element for element in set_a if element in set_b] if alternative_union: _lowerCamelCase : int = len(_lowerCAmelCase ) + len(_lowerCAmelCase ) return len(_lowerCAmelCase ) / union else: _lowerCamelCase : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(_lowerCAmelCase ) / len(_lowerCAmelCase ) return len(_lowerCAmelCase ) / len(_lowerCAmelCase ) return None if __name__ == "__main__": UpperCAmelCase_ : Any = {'a', 'b', 'c', 'd', 'e'} UpperCAmelCase_ : int = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
44
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
1
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
1
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if is_torch_version("<" , "2.0.0" ) or not hasattr(_lowerCAmelCase , "_dynamo" ): return False return isinstance(_lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : bool = True ): """simple docstring""" _lowerCamelCase : Tuple = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _lowerCamelCase : Optional[Any] = is_compiled_module(_lowerCAmelCase ) if is_compiled: _lowerCamelCase : Tuple = model _lowerCamelCase : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Tuple = model.module if not keep_fpaa_wrapper: _lowerCamelCase : Optional[Any] = getattr(_lowerCAmelCase , "forward" ) _lowerCamelCase : Any = model.__dict__.pop("_original_forward" , _lowerCAmelCase ) if original_forward is not None: while hasattr(_lowerCAmelCase , "__wrapped__" ): _lowerCamelCase : List[str] = forward.__wrapped__ if forward == original_forward: break _lowerCamelCase : str = forward if getattr(_lowerCAmelCase , "_converted_to_transformer_engine" , _lowerCAmelCase ): convert_model(_lowerCAmelCase , to_transformer_engine=_lowerCAmelCase ) if is_compiled: _lowerCamelCase : List[str] = model _lowerCamelCase : Optional[int] = compiled_model return model def A_ ( ): """simple docstring""" PartialState().wait_for_everyone() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowerCAmelCase , _lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(_lowerCAmelCase , _lowerCAmelCase ) @contextmanager def A_ ( **_lowerCAmelCase : Any ): """simple docstring""" for key, value in kwargs.items(): _lowerCamelCase : str = str(_lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A_ ( _lowerCAmelCase : Any ): """simple docstring""" if not hasattr(_lowerCAmelCase , "__qualname__" ) and not hasattr(_lowerCAmelCase , "__name__" ): _lowerCamelCase : Any = getattr(_lowerCAmelCase , "__class__" , _lowerCAmelCase ) if hasattr(_lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(_lowerCAmelCase , "__name__" ): return obj.__name__ return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" for key, value in source.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Optional[int] = destination.setdefault(_lowerCAmelCase , {} ) merge_dicts(_lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : Optional[Any] = value return destination def A_ ( _lowerCAmelCase : int = None ): """simple docstring""" if port is None: _lowerCamelCase : Dict = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
44
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
1
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase__ : @staticmethod def lowerCamelCase_ ( *__A : Optional[Any],**__A : int ): pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _lowerCamelCase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.array(_lowerCAmelCase ) _lowerCamelCase : str = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase_ ( self : int,__A : Any,__A : Optional[int],__A : Optional[int] ): _lowerCamelCase : Tuple = MaskGenerationPipeline(model=__A,image_processor=__A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : Tuple,__A : List[Any],__A : Union[str, Any] ): pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCamelCase_ ( self : str ): pass @slow @require_torch def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = pipeline("mask-generation",model="facebook/sam-vit-huge" ) _lowerCamelCase : Tuple = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg",points_per_batch=2_5_6 ) # Shortening by hashing _lowerCamelCase : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__A,decimals=4 ),[ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.9967}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.9909}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.9879}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.9834}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.9716}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.9612}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.9552}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.9532}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9499}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.9483}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.9464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.9408}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.9335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.9326}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.9262}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.8999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.8986}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.8984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.8873}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.8871} ],) # fmt: on @require_torch @slow def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = "facebook/sam-vit-huge" _lowerCamelCase : Tuple = pipeline("mask-generation",model=__A ) _lowerCamelCase : Union[str, Any] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg",pred_iou_thresh=1,points_per_batch=2_5_6 ) # Shortening by hashing _lowerCamelCase : List[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__A,decimals=4 ),[ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0210}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, ],)
44
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
1
'''simple docstring''' import math def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_lowerCAmelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
44
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int = 1000 ): """simple docstring""" _lowerCamelCase : List[str] = 2**power _lowerCamelCase : Any = str(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = list(_lowerCAmelCase ) _lowerCamelCase : Any = 0 for i in list_num: sum_of_num += int(_lowerCAmelCase ) return sum_of_num if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) UpperCAmelCase_ : Optional[int] = solution(power) print('Sum of the digits is: ', result)
44
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
1
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCAmelCase__ ( yaml.SafeLoader ): def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : List[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] _lowerCamelCase : Optional[int] = [tuple(__A ) if isinstance(__A,__A ) else key for key in keys] _lowerCamelCase : List[str] = Counter(__A ) _lowerCamelCase : List[Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'Got duplicate yaml keys: {duplicate_keys}' ) def lowerCamelCase_ ( self : int,__A : List[Any],__A : Tuple=False ): _lowerCamelCase : List[str] = super().construct_mapping(__A,deep=__A ) self._check_no_duplicates_on_constructed_node(__A ) return mapping def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Any = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _lowerCamelCase : List[Any] = full_content[1:].index("---" ) + 1 _lowerCamelCase : Dict = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_lowerCAmelCase ) class UpperCAmelCase__ ( A ): # class attributes lowerCAmelCase_ = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowerCamelCase_ ( cls : List[str],__A : Path ): with open(__A,encoding="utf-8" ) as readme_file: _lowerCamelCase , _lowerCamelCase : Optional[int] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__A ) else: return cls() def lowerCamelCase_ ( self : str,__A : Path ): if path.exists(): with open(__A,encoding="utf-8" ) as readme_file: _lowerCamelCase : Tuple = readme_file.read() else: _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Union[str, Any] = self._to_readme(__A ) with open(__A,"w",encoding="utf-8" ) as readme_file: readme_file.write(__A ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[str] = None ): if readme_content is not None: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = _split_yaml_from_readme(__A ) _lowerCamelCase : List[str] = "---\n" + self.to_yaml_string() + "---\n" + content else: _lowerCamelCase : List[str] = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def lowerCamelCase_ ( cls : List[Any],__A : str ): _lowerCamelCase : Any = yaml.load(__A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _lowerCamelCase : Optional[Any] = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__A ) def lowerCamelCase_ ( self : str ): return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=__A,allow_unicode=__A,encoding="utf-8",).decode("utf-8" ) UpperCAmelCase_ : Optional[int] = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCAmelCase_ : Union[str, Any] = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') UpperCAmelCase_ : str = ap.parse_args() UpperCAmelCase_ : int = Path(args.readme_filepath) UpperCAmelCase_ : Optional[Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'trocr' lowerCAmelCase_ = ['past_key_values'] lowerCAmelCase_ = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : List[Any],__A : int=5_0_2_6_5,__A : Union[str, Any]=1_0_2_4,__A : Any=1_2,__A : Any=1_6,__A : List[str]=4_0_9_6,__A : Tuple="gelu",__A : List[str]=5_1_2,__A : Tuple=0.1,__A : str=0.0,__A : Tuple=0.0,__A : List[Any]=2,__A : List[Any]=0.02,__A : Union[str, Any]=0.0,__A : Optional[int]=True,__A : List[Any]=False,__A : int=True,__A : Optional[int]=True,__A : List[str]=1,__A : Tuple=0,__A : Tuple=2,**__A : List[Any],): _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : str = d_model _lowerCamelCase : Dict = decoder_layers _lowerCamelCase : Dict = decoder_attention_heads _lowerCamelCase : Union[str, Any] = decoder_ffn_dim _lowerCamelCase : int = activation_function _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : Optional[int] = dropout _lowerCamelCase : Any = attention_dropout _lowerCamelCase : Tuple = activation_dropout _lowerCamelCase : Dict = init_std _lowerCamelCase : str = decoder_layerdrop _lowerCamelCase : Optional[int] = use_cache _lowerCamelCase : Any = scale_embedding _lowerCamelCase : int = use_learned_position_embeddings _lowerCamelCase : Optional[int] = layernorm_embedding super().__init__( pad_token_id=__A,bos_token_id=__A,eos_token_id=__A,decoder_start_token_id=__A,**__A,)
44
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : str = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) _lowerCamelCase : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house _lowerCamelCase : Union[str, Any] = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(__A )["last_hidden_state"].detach() self.assertEqual(output.shape,__A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1],__A,atol=1e-3 ) ) @slow def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) _lowerCamelCase : int = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : List[str] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : Tuple = model(__A )["last_hidden_state"].detach() self.assertEqual(output.shape,__A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1],__A,atol=1e-3 ) )
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCAmelCase_ = Features({'audio': Audio()} ) lowerCAmelCase_ = Features({'transcription': Value('string' )} ) lowerCAmelCase_ = "audio" lowerCAmelCase_ = "transcription" def lowerCamelCase_ ( self : int,__A : Union[str, Any] ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column],__A ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) _lowerCamelCase : Optional[int] = copy.deepcopy(self ) _lowerCamelCase : int = self.input_schema.copy() _lowerCamelCase : Any = features[self.audio_column] _lowerCamelCase : Dict = input_schema return task_template @property def lowerCamelCase_ ( self : Union[str, Any] ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
44
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
1
'''simple docstring''' import fire from utils import calculate_rouge, save_json def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = [x.strip() for x in open(_lowerCAmelCase ).readlines()] _lowerCamelCase : Dict = [x.strip() for x in open(_lowerCAmelCase ).readlines()][: len(_lowerCAmelCase )] _lowerCamelCase : List[str] = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) if save_path is not None: save_json(_lowerCAmelCase , _lowerCAmelCase , indent=_lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
44
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'gptsan-japanese' lowerCAmelCase_ = [ 'past_key_values', ] lowerCAmelCase_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str],__A : Union[str, Any]=3_6_0_0_0,__A : Any=1_2_8_0,__A : List[str]=1_0_2_4,__A : List[str]=8_1_9_2,__A : Any=4_0_9_6,__A : int=1_2_8,__A : List[Any]=1_0,__A : Any=0,__A : int=1_6,__A : str=1_6,__A : str=1_2_8,__A : List[str]=0.0,__A : int=1e-5,__A : List[str]=False,__A : List[Any]=0.0,__A : Optional[int]="float32",__A : Any=False,__A : List[Any]=False,__A : Any=False,__A : Dict=0.002,__A : Tuple=False,__A : Optional[Any]=True,__A : Union[str, Any]=3_5_9_9_8,__A : List[Any]=3_5_9_9_5,__A : Tuple=3_5_9_9_9,**__A : List[Any],): _lowerCamelCase : int = vocab_size _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Dict = d_model _lowerCamelCase : List[str] = d_ff _lowerCamelCase : int = d_ext _lowerCamelCase : Optional[Any] = d_spout _lowerCamelCase : int = num_switch_layers _lowerCamelCase : Dict = num_ext_layers _lowerCamelCase : List[str] = num_switch_layers + num_ext_layers _lowerCamelCase : List[str] = num_heads _lowerCamelCase : Tuple = num_experts _lowerCamelCase : List[str] = expert_capacity _lowerCamelCase : str = dropout_rate _lowerCamelCase : List[Any] = layer_norm_epsilon _lowerCamelCase : Optional[int] = router_bias _lowerCamelCase : List[str] = router_jitter_noise _lowerCamelCase : int = router_dtype _lowerCamelCase : Optional[int] = router_ignore_padding_tokens _lowerCamelCase : Optional[Any] = output_hidden_states _lowerCamelCase : Optional[int] = output_attentions _lowerCamelCase : List[Any] = initializer_factor _lowerCamelCase : Union[str, Any] = output_router_logits _lowerCamelCase : Optional[Any] = use_cache super().__init__( separator_token_id=__A,pad_token_id=__A,eos_token_id=__A,**__A,)
44
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase_ : List[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCAmelCase__ ( nn.Module ): def __init__( self : List[Any],__A : List[str] ): super().__init__() _lowerCamelCase : Optional[Any] = torchvision.models.resnetaaa(pretrained=__A ) _lowerCamelCase : Optional[Any] = list(model.children() )[:-2] _lowerCamelCase : Optional[Any] = nn.Sequential(*__A ) _lowerCamelCase : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase_ ( self : int,__A : List[str] ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _lowerCamelCase : Optional[Any] = self.pool(self.model(__A ) ) _lowerCamelCase : Optional[Any] = torch.flatten(__A,start_dim=2 ) _lowerCamelCase : Optional[Any] = out.transpose(1,2 ).contiguous() return out # BxNx2048 class UpperCAmelCase__ ( A ): def __init__( self : List[str],__A : Union[str, Any],__A : Tuple,__A : str,__A : str,__A : Optional[int] ): _lowerCamelCase : List[Any] = [json.loads(__A ) for l in open(__A )] _lowerCamelCase : Dict = os.path.dirname(__A ) _lowerCamelCase : Union[str, Any] = tokenizer _lowerCamelCase : str = labels _lowerCamelCase : int = len(__A ) _lowerCamelCase : str = max_seq_length _lowerCamelCase : Tuple = transforms def __len__( self : Union[str, Any] ): return len(self.data ) def __getitem__( self : List[str],__A : Any ): _lowerCamelCase : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"],add_special_tokens=__A ) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = sentence[0], sentence[1:-1], sentence[-1] _lowerCamelCase : Tuple = sentence[: self.max_seq_length] _lowerCamelCase : Optional[int] = torch.zeros(self.n_classes ) _lowerCamelCase : List[Any] = 1 _lowerCamelCase : str = Image.open(os.path.join(self.data_dir,self.data[index]["img"] ) ).convert("RGB" ) _lowerCamelCase : Optional[int] = self.transforms(__A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = [len(row["sentence"] ) for row in batch] _lowerCamelCase , _lowerCamelCase : List[Any] = len(_lowerCAmelCase ), max(_lowerCAmelCase ) _lowerCamelCase : Tuple = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) _lowerCamelCase : Tuple = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowerCAmelCase , _lowerCAmelCase ) ): _lowerCamelCase : Optional[int] = input_row["sentence"] _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = torch.stack([row["image"] for row in batch] ) _lowerCamelCase : Union[str, Any] = torch.stack([row["label"] for row in batch] ) _lowerCamelCase : int = torch.stack([row["image_start_token"] for row in batch] ) _lowerCamelCase : Optional[Any] = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A_ ( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A_ ( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
44
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
1