code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _lowercase( __a : int , __a : int , __a : int , __a : int , __a : int , __a : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: a__ =ksize + 1 a__ =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__a ): for x in range(__a ): # distance from center a__ =x - ksize // 2 a__ =y - ksize // 2 # degree to radiant a__ =theta / 180 * np.pi a__ =np.cos(_theta ) a__ =np.sin(_theta ) # get kernel x a__ =cos_theta * px + sin_theta * py # get kernel y a__ =-sin_theta * px + cos_theta * py # fill kernel a__ =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _lowerCAmelCase: Union[str, Any] = imread('../image_data/lena.jpg') # turn image in gray scale value _lowerCAmelCase: Tuple = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _lowerCAmelCase: Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _lowerCAmelCase: Any = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _lowerCAmelCase: Tuple = out / out.max() * 255 _lowerCAmelCase: int = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
20
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase_ : str = None UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ : Dict = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off UpperCAmelCase_ : Any = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __A ( UpperCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = NllbTokenizer UpperCamelCase = [] UpperCamelCase = [] def __init__( self :Any , __snake_case :Union[str, Any]=None , __snake_case :Optional[int]=None , __snake_case :str="<s>" , __snake_case :Union[str, Any]="</s>" , __snake_case :Optional[int]="</s>" , __snake_case :Optional[Any]="<s>" , __snake_case :List[str]="<unk>" , __snake_case :List[str]="<pad>" , __snake_case :List[Any]="<mask>" , __snake_case :List[Any]=None , __snake_case :Any=None , __snake_case :Optional[Any]=None , __snake_case :Optional[Any]=False , **__snake_case :Optional[Any] , ): '''simple docstring''' __magic_name__ : Any =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token __magic_name__ : Any =legacy_behaviour super().__init__( vocab_file=__snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , legacy_behaviour=__snake_case , **__snake_case , ) __magic_name__ : Optional[int] =vocab_file __magic_name__ : List[str] =False if not self.vocab_file else True __magic_name__ : str =FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) __magic_name__ : Union[str, Any] ={ lang_code: self.convert_tokens_to_ids(__snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __magic_name__ : Optional[Any] =src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Union[str, Any] =self.convert_tokens_to_ids(self._src_lang ) __magic_name__ : Any =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A__ ( self :int ): '''simple docstring''' return self._src_lang @src_lang.setter def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : str =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A__ ( self :List[Any] , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ ( self :str , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =[self.sep_token_id] __magic_name__ : List[str] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self :List[Any] , __snake_case :int , __snake_case :str , __snake_case :Optional[str] , __snake_case :Optional[str] , **__snake_case :Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : str =src_lang __magic_name__ : Any =self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) __magic_name__ : Union[str, Any] =self.convert_tokens_to_ids(__snake_case ) __magic_name__ : Tuple =tgt_lang_id return inputs def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :str = "eng_Latn" , __snake_case :Optional[List[str]] = None , __snake_case :str = "fra_Latn" , **__snake_case :List[Any] , ): '''simple docstring''' __magic_name__ : Union[str, Any] =src_lang __magic_name__ : List[Any] =tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def A__ ( self :str ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A__ ( self :Optional[int] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ ( self :Tuple , __snake_case :Any ): '''simple docstring''' __magic_name__ : Dict =self.convert_tokens_to_ids(__snake_case ) if self.legacy_behaviour: __magic_name__ : Any =[] __magic_name__ : str =[self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] =[self.cur_lang_code] __magic_name__ : Tuple =[self.eos_token_id] __magic_name__ : int =self.convert_ids_to_tokens(self.prefix_tokens ) __magic_name__ : Dict =self.convert_ids_to_tokens(self.suffix_tokens ) __magic_name__ : Union[str, Any] =processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A__ ( self :Optional[int] , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[Any] =self.convert_tokens_to_ids(__snake_case ) if self.legacy_behaviour: __magic_name__ : Any =[] __magic_name__ : Optional[Any] =[self.eos_token_id, self.cur_lang_code] else: __magic_name__ : List[Any] =[self.cur_lang_code] __magic_name__ : Dict =[self.eos_token_id] __magic_name__ : Dict =self.convert_ids_to_tokens(self.prefix_tokens ) __magic_name__ : List[str] =self.convert_ids_to_tokens(self.suffix_tokens ) __magic_name__ : Optional[Any] =processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A__ ( self :Union[str, Any] , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return __magic_name__ : str =os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
21
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _snake_case : List[Any] = logging.get_logger('transformers.models.speecht5') _snake_case : List[Any] = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } _snake_case : Union[str, Any] = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } _snake_case : Tuple = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } _snake_case : Optional[int] = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } _snake_case : List[Any] = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } _snake_case : List[str] = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } _snake_case : Tuple = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } _snake_case : str = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } _snake_case : str = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _snake_case : List[str] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _snake_case : Dict = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _snake_case : Optional[int] = [] _snake_case : List[Any] = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] _snake_case : List[str] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] _snake_case : Tuple = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] _snake_case : Dict = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Any ): '''simple docstring''' for attribute in key.split('''.''' ): _a = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: _a = getattr(UpperCamelCase , UpperCamelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : str ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple ): '''simple docstring''' _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase , UpperCamelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(UpperCamelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''' , UpperCamelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : int ): '''simple docstring''' _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any=None , UpperCamelCase : Any=None , ): '''simple docstring''' if config_path is not None: _a = SpeechTaConfig.from_pretrained(UpperCamelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(UpperCamelCase ) elif task == "t2s": _a = 1876 _a = 600 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(UpperCamelCase ) elif task == "s2s": _a = 1876 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(UpperCamelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(UpperCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''' , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=UpperCamelCase , feature_extractor=UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) _a = torch.load(UpperCamelCase ) recursively_load_weights(fairseq_checkpoint['''model'''] , UpperCamelCase , UpperCamelCase ) model.save_pretrained(UpperCamelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(UpperCamelCase ) model.push_to_hub(UpperCamelCase ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _snake_case : int = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
22
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = nn.functional.normalize(__lowercase) UpperCamelCase_ = nn.functional.normalize(__lowercase) return torch.mm(__lowercase , normalized_text_embeds.t()) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = CLIPConfig A_ = ["""CLIPEncoderLayer"""] def __init__( self , _UpperCAmelCase ) -> Dict: super().__init__(_UpperCAmelCase ) UpperCamelCase_ = CLIPVisionModel(config.vision_config ) UpperCamelCase_ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = self.vision_model(_UpperCAmelCase )[1] # pooled_output UpperCamelCase_ = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase_ = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() UpperCamelCase_ = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() UpperCamelCase_ = [] UpperCamelCase_ = image_embeds.shape[0] for i in range(_UpperCAmelCase ): UpperCamelCase_ = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase_ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCamelCase_ = special_cos_dist[i][concept_idx] UpperCamelCase_ = self.special_care_embeds_weights[concept_idx].item() UpperCamelCase_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) UpperCamelCase_ = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): UpperCamelCase_ = cos_dist[i][concept_idx] UpperCamelCase_ = self.concept_embeds_weights[concept_idx].item() UpperCamelCase_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) UpperCamelCase_ = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.vision_model(_UpperCAmelCase )[1] # pooled_output UpperCamelCase_ = self.visual_projection(_UpperCAmelCase ) UpperCamelCase_ = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) UpperCamelCase_ = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase_ = 0.0 UpperCamelCase_ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCamelCase_ = torch.any(special_scores > 0 , dim=1 ) UpperCamelCase_ = special_care * 0.0_1 UpperCamelCase_ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCamelCase_ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCamelCase_ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
23
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : int = BarthezTokenizer __lowercase : Any = BarthezTokenizerFast __lowercase : Dict = True __lowercase : Optional[int] = True def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' super().setUp() __snake_case = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = '''<pad>''' __snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_1122 ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __snake_case = [0, 57, 3018, 7_0307, 91, 2] __snake_case = self.tokenizer( __SCREAMING_SNAKE_CASE , max_length=len(__SCREAMING_SNAKE_CASE ) , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __snake_case = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = {'''input_ids''': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __snake_case = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__SCREAMING_SNAKE_CASE , )
24
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __UpperCamelCase = datasets.utils.logging.get_logger(__name__) __UpperCamelCase = ["names", "prefix"] __UpperCamelCase = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] __UpperCamelCase = ["encoding_errors", "on_bad_lines"] __UpperCamelCase = ["date_format"] @dataclass class _A ( datasets.BuilderConfig ): lowercase__: str = "," lowercase__: Optional[str] = None lowercase__: Optional[Union[int, List[int], str]] = "infer" lowercase__: Optional[List[str]] = None lowercase__: Optional[List[str]] = None lowercase__: Optional[Union[int, str, List[int], List[str]]] = None lowercase__: Optional[Union[List[int], List[str]]] = None lowercase__: Optional[str] = None lowercase__: bool = True lowercase__: Optional[Literal["c", "python", "pyarrow"]] = None lowercase__: Dict[Union[int, str], Callable[[Any], Any]] = None lowercase__: Optional[list] = None lowercase__: Optional[list] = None lowercase__: bool = False lowercase__: Optional[Union[int, List[int]]] = None lowercase__: Optional[int] = None lowercase__: Optional[Union[str, List[str]]] = None lowercase__: bool = True lowercase__: bool = True lowercase__: bool = False lowercase__: bool = True lowercase__: Optional[str] = None lowercase__: str = "." lowercase__: Optional[str] = None lowercase__: str = '"' lowercase__: int = 0 lowercase__: Optional[str] = None lowercase__: Optional[str] = None lowercase__: Optional[str] = None lowercase__: Optional[str] = None lowercase__: bool = True lowercase__: bool = True lowercase__: int = 0 lowercase__: bool = True lowercase__: bool = False lowercase__: Optional[str] = None lowercase__: int = 10000 lowercase__: Optional[datasets.Features] = None lowercase__: Optional[str] = "strict" lowercase__: Literal["error", "warn", "skip"] = "error" lowercase__: Optional[str] = None def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.delimiter is not None: __snake_case : Any = self.delimiter if self.column_names is not None: __snake_case : Optional[Any] = self.column_names @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : str = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __magic_name__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _A ( datasets.ArrowBasedBuilder ): lowercase__: List[Any] = CsvConfig def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __snake_case : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): __snake_case : int = data_files if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = [files] __snake_case : Tuple = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __snake_case : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[Any] = [files] __snake_case : Optional[int] = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : Optional[Any] , __magic_name__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: __snake_case : Optional[Any] = self.config.features.arrow_schema if all(not require_storage_cast(__magic_name__ ) for feature in self.config.features.values() ): # cheaper cast __snake_case : Union[str, Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__magic_name__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __snake_case : Dict = table_cast(__magic_name__ , __magic_name__ ) return pa_table def lowercase__ ( self : str , __magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __snake_case : Union[str, Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__magic_name__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): __snake_case : Optional[int] = pd.read_csv(__magic_name__ , iterator=__magic_name__ , dtype=__magic_name__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__magic_name__ ): __snake_case : List[str] = pa.Table.from_pandas(__magic_name__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise
26
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __A : List[Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE = 10 , _SCREAMING_SNAKE_CASE = 2 ) -> List[Any]: """simple docstring""" def get_dataset(_SCREAMING_SNAKE_CASE ): _A = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_SCREAMING_SNAKE_CASE , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _A = get_dataset(_SCREAMING_SNAKE_CASE ) _A = get_dataset(_SCREAMING_SNAKE_CASE ) _A = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 ) _A = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Any: """simple docstring""" _A = [] for epoch in range(_SCREAMING_SNAKE_CASE ): # Train quickly model.train() for batch in dataloader: _A, _A = batch _A = model(_SCREAMING_SNAKE_CASE ) _A = torch.nn.functional.mse_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() _A = nn.Parameter(torch.randn(1 ) ) _A = nn.Parameter(torch.randn(1 ) ) def lowerCAmelCase__ ( self , snake_case_ ): return x * self.a + self.b class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A, _A = dummy_dataloaders() _A = ProjectConfiguration(total_limit=1 , project_dir=snake_case_ , automatic_checkpoint_naming=snake_case_ ) # Train baseline _A = Accelerator(project_config=snake_case_ ) _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A, _A = dummy_dataloaders() # Train baseline _A = Accelerator() _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial _A = os.path.join(snake_case_ , 'initial' ) accelerator.save_state(snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() _A = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() # Train partially set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A, _A = dummy_dataloaders() _A = Accelerator() _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.load_state(snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) _A = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save everything _A = os.path.join(snake_case_ , 'checkpoint' ) accelerator.save_state(snake_case_ ) # Load everything back in and make sure all states work accelerator.load_state(snake_case_ ) test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A, _A = dummy_dataloaders() _A = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ ) # Train baseline _A = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() _A = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() # Train partially set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A, _A = dummy_dataloaders() _A = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=snake_case_ ) _A = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.load_state(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_0' ) ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) _A = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = torch.tensor([1, 2, 3] ) _A = torch.tensor([2, 3, 4] ) _A = DummyModel() _A = torch.optim.Adam(net.parameters() ) _A = Accelerator() with self.assertRaises(snake_case_ ) as ve: accelerator.register_for_checkpointing(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _A = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A = torch.optim.lr_scheduler.StepLR(snake_case_ , step_size=1 , gamma=0.99 ) _A, _A = dummy_dataloaders() _A = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ ) # Train baseline _A = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _A, _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() _A = scheduler.state_dict() train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(snake_case_ , scheduler.state_dict() ) def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A = DummyModel() _A = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ , total_limit=2 ) # Train baseline _A = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _A = accelerator.prepare(snake_case_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def lowerCAmelCase__ ( self ): _A = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": __A : Tuple = "/tmp/accelerate/state_checkpointing" __A : List[str] = DummyModel() __A : Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1E-3) __A : Optional[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __A , __A : Dict = dummy_dataloaders() __A : Any = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __A : Optional[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __A , __A , __A , __A , __A : int = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __A , __A : Optional[int] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __A : Optional[int] = group["params"][0].device break assert param_device.type == accelerator.device.type __A : str = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: __A : int = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: __A : Tuple = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
27
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
0
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = MgpstrTokenizer A : Any = False A : Any = {} A : List[str] = False def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on SCREAMING_SNAKE_CASE : List[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'tester' SCREAMING_SNAKE_CASE : List[Any] = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE : Union[str, Any] = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode([special_token], add_special_tokens=A ) self.assertEqual(len(A ), 1 ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(A, skip_special_tokens=A ) self.assertTrue(special_token not in decoded ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.get_input_output_texts(A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(A, add_special_tokens=A ) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(A ) self.assertNotEqual(len(A ), 0 ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(A ) self.assertIsInstance(A, A ) self.assertEqual(text_a.replace(' ', '' ), A ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass
28
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowerCamelCase_ = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
29
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __a = 299_792_458 # Symbols __a ,__a ,__a ,__a = symbols('ct x y z') def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return 1 / sqrt(1 - beta(_lowercase ) ** 2 ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return np.array( [ [gamma(_lowercase ), -gamma(_lowercase ) * beta(_lowercase ), 0, 0], [-gamma(_lowercase ) * beta(_lowercase ), gamma(_lowercase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCamelCase__ ( _lowercase , _lowercase = None ): '''simple docstring''' if event is None: UpperCAmelCase_ : Optional[Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowercase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __a = transform(29_979_245) print('Example of four vector: ') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __a = {ct: c, x: 1, y: 1, z: 1} __a = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
30
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
0
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
0
import numpy as np import datasets UpperCAmelCase_ = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n" UpperCAmelCase_ = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n" UpperCAmelCase_ = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def UpperCamelCase( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): # convert to numpy arrays _UpperCAmelCase = np.array(_UpperCamelCase ) _UpperCAmelCase = np.array(_UpperCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction _UpperCAmelCase = X - np.mean(_UpperCamelCase ) _UpperCAmelCase = np.cov(reference_distribution.T ) try: _UpperCAmelCase = np.linalg.inv(_UpperCamelCase ) except np.linalg.LinAlgError: _UpperCAmelCase = np.linalg.pinv(_UpperCamelCase ) _UpperCAmelCase = np.dot(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = np.dot(_UpperCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
32
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
0
import argparse import hashlib # hashlib is only used inside the Test class import struct class __magic_name__ : '''simple docstring''' def __init__( self:Union[str, Any] , _a:List[str] ): snake_case__ = data snake_case__ = [0X67_452_301, 0XEF_CDA_B89, 0X98_BAD_CFE, 0X10_325_476, 0XC3_D2E_1F0] @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:Dict , _a:List[str] ): return ((n << b) | (n >> (32 - b))) & 0XFF_FFF_FFF def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) snake_case__ = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Optional[Any] ): snake_case__ = list(struct.unpack('''>16L''' , _a ) ) + [0] * 64 for i in range(16 , 80 ): snake_case__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.padding() snake_case__ = self.split_blocks() for block in self.blocks: snake_case__ = self.expand_block(_a ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case__ = (b & c) | ((~b) & d) snake_case__ = 0X5A_827_999 elif 20 <= i < 40: snake_case__ = b ^ c ^ d snake_case__ = 0X6E_D9E_BA1 elif 40 <= i < 60: snake_case__ = (b & c) | (b & d) | (c & d) snake_case__ = 0X8F_1BB_CDC elif 60 <= i < 80: snake_case__ = b ^ c ^ d snake_case__ = 0XCA_62C_1D6 snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = ( self.rotate(_a , 5 ) + f + e + k + expanded_block[i] & 0XFF_FFF_FFF, a, self.rotate(_a , 30 ), c, d, ) snake_case__ = ( self.h[0] + a & 0XFF_FFF_FFF, self.h[1] + b & 0XFF_FFF_FFF, self.h[2] + c & 0XFF_FFF_FFF, self.h[3] + d & 0XFF_FFF_FFF, self.h[4] + e & 0XFF_FFF_FFF, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = B'''Test String''' assert SHAaHash(__lowerCAmelCase ).final_hash() == hashlib.shaa(__lowerCAmelCase ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: snake_case__ = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) snake_case__ = parser.parse_args() snake_case__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: snake_case__ = f.read() else: snake_case__ = bytes(__lowerCAmelCase , '''utf-8''' ) print(SHAaHash(__lowerCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
33
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
0
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = 'The Nymphenburg Palace is a beautiful palace in Munich!' def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1e-5, '''token_type_vocab_size''': 2, } UpperCamelCase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py UpperCamelCase = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] ,num_layers=predefined_args['''num_layers'''] ,units=predefined_args['''units'''] ,hidden_size=predefined_args['''hidden_size'''] ,max_length=predefined_args['''max_length'''] ,num_heads=predefined_args['''num_heads'''] ,scaled=predefined_args['''scaled'''] ,dropout=predefined_args['''dropout'''] ,output_attention=_lowercase ,output_all_encodings=_lowercase ,use_residual=predefined_args['''use_residual'''] ,activation=predefined_args.get('''activation''' ,'''gelu''' ) ,layer_norm_eps=predefined_args.get('''layer_norm_eps''' ,_lowercase ) ,) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later UpperCamelCase = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab UpperCamelCase = os.path.join(get_home_dir() ,'''models''' ) UpperCamelCase = _load_vocab(_lowercase ,_lowercase ,_lowercase ,cls=_lowercase ) UpperCamelCase = nlp.model.BERTModel( _lowercase ,len(_lowercase ) ,units=predefined_args['''units'''] ,embed_size=predefined_args['''embed_size'''] ,embed_dropout=predefined_args['''embed_dropout'''] ,word_embed=predefined_args['''word_embed'''] ,use_pooler=_lowercase ,use_token_type_embed=_lowercase ,token_type_vocab_size=predefined_args['''token_type_vocab_size'''] ,use_classifier=_lowercase ,use_decoder=_lowercase ,) original_bort.load_parameters(_lowercase ,cast_dtype=_lowercase ,ignore_extra=_lowercase ) UpperCamelCase = original_bort._collect_params_with_prefix() # Build our config 🤗 UpperCamelCase = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(_lowercase ), } UpperCamelCase = BertConfig.from_dict(_lowercase ) UpperCamelCase = BertForMaskedLM(_lowercase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_lowercase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_lowercase ,_lowercase ): UpperCamelCase = hf_param.shape UpperCamelCase = to_torch(params[gluon_param] ) UpperCamelCase = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight ,'''word_embed.0.weight''' ) UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight ,'''encoder.position_weight''' ) UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias ,'''encoder.layer_norm.beta''' ) UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight ,'''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) UpperCamelCase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): UpperCamelCase = hf_bort_model.bert.encoder.layer[i] # self attention UpperCamelCase = layer.attention.self UpperCamelCase = check_and_map_params( self_attn.key.bias.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) UpperCamelCase = check_and_map_params( self_attn.key.weight.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) UpperCamelCase = check_and_map_params( self_attn.query.bias.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) UpperCamelCase = check_and_map_params( self_attn.query.weight.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) UpperCamelCase = check_and_map_params( self_attn.value.bias.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) UpperCamelCase = check_and_map_params( self_attn.value.weight.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output UpperCamelCase = layer.attention.output UpperCamelCase = check_and_map_params( self_output.dense.bias ,f'encoder.transformer_cells.{i}.proj.bias' ) UpperCamelCase = check_and_map_params( self_output.dense.weight ,f'encoder.transformer_cells.{i}.proj.weight' ) UpperCamelCase = check_and_map_params( self_output.LayerNorm.bias ,f'encoder.transformer_cells.{i}.layer_norm.beta' ) UpperCamelCase = check_and_map_params( self_output.LayerNorm.weight ,f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate UpperCamelCase = layer.intermediate UpperCamelCase = check_and_map_params( intermediate.dense.bias ,f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) UpperCamelCase = check_and_map_params( intermediate.dense.weight ,f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output UpperCamelCase = layer.output UpperCamelCase = check_and_map_params( bert_output.dense.bias ,f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) UpperCamelCase = check_and_map_params( bert_output.dense.weight ,f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) UpperCamelCase = check_and_map_params( bert_output.LayerNorm.bias ,f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) UpperCamelCase = check_and_map_params( bert_output.LayerNorm.weight ,f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models UpperCamelCase = RobertaTokenizer.from_pretrained('''roberta-base''' ) UpperCamelCase = tokenizer.encode_plus(_lowercase )['''input_ids'''] # Get gluon output UpperCamelCase = mx.nd.array([input_ids] ) UpperCamelCase = original_bort(inputs=_lowercase ,token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_lowercase ) UpperCamelCase = BertModel.from_pretrained(_lowercase ) hf_bort_model.eval() UpperCamelCase = tokenizer.encode_plus(_lowercase ,return_tensors='''pt''' ) UpperCamelCase = hf_bort_model(**_lowercase )[0] UpperCamelCase = output_gluon[0].asnumpy() UpperCamelCase = output_hf[0].detach().numpy() UpperCamelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item() UpperCamelCase = np.allclose(_lowercase ,_lowercase ,atol=1e-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' ,_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
34
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowercase ( enum.Enum ): lowerCamelCase : int = 0 lowerCamelCase : Tuple = 1 lowerCamelCase : List[str] = 2 @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase ): lowerCamelCase : Dict = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : Optional[int] , *_lowercase : Optional[Any] , **_lowercase : Dict ): super().__init__(*_lowercase , **_lowercase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. SCREAMING_SNAKE_CASE__ : Dict = None if self.model.config.prefix is not None: SCREAMING_SNAKE_CASE__ : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. SCREAMING_SNAKE_CASE__ : Any = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self._sanitize_parameters(prefix=_lowercase , **self._forward_params ) SCREAMING_SNAKE_CASE__ : str = {**self._preprocess_params, **preprocess_params} SCREAMING_SNAKE_CASE__ : str = {**self._forward_params, **forward_params} def lowercase__ ( self : Optional[int] , _lowercase : Any=None , _lowercase : Optional[int]=None , _lowercase : List[Any]=None , _lowercase : List[Any]=None , _lowercase : Optional[Any]=None , _lowercase : Optional[int]=None , _lowercase : List[Any]=None , _lowercase : Tuple=None , **_lowercase : Union[str, Any] , ): SCREAMING_SNAKE_CASE__ : int = {} if prefix is not None: SCREAMING_SNAKE_CASE__ : Tuple = prefix if prefix: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer( _lowercase , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) SCREAMING_SNAKE_CASE__ : Dict = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) SCREAMING_SNAKE_CASE__ : Any = handle_long_generation preprocess_params.update(_lowercase ) SCREAMING_SNAKE_CASE__ : int = generate_kwargs SCREAMING_SNAKE_CASE__ : str = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) SCREAMING_SNAKE_CASE__ : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = ReturnType.TENSORS if return_type is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = return_type if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = clean_up_tokenization_spaces if stop_sequence is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) if len(_lowercase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) SCREAMING_SNAKE_CASE__ : int = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase__ ( self : Union[str, Any] , *_lowercase : Tuple , **_lowercase : Any ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_lowercase , **_lowercase ) def __call__( self : List[str] , _lowercase : Tuple , **_lowercase : Dict ): return super().__call__(_lowercase , **_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Optional[int] , _lowercase : int="" , _lowercase : int=None , **_lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer( prefix + prompt_text , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) SCREAMING_SNAKE_CASE__ : Tuple = prompt_text if handle_long_generation == "hole": SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: SCREAMING_SNAKE_CASE__ : Union[str, Any] = generate_kwargs['''max_new_tokens'''] else: SCREAMING_SNAKE_CASE__ : Any = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) SCREAMING_SNAKE_CASE__ : Any = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs['''attention_mask'''][:, -keep_length:] return inputs def lowercase__ ( self : Optional[Any] , _lowercase : Any , **_lowercase : Dict ): SCREAMING_SNAKE_CASE__ : str = model_inputs['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = model_inputs.get('''attention_mask''' , _lowercase ) # Allow empty prompts if input_ids.shape[1] == 0: SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : Optional[int] = 1 else: SCREAMING_SNAKE_CASE__ : Dict = input_ids.shape[0] SCREAMING_SNAKE_CASE__ : Tuple = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. SCREAMING_SNAKE_CASE__ : Optional[Any] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: SCREAMING_SNAKE_CASE__ : Dict = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length SCREAMING_SNAKE_CASE__ : str = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL SCREAMING_SNAKE_CASE__ : Dict = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = generated_sequence.shape[0] if self.framework == "pt": SCREAMING_SNAKE_CASE__ : Union[str, Any] = generated_sequence.reshape(_lowercase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": SCREAMING_SNAKE_CASE__ : Tuple = tf.reshape(_lowercase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowercase__ ( self : Optional[int] , _lowercase : Any , _lowercase : int=ReturnType.FULL_TEXT , _lowercase : int=True ): SCREAMING_SNAKE_CASE__ : Optional[Any] = model_outputs['''generated_sequence'''][0] SCREAMING_SNAKE_CASE__ : List[Any] = model_outputs['''input_ids'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_outputs['''prompt_text'''] SCREAMING_SNAKE_CASE__ : Optional[int] = generated_sequence.numpy().tolist() SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: SCREAMING_SNAKE_CASE__ : Dict = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer.decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 else: SCREAMING_SNAKE_CASE__ : List[Any] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) ) if return_type == ReturnType.FULL_TEXT: SCREAMING_SNAKE_CASE__ : Optional[int] = prompt_text + text[prompt_length:] else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = text[prompt_length:] SCREAMING_SNAKE_CASE__ : int = {'''generated_text''': all_text} records.append(_lowercase ) return records
35
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
def lowercase ( __A : int = 100 ) -> int: '''simple docstring''' snake_case : Tuple = 0 snake_case : Tuple = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
36
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
0
from math import sqrt def UpperCamelCase_ ( __a ) -> int: a__ : Union[str, Any] = 0 for i in range(1 , int(sqrt(__a ) + 1 ) ): if n % i == 0 and i != sqrt(__a ): total += i + n // i elif i == sqrt(__a ): total += i return total - n def UpperCamelCase_ ( __a = 10_000 ) -> int: a__ : str = sum( i for i in range(1 , __a ) if sum_of_divisors(sum_of_divisors(__a ) ) == i and sum_of_divisors(__a ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
37
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
0
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer A_ : Optional[int] = logging.get_logger(__name__) A_ : List[str] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } A_ : List[Any] = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } A_ : Optional[Any] = { "facebook/blenderbot_small-90M": 512, } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = BlenderbotSmallTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): super().__init__( ByteLevelBPETokenizer( vocab=__SCREAMING_SNAKE_CASE , merges=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE , ) , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : str = add_prefix_space def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): snake_case__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
38
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = "data2vec-text" def __init__( self : Dict , _UpperCamelCase : int=3_0_5_2_2 , _UpperCamelCase : Dict=7_6_8 , _UpperCamelCase : Tuple=1_2 , _UpperCamelCase : List[Any]=1_2 , _UpperCamelCase : Tuple=3_0_7_2 , _UpperCamelCase : Union[str, Any]="gelu" , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Any=5_1_2 , _UpperCamelCase : str=2 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=1 , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : Optional[Any]="absolute" , _UpperCamelCase : int=True , _UpperCamelCase : int=None , **_UpperCamelCase : Union[str, Any] , ) ->Dict: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = classifier_dropout class snake_case_ ( __A ): '''simple docstring''' @property def snake_case__( self : List[Any] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
39
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCamelCase ( snake_case__ : List[Any] ) -> Optional[Any]: if is_torch_version('<' , '2.0.0' ) or not hasattr(snake_case__ , '_dynamo' ): return False return isinstance(snake_case__ , torch._dynamo.eval_frame.OptimizedModule ) def UpperCamelCase ( snake_case__ : str , snake_case__ : bool = True ) -> Tuple: UpperCamelCase : Tuple = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase : Optional[Any] = is_compiled_module(snake_case__ ) if is_compiled: UpperCamelCase : List[str] = model UpperCamelCase : Tuple = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(snake_case__ , snake_case__ ): UpperCamelCase : List[str] = model.module if not keep_fpaa_wrapper: UpperCamelCase : Optional[int] = getattr(snake_case__ , 'forward' ) UpperCamelCase : int = model.__dict__.pop('_original_forward' , snake_case__ ) if original_forward is not None: while hasattr(snake_case__ , '__wrapped__' ): UpperCamelCase : Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase : Any = forward if getattr(snake_case__ , '_converted_to_transformer_engine' , snake_case__ ): convert_model(snake_case__ , to_transformer_engine=snake_case__ ) if is_compiled: UpperCamelCase : Tuple = model UpperCamelCase : int = compiled_model return model def UpperCamelCase ( ) -> Any: PartialState().wait_for_everyone() def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict ) -> int: if PartialState().distributed_type == DistributedType.TPU: xm.save(snake_case__ , snake_case__ ) elif PartialState().local_process_index == 0: torch.save(snake_case__ , snake_case__ ) @contextmanager def UpperCamelCase ( **snake_case__ : str ) -> str: for key, value in kwargs.items(): UpperCamelCase : int = str(snake_case__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCamelCase ( snake_case__ : str ) -> Any: if not hasattr(snake_case__ , '__qualname__' ) and not hasattr(snake_case__ , '__name__' ): UpperCamelCase : Tuple = getattr(snake_case__ , '__class__' , snake_case__ ) if hasattr(snake_case__ , '__qualname__' ): return obj.__qualname__ if hasattr(snake_case__ , '__name__' ): return obj.__name__ return str(snake_case__ ) def UpperCamelCase ( snake_case__ : Any , snake_case__ : Optional[Any] ) -> Tuple: for key, value in source.items(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Optional[Any] = destination.setdefault(snake_case__ , {} ) merge_dicts(snake_case__ , snake_case__ ) else: UpperCamelCase : List[Any] = value return destination def UpperCamelCase ( snake_case__ : int = None ) -> bool: if port is None: UpperCamelCase : Union[str, Any] = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
40
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
0
'''simple docstring''' def _A ( ): """simple docstring""" __lowercase = 0 for i in range(1 , 1001 ): total += i**i return str(A__ )[-10:] if __name__ == "__main__": print(solution())
41
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A_ = random.Random() def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase=1.0 ,__UpperCamelCase=None ,__UpperCamelCase=None ) -> Dict: if rng is None: lowerCamelCase_ = global_rng lowerCamelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=2000 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=16000 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="hann_window" , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=7600 , SCREAMING_SNAKE_CASE_=1E-10 , SCREAMING_SNAKE_CASE_=True , ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = min_seq_length lowerCamelCase_ = max_seq_length lowerCamelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase_ = feature_size lowerCamelCase_ = padding_value lowerCamelCase_ = sampling_rate lowerCamelCase_ = do_normalize lowerCamelCase_ = num_mel_bins lowerCamelCase_ = hop_length lowerCamelCase_ = win_length lowerCamelCase_ = win_function lowerCamelCase_ = fmin lowerCamelCase_ = fmax lowerCamelCase_ = mel_floor lowerCamelCase_ = return_attention_mask def UpperCamelCase( self ) -> Dict: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def UpperCamelCase( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> List[str]: '''simple docstring''' def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: lowerCamelCase_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCamelCase_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs def UpperCamelCase( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> Tuple: '''simple docstring''' if equal_length: lowerCamelCase_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs @require_torch class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = SpeechTaFeatureExtractionTester(self ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_ , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input lowerCamelCase_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCamelCase_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test batched lowerCamelCase_ = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values lowerCamelCase_ = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = ['longest', 'max_length', 'do_not_pad'] lowerCamelCase_ = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = feat_extract(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) lowerCamelCase_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = range(800 , 1400 , 200 ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in lengths] lowerCamelCase_ = ['longest', 'max_length', 'do_not_pad'] lowerCamelCase_ = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = feat_extract(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=1000 , padding='max_length' , return_tensors='np' ) lowerCamelCase_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=1000 , padding='longest' , return_tensors='np' ) lowerCamelCase_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=2000 , padding='longest' , return_tensors='np' ) lowerCamelCase_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = np.random.rand(100 ).astype(np.floataa ) lowerCamelCase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCamelCase_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test feature size lowerCamelCase_ = feature_extractor(audio_target=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowerCamelCase_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values lowerCamelCase_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test batched lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase_ = np.asarray(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ = feat_extract.model_input_names[0] lowerCamelCase_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) for x, y in zip(SCREAMING_SNAKE_CASE_ , processed_features[input_name] ) ) ) lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) lowerCamelCase_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ = feat_extract.model_input_names[0] lowerCamelCase_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) lowerCamelCase_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase_ = feat_extract.model_input_names[0] lowerCamelCase_ = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ = feat_extract.num_mel_bins # hack! lowerCamelCase_ = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='np' )[input_name] lowerCamelCase_ = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.feat_extract_dict lowerCamelCase_ = True lowerCamelCase_ = self.feature_extraction_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase_ = [len(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] lowerCamelCase_ = feat_extract.model_input_names[0] lowerCamelCase_ = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ = feat_extract.num_mel_bins # hack! lowerCamelCase_ = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.feat_extract_dict lowerCamelCase_ = True lowerCamelCase_ = self.feature_extraction_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase_ = [len(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] lowerCamelCase_ = feat_extract.model_input_names[0] lowerCamelCase_ = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ = min(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = feat_extract.num_mel_bins # hack! lowerCamelCase_ = feat_extract.pad( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' from datasets import load_dataset lowerCamelCase_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCamelCase_ = ds.sort('id' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on lowerCamelCase_ = self._load_datasamples(1 ) lowerCamelCase_ = SpeechTaFeatureExtractor() lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , SCREAMING_SNAKE_CASE_ , atol=1E-6 ) ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on lowerCamelCase_ = self._load_datasamples(1 ) lowerCamelCase_ = SpeechTaFeatureExtractor() lowerCamelCase_ = feature_extractor(audio_target=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
42
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _a ( UpperCamelCase__ ): _lowercase : Tuple = ['''pixel_values'''] def __init__( self: List[str] , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 255 , UpperCamelCase_: bool = True , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , **UpperCamelCase_: List[str] , ) -> None: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = size if size is not None else {'''shortest_edge''': 256} lowercase__ = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowercase__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = offset lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Union[str, Any] , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" in size: lowercase__ = get_resize_output_image_size(UpperCamelCase_ , size['''shortest_edge'''] , default_to_square=UpperCamelCase_ ) elif "height" in size and "width" in size: lowercase__ = (size['''height'''], size['''width''']) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(UpperCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[int, float] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Optional[int] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = image.astype(np.floataa ) if offset: lowercase__ = image - (scale / 2) return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Any , ) -> np.ndarray: """simple docstring""" return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: ImageInput , UpperCamelCase_: bool = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = None , UpperCamelCase_: bool = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: bool = None , UpperCamelCase_: float = None , UpperCamelCase_: bool = None , UpperCamelCase_: bool = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowercase__ = to_numpy_array(UpperCamelCase_ ) if do_resize: lowercase__ = self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) if do_center_crop: lowercase__ = self.center_crop(UpperCamelCase_ , size=UpperCamelCase_ ) if do_rescale: lowercase__ = self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ , offset=UpperCamelCase_ ) if do_normalize: lowercase__ = self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) lowercase__ = to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) return image def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: ImageInput , UpperCamelCase_: bool = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = None , UpperCamelCase_: bool = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: bool = None , UpperCamelCase_: float = None , UpperCamelCase_: bool = None , UpperCamelCase_: bool = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_: Tuple , ) -> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = offset if offset is not None else self.offset lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase__ = make_batched(UpperCamelCase_ ) lowercase__ = [ [ self._preprocess_image( image=UpperCamelCase_ , do_resize=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , do_center_crop=UpperCamelCase_ , crop_size=UpperCamelCase_ , do_rescale=UpperCamelCase_ , rescale_factor=UpperCamelCase_ , offset=UpperCamelCase_ , do_normalize=UpperCamelCase_ , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ , data_format=UpperCamelCase_ , ) for img in video ] for video in videos ] lowercase__ = {'''pixel_values''': videos} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
43
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
0
from __future__ import annotations def A ( lowercase__ : list[int] , lowercase__ : int ) -> list[int]: UpperCamelCase__ :Tuple = 0 UpperCamelCase__ :Any = len(lowercase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase__ :Union[str, Any] = i + 1 else: UpperCamelCase__ :Optional[int] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
45
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(_lowerCamelCase , x % y ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase = 20 ) -> int: '''simple docstring''' _lowerCamelCase : Any = 1 for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = lcm(_lowerCamelCase , _lowerCamelCase ) return g if __name__ == "__main__": print(f'''{solution() = }''')
46
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
import math import tensorflow as tf from packaging import version def UpperCAmelCase__ ( lowerCamelCase_ : Tuple ): __a : Any = tf.convert_to_tensor(lowerCamelCase_ ) __a : Any = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ): __a : Optional[Any] = tf.convert_to_tensor(lowerCamelCase_ ) __a : Union[str, Any] = tf.cast(math.pi , x.dtype ) __a : str = tf.cast(0.044715 , x.dtype ) __a : int = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase_ , 3 )) )) return x * cdf def UpperCAmelCase__ ( lowerCamelCase_ : Tuple ): __a : Union[str, Any] = tf.convert_to_tensor(lowerCamelCase_ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase_ ) ) def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ): __a : List[str] = tf.convert_to_tensor(lowerCamelCase_ ) __a : int = tf.cast(0.044715 , x.dtype ) __a : List[Any] = tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ): __a : Dict = tf.convert_to_tensor(lowerCamelCase_ ) __a : int = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] ): return tf.clip_by_value(_gelu(lowerCamelCase_ ) , -1_0 , 1_0 ) def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any]=-1 ): __a , __a : Optional[Any] = tf.split(lowerCamelCase_ , 2 , axis=lowerCamelCase_ ) return a * tf.math.sigmoid(lowerCamelCase_ ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def UpperCAmelCase__ ( lowerCamelCase_ : int ): return tf.keras.activations.gelu(lowerCamelCase_ , approximate=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = tf.keras.activations.gelu SCREAMING_SNAKE_CASE__ = approximate_gelu_wrap else: SCREAMING_SNAKE_CASE__ = _gelu SCREAMING_SNAKE_CASE__ = _gelu_new SCREAMING_SNAKE_CASE__ = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def UpperCAmelCase__ ( lowerCamelCase_ : str ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
47
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : pyspark.sql.DataFrame , __magic_name__ : Optional[NamedSplit] = None , __magic_name__ : Optional[Features] = None , __magic_name__ : bool = True , __magic_name__ : str = None , __magic_name__ : bool = False , __magic_name__ : str = None , __magic_name__ : bool = True , __magic_name__ : str = "arrow" , **__magic_name__ : int , ): """simple docstring""" super().__init__( split=__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ , streaming=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = load_from_cache_file lowerCAmelCase__ = file_format lowerCAmelCase__ = Spark( df=__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ , working_dir=__magic_name__ , **__magic_name__ , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__magic_name__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
48
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
0
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return number | (1 << position) def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return number & ~(1 << position) def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return number ^ (1 << position) def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return ((number >> position) & 1) == 1 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : int , a__ : bool , a__ : Optional[int] = None , a__ : Optional[int] = None ): super().__init__() UpperCAmelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase = torch.zeros(a__ , a__ ) else: UpperCAmelCase = None UpperCAmelCase = torch.nn.Parameter(a__ ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =42 _lowerCamelCase =42 _lowerCamelCase =42 _lowerCamelCase =42 _lowerCamelCase =42 _lowerCamelCase =42 def __init__( self : List[str] , a__ : VQModel , a__ : CLIPTextModel , a__ : CLIPTokenizer , a__ : TransformeraDModel , a__ : VQDiffusionScheduler , a__ : LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=a__ , transformer=a__ , text_encoder=a__ , tokenizer=a__ , scheduler=a__ , learned_classifier_free_sampling_embeddings=a__ , ) def __snake_case ( self : Any , a__ : Dict , a__ : Optional[int] , a__ : Optional[Any] ): UpperCAmelCase = len(a__ ) if isinstance(a__ , a__ ) else 1 # get prompt text embeddings UpperCAmelCase = self.tokenizer( a__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=a__ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase = prompt_embeds.repeat_interleave(a__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(a__ , 1 , 1 ) else: UpperCAmelCase = [''''''] * batch_size UpperCAmelCase = text_input_ids.shape[-1] UpperCAmelCase = self.tokenizer( a__ , padding='''max_length''' , max_length=a__ , truncation=a__ , return_tensors='''pt''' , ) UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=a__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase = negative_prompt_embeds.shape[1] UpperCAmelCase = negative_prompt_embeds.repeat(1 , a__ , 1 ) UpperCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[Any] , a__ : Union[str, List[str]] , a__ : int = 100 , a__ : float = 5.0 , a__ : float = 1.0 , a__ : int = 1 , a__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[str] = "pil" , a__ : bool = True , a__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a__ : int = 1 , ): if isinstance(a__ , a__ ): UpperCAmelCase = 1 elif isinstance(a__ , a__ ): UpperCAmelCase = len(a__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(a__ )}" ) UpperCAmelCase = batch_size * num_images_per_prompt UpperCAmelCase = guidance_scale > 1.0 UpperCAmelCase = self._encode_prompt(a__ , a__ , a__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a__ , a__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(a__ )}." ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase = self.transformer.num_vector_embeds - 1 UpperCAmelCase = torch.full(a__ , a__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) UpperCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(a__ , device=self.device ) UpperCAmelCase = self.scheduler.timesteps.to(self.device ) UpperCAmelCase = latents for i, t in enumerate(self.progress_bar(a__ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase = self.transformer(a__ , encoder_hidden_states=a__ , timestep=a__ ).sample if do_classifier_free_guidance: UpperCAmelCase, UpperCAmelCase = model_output.chunk(2 ) UpperCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(a__ , dim=1 , keepdim=a__ ) UpperCAmelCase = self.truncate(a__ , a__ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(a__ , timestep=a__ , sample=a__ , generator=a__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a__ , a__ , a__ ) UpperCAmelCase = self.vqvae.config.vq_embed_dim UpperCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase = self.vqvae.quantize.get_codebook_entry(a__ , shape=a__ ) UpperCAmelCase = self.vqvae.decode(a__ , force_not_quantize=a__ ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ ) def __snake_case ( self : List[str] , a__ : torch.FloatTensor , a__ : float ): UpperCAmelCase, UpperCAmelCase = torch.sort(a__ , 1 , descending=a__ ) UpperCAmelCase = torch.exp(a__ ) UpperCAmelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , a__ ) UpperCAmelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase = keep_mask[:, :-1, :] UpperCAmelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase = log_p_x_0.clone() UpperCAmelCase = -torch.inf # -inf = log(0) return rv
51
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
0
"""simple docstring""" from __future__ import annotations A = list[list[int]] # assigning initial values to the grid A = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __A ( a_ :Matrix , a_ :int , a_ :int , a_ :int) -> bool: for i in range(9): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3): for j in range(3): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __A ( a_ :Matrix) -> tuple[int, int] | None: for i in range(9): for j in range(9): if grid[i][j] == 0: return i, j return None def __A ( a_ :Matrix) -> Matrix | None: if location := find_empty_location(a_): __a , __a : int = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10): if is_safe(a_ , a_ , a_ , a_): __a : Union[str, Any] = digit if sudoku(a_) is not None: return grid __a : Optional[Any] = 0 return None def __A ( a_ :Matrix) -> None: for row in grid: for cell in row: print(a_ , end=''' ''') print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') A = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
52
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
import qiskit def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int ): __lowerCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCAmelCase = qiskit.QuantumCircuit(lowerCAmelCase_, lowerCAmelCase_ ) # Map the quantum measurement to the classical bits circuit.measure([0], [0] ) # Execute the circuit on the simulator __lowerCAmelCase = qiskit.execute(lowerCAmelCase_, lowerCAmelCase_, shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
53
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
0
from __future__ import annotations class A : def __init__( self: Union[str, Any] , _lowerCAmelCase: int = 0 ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =key def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: int ) -> list[str]: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCAmelCase ) ^ key ) for ch in content] def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: int ) -> list[str]: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCAmelCase ) ^ key ) for ch in content] def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: int = 0 ) -> str: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase_ ="" for ch in content: ans += chr(ord(_lowerCAmelCase ) ^ key ) return ans def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: int = 0 ) -> str: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase_ ="" for ch in content: ans += chr(ord(_lowerCAmelCase ) ^ key ) return ans def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: int = 0 ) -> bool: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) try: with open(_lowerCAmelCase ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_lowerCAmelCase , _lowerCAmelCase ) ) except OSError: return False return True def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: str , _lowerCAmelCase: int ) -> bool: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) try: with open(_lowerCAmelCase ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_lowerCAmelCase , _lowerCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
0
def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if n == 1 or not isinstance(a_ , a_ ): return 0 elif n == 2: return 1 else: __A = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = 2 while digits < n: index += 1 __A = len(str(fibonacci(a_ ) ) ) return index def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int: """simple docstring""" return fibonacci_digits_index(a_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a : Union[str, Any] = 16 _a : Optional[Any] = 32 def _a (lowercase__ : Accelerator , lowercase__ : int = 1_6 ) -> Union[str, Any]: """simple docstring""" __snake_case = AutoTokenizer.from_pretrained('bert-base-cased' ) __snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowercase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case = 1_6 elif accelerator.mixed_precision != "no": __snake_case = 8 else: __snake_case = None return tokenizer.pad( lowercase__ , padding='longest' , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors='pt' , ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets['train'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) __snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a : Optional[int] = mocked_dataloaders # noqa: F811 def _a (lowercase__ : str , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowercase__ ) == "1": __snake_case = 2 # Initialize accelerator __snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config['lr'] __snake_case = int(config['num_epochs'] ) __snake_case = int(config['seed'] ) __snake_case = int(config['batch_size'] ) __snake_case = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __snake_case = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __snake_case = batch_size // MAX_GPU_BATCH_SIZE __snake_case = MAX_GPU_BATCH_SIZE set_seed(lowercase__ ) __snake_case , __snake_case = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case = model.to(accelerator.device ) # Instantiate optimizer __snake_case = AdamW(params=model.parameters() , lr=lowercase__ ) # Instantiate scheduler __snake_case = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowercase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __snake_case = model(**lowercase__ ) __snake_case = outputs.loss __snake_case = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __snake_case = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case = model(**lowercase__ ) __snake_case = outputs.logits.argmax(dim=-1 ) __snake_case , __snake_case = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] __snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) __snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowercase__ ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowercase__ , default=lowercase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __snake_case = parser.parse_args() __snake_case = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
56
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=1_8 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=3_2 , _lowerCamelCase=True , ): UpperCamelCase_: Any = parent UpperCamelCase_: Optional[Any] = batch_size UpperCamelCase_: List[str] = num_channels UpperCamelCase_: Optional[Any] = image_size UpperCamelCase_: Optional[int] = min_resolution UpperCamelCase_: List[str] = max_resolution UpperCamelCase_: Tuple = do_resize UpperCamelCase_: Union[str, Any] = size_divisor UpperCamelCase_: Optional[int] = do_rescale def _a ( self ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : str =GLPNImageProcessor if is_vision_available() else None def _a ( self ): UpperCamelCase_: Tuple = GLPNImageProcessingTester(self ) @property def _a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ): UpperCamelCase_: List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size_divisor' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'resample' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_rescale' ) ) def _a ( self ): pass def _a ( self ): # Initialize image_processing UpperCamelCase_: int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_: List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self ): # Initialize image_processing UpperCamelCase_: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_: Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_: Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self ): # Initialize image_processing UpperCamelCase_: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_: Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_: str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
57
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = FunnelConfig.from_json_file(__UpperCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) snake_case_ : Dict = FunnelBaseModel(__UpperCamelCase ) if base_model else FunnelModel(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: Optional[int] =len(__a ), len(grid[0] ) if ( min(__a , __a ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowerCamelCase__: str =0 count += depth_first_search(__a , row + 1 , __a , __a ) count += depth_first_search(__a , row - 1 , __a , __a ) count += depth_first_search(__a , __a , col + 1 , __a ) count += depth_first_search(__a , __a , col - 1 , __a ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
59
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
60
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict=7 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=18 , SCREAMING_SNAKE_CASE__ : List[str]=30 , SCREAMING_SNAKE_CASE__ : Dict=400 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=[0.48_145_466, 0.4_578_275, 0.40_821_073] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[0.26_862_954, 0.26_130_258, 0.27_577_711] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , ) -> int: lowerCAmelCase__ = size if size is not None else {"height": 224, "width": 224} lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean lowerCAmelCase__ = image_std lowerCAmelCase__ = do_convert_rgb def a ( self : Union[str, Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Optional[Any]: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCAmelCase__ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCAmelCase__ = [] for i in range(self.batch_size ): lowerCAmelCase__ , lowerCAmelCase__ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCAmelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCAmelCase__ = [torch.from_numpy(SCREAMING_SNAKE_CASE__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class __lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ChineseCLIPImageProcessor if is_vision_available() else None def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = ChineseCLIPImageProcessingTester(self , do_center_crop=SCREAMING_SNAKE_CASE__ ) @property def a ( self : int ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def a ( self : Tuple ) -> int: lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_convert_rgb" ) ) def a ( self : Dict ) -> int: lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def a ( self : str ) -> Optional[int]: pass def a ( self : Tuple ) -> Union[str, Any]: # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def a ( self : Union[str, Any] ) -> Dict: # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def a ( self : Optional[Any] ) -> Any: # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class __lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ChineseCLIPImageProcessor if is_vision_available() else None def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = 3 @property def a ( self : int ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def a ( self : List[str] ) -> Dict: lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_convert_rgb" ) ) def a ( self : Any ) -> Optional[int]: pass def a ( self : str ) -> Union[str, Any]: # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
61
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo snake_case = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ snake_case = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ snake_case = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _A ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def _A ( self : List[Any] , UpperCAmelCase_ : List[List[List[str]]] , UpperCAmelCase_ : List[List[str]] , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCAmelCase_ , hypotheses=UpperCAmelCase_ , min_len=UpperCAmelCase_ , max_len=UpperCAmelCase_ ) }
62
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
0
a : Optional[int] = 9.8_06_65 def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float = g ): if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
63
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase_ : List[Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowerCamelCase ( unittest.TestCase ): __a = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __a = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __a = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __a = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__: str= ZeroShotClassificationPipeline( model=lowerCAmelCase , tokenizer=lowerCAmelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__: List[Any]= classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) # No kwarg SCREAMING_SNAKE_CASE__: int= classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) SCREAMING_SNAKE_CASE__: List[Any]= classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) SCREAMING_SNAKE_CASE__: Dict= classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 SCREAMING_SNAKE_CASE__: str= classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( lowerCAmelCase , [ {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} for i in range(1 ) ] , ) SCREAMING_SNAKE_CASE__: Tuple= classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( lowerCAmelCase , [ {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(lowerCAmelCase ): classifier(lowerCAmelCase , candidate_labels='''politics''' ) with self.assertRaises(lowerCAmelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(lowerCAmelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=lowerCAmelCase ) with self.assertRaises(lowerCAmelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(lowerCAmelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=lowerCAmelCase , ) self.run_entailment_id(lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Optional[Any]= zero_shot_classifier.model.config SCREAMING_SNAKE_CASE__: str= config.labelaid SCREAMING_SNAKE_CASE__: int= zero_shot_classifier.entailment_id SCREAMING_SNAKE_CASE__: str= {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) SCREAMING_SNAKE_CASE__: Any= {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) SCREAMING_SNAKE_CASE__: List[Any]= {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) SCREAMING_SNAKE_CASE__: Tuple= {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) SCREAMING_SNAKE_CASE__: Dict= original_labelaid self.assertEqual(lowerCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase_ ( self ) -> int: SCREAMING_SNAKE_CASE__: Union[str, Any]= pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Optional[int]= pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) SCREAMING_SNAKE_CASE__: Any= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__: Tuple= pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) SCREAMING_SNAKE_CASE__: List[str]= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: int= pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) SCREAMING_SNAKE_CASE__: List[Any]= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) SCREAMING_SNAKE_CASE__: Dict= zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=lowerCAmelCase , ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Any= pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) SCREAMING_SNAKE_CASE__: Tuple= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) SCREAMING_SNAKE_CASE__: Any= zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=lowerCAmelCase , ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
64
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
0
"""simple docstring""" __UpperCAmelCase = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on __UpperCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = """Morse code here!""" print(__UpperCamelCase ) UpperCAmelCase__ : List[str] = encrypt(__UpperCamelCase ) print(__UpperCamelCase ) UpperCAmelCase__ : int = decrypt(__UpperCamelCase ) print(__UpperCamelCase ) if __name__ == "__main__": main()
65
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) <= 1: return [tuple(SCREAMING_SNAKE_CASE )] _lowercase : List[Any] = [] def generate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Tuple = [0] * n res.append(tuple(SCREAMING_SNAKE_CASE ) ) _lowercase : int = 0 while i < n: if c[i] < i: if i % 2 == 0: _lowercase , _lowercase : Optional[Any] = arr[i], arr[0] else: _lowercase , _lowercase : Union[str, Any] = arr[i], arr[c[i]] res.append(tuple(SCREAMING_SNAKE_CASE ) ) c[i] += 1 _lowercase : Tuple = 0 else: _lowercase : str = 0 i += 1 generate(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(heaps(arr))
66
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
0
class A_ : """simple docstring""" def __init__( self : List[str] ) -> Any: _lowercase = 0 _lowercase = 0 _lowercase = {} def __UpperCAmelCase ( self : Union[str, Any] ,__A : Tuple ) -> Dict: if vertex not in self.adjacency: _lowercase = {} self.num_vertices += 1 def __UpperCAmelCase ( self : Dict ,__A : List[Any] ,__A : Tuple ,__A : str ) -> Union[str, Any]: self.add_vertex(__A ) self.add_vertex(__A ) if head == tail: return _lowercase = weight _lowercase = weight def __UpperCAmelCase ( self : List[str] ) -> str: _lowercase = self.get_edges() for edge in edges: _lowercase , _lowercase , _lowercase = edge edges.remove((tail, head, weight) ) for i in range(len(__A ) ): _lowercase = list(edges[i] ) edges.sort(key=lambda __A : e[2] ) for i in range(len(__A ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _lowercase = edges[i][2] + 1 for edge in edges: _lowercase , _lowercase , _lowercase = edge _lowercase = weight _lowercase = weight def __str__( self : List[Any] ) -> Tuple: _lowercase = '' for tail in self.adjacency: for head in self.adjacency[tail]: _lowercase = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def __UpperCAmelCase ( self : Any ) -> Dict: _lowercase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: return self.adjacency.keys() @staticmethod def __UpperCAmelCase ( __A : str=None ,__A : Optional[int]=None ) -> int: _lowercase = Graph() if vertices is None: _lowercase = [] if edges is None: _lowercase = [] for vertex in vertices: g.add_vertex(__A ) for edge in edges: g.add_edge(*__A ) return g class A_ : """simple docstring""" def __init__( self : Any ) -> int: _lowercase = {} _lowercase = {} def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.parent ) def __UpperCAmelCase ( self : str ,__A : List[str] ) -> Any: if item in self.parent: return self.find(__A ) _lowercase = item _lowercase = 0 return item def __UpperCAmelCase ( self : List[Any] ,__A : Dict ) -> List[str]: if item not in self.parent: return self.make_set(__A ) if item != self.parent[item]: _lowercase = self.find(self.parent[item] ) return self.parent[item] def __UpperCAmelCase ( self : Optional[int] ,__A : Optional[int] ,__A : List[Any] ) -> Any: _lowercase = self.find(__A ) _lowercase = self.find(__A ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowercase = roota return roota if self.rank[roota] < self.rank[roota]: _lowercase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowercase = roota return roota return None @staticmethod def __UpperCAmelCase ( __A : Union[str, Any] ) -> List[Any]: _lowercase = graph.num_vertices _lowercase = Graph.UnionFind() _lowercase = [] while num_components > 1: _lowercase = {} for vertex in graph.get_vertices(): _lowercase = -1 _lowercase = graph.get_edges() for edge in edges: _lowercase , _lowercase , _lowercase = edge edges.remove((tail, head, weight) ) for edge in edges: _lowercase , _lowercase , _lowercase = edge _lowercase = union_find.find(__A ) _lowercase = union_find.find(__A ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowercase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowercase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowercase , _lowercase , _lowercase = cheap_edge[vertex] if union_find.find(__A ) != union_find.find(__A ): union_find.union(__A ,__A ) mst_edges.append(cheap_edge[vertex] ) _lowercase = num_components - 1 _lowercase = Graph.build(edges=__A ) return mst
67
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
0
def lowercase__ ( A_: str ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(A_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
68
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> bool: __snake_case = len(_UpperCAmelCase ) __snake_case = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case = subset[i - 1][j] if arr[i - 1] <= j: __snake_case = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
69
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
0
from __future__ import annotations from collections.abc import Iterator class A: '''simple docstring''' def __init__( self : Tuple , A_ : int ) -> None: """simple docstring""" lowerCamelCase_ = value lowerCamelCase_ = None lowerCamelCase_ = None class A: '''simple docstring''' def __init__( self : List[str] , A_ : Node ) -> None: """simple docstring""" lowerCamelCase_ = tree def a__ ( self : Optional[int] , A_ : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Tuple ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
70
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
0
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = False ,_snake_case = False ,_snake_case = None ,_snake_case = None ,**_snake_case ,): super().__init__( _snake_case ,split=_snake_case ,features=_snake_case ,cache_dir=_snake_case ,keep_in_memory=_snake_case ,streaming=_snake_case ,num_proc=_snake_case ,**_snake_case ,) UpperCAmelCase_ : Tuple = field UpperCAmelCase_ : List[Any] = path_or_paths if isinstance(_snake_case ,_snake_case ) else {self.split: path_or_paths} UpperCAmelCase_ : Optional[int] = Json( cache_dir=_snake_case ,data_files=_snake_case ,features=_snake_case ,field=_snake_case ,**_snake_case ,) def UpperCamelCase__ ( self ): # Build iterable dataset if self.streaming: UpperCAmelCase_ : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None self.builder.download_and_prepare( download_config=_snake_case ,download_mode=_snake_case ,verification_mode=_snake_case ,base_path=_snake_case ,num_proc=self.num_proc ,) UpperCAmelCase_ : Dict = self.builder.as_dataset( split=self.split ,verification_mode=_snake_case ,in_memory=self.keep_in_memory ) return dataset class _snake_case : def __init__( self ,_snake_case ,_snake_case ,_snake_case = None ,_snake_case = None ,**_snake_case ,): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase_ : int = dataset UpperCAmelCase_ : Union[str, Any] = path_or_buf UpperCAmelCase_ : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase_ : Dict = num_proc UpperCAmelCase_ : Optional[Any] = "utf-8" UpperCAmelCase_ : Optional[int] = to_json_kwargs def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self.to_json_kwargs.pop("path_or_buf" ,_snake_case ) UpperCAmelCase_ : Tuple = self.to_json_kwargs.pop("orient" ,"records" ) UpperCAmelCase_ : Any = self.to_json_kwargs.pop("lines" ,True if orient == "records" else False ) UpperCAmelCase_ : Optional[int] = self.to_json_kwargs.pop("index" ,False if orient in ["split", "table"] else True ) UpperCAmelCase_ : int = self.to_json_kwargs.pop("compression" ,_snake_case ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf ,"wb" ,compression=_snake_case ) as buffer: UpperCAmelCase_ : List[str] = self._write(file_obj=_snake_case ,orient=_snake_case ,lines=_snake_case ,index=_snake_case ,**self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' " was passed. Please provide a local path instead." ) UpperCAmelCase_ : Union[str, Any] = self._write( file_obj=self.path_or_buf ,orient=_snake_case ,lines=_snake_case ,index=_snake_case ,**self.to_json_kwargs ) return written def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = args UpperCAmelCase_ : List[str] = query_table( table=self.dataset.data ,key=slice(_snake_case ,offset + self.batch_size ) ,indices=self.dataset._indices ,) UpperCAmelCase_ : Optional[Any] = batch.to_pandas().to_json( path_or_buf=_snake_case ,orient=_snake_case ,lines=_snake_case ,index=_snake_case ,**_snake_case ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ,): UpperCAmelCase_ : Optional[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating json from Arrow format" ,): UpperCAmelCase_ : Any = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_snake_case ) else: UpperCAmelCase_ , UpperCAmelCase_ : int = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json ,[(offset, orient, lines, index, to_json_kwargs) for offset in range(0 ,_snake_case ,_snake_case )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating json from Arrow format" ,): written += file_obj.write(_snake_case ) return written
71
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'xlm-roberta' def __init__( self , snake_case_=3_05_22 , snake_case_=7_68 , snake_case_=12 , snake_case_=12 , snake_case_=30_72 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_12 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_="absolute" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) lowercase =vocab_size lowercase =hidden_size lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =hidden_act lowercase =intermediate_size lowercase =hidden_dropout_prob lowercase =attention_probs_dropout_prob lowercase =max_position_embeddings lowercase =type_vocab_size lowercase =initializer_range lowercase =layer_norm_eps lowercase =position_embedding_type lowercase =use_cache lowercase =classifier_dropout class __magic_name__ ( __SCREAMING_SNAKE_CASE ): @property def _A( self ): if self.task == "multiple-choice": lowercase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
72
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
0
from math import isqrt, loga def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = False return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]] def lowerCamelCase__ (_UpperCAmelCase = 80_0800 , _UpperCAmelCase = 80_0800): SCREAMING_SNAKE_CASE = degree * loga(_UpperCAmelCase) SCREAMING_SNAKE_CASE = int(_UpperCAmelCase) SCREAMING_SNAKE_CASE = calculate_prime_numbers(_UpperCAmelCase) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left]) + prime_numbers[left] * loga(prime_numbers[right]) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
73
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __SCREAMING_SNAKE_CASE : int = { '''input_ids''': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __SCREAMING_SNAKE_CASE : Any = model(_A )['''last_hidden_state'''] __SCREAMING_SNAKE_CASE : Dict = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _A ) # compare the actual values for a slice. __SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor( [ [ [0.0_68_17_62, 0.10_89_44_51, 0.06_77_25_04], [-0.06_42_36_68, 0.02_36_66_15, 0.04_32_93_44], [-0.06_05_72_95, 0.09_97_41_35, -0.00_07_05_84], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
74
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
75
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
0
"""simple docstring""" a_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a_ = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): assert len(str(__UpperCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __lowercase : Union[str, Any] = year // 1_00 __lowercase : Union[str, Any] = (5 * (century % 4) + 2) % 7 __lowercase : int = year % 1_00 __lowercase : Optional[int] = centurian % 12 __lowercase : str = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __lowercase : List[Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) __lowercase : int = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
76
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
0
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder A = """__DUMMY_TRANSFORMERS_USER__""" A = """Dummy User""" A = """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""" A = """https://hub-ci.huggingface.co""" A = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" A = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" A = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def _UpperCamelCase ( UpperCamelCase ) -> Optional[Any]: """simple docstring""" monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , UpperCamelCase ) @pytest.fixture def _UpperCamelCase ( UpperCamelCase ) -> Any: """simple docstring""" monkeypatch.setattr("datasets.config.HF_ENDPOINT" , UpperCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , UpperCamelCase ) @pytest.fixture def _UpperCamelCase ( UpperCamelCase ) -> List[Any]: """simple docstring""" monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , UpperCamelCase ) @pytest.fixture def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" HfFolder.save_token(UpperCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def _UpperCamelCase ( ) -> Tuple: """simple docstring""" return HfApi(endpoint=UpperCamelCase ) @pytest.fixture(scope="session" ) def _UpperCamelCase ( UpperCamelCase ) -> Tuple: """simple docstring""" __UpperCAmelCase : int = HfFolder.get_token() HfFolder.save_token(UpperCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase ) @pytest.fixture def _UpperCamelCase ( UpperCamelCase ) -> Union[str, Any]: """simple docstring""" def _cleanup_repo(UpperCamelCase ): hf_api.delete_repo(UpperCamelCase , token=UpperCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def _UpperCamelCase ( UpperCamelCase ) -> Dict: """simple docstring""" @contextmanager def _temporary_repo(UpperCamelCase ): try: yield repo_id finally: cleanup_repo(UpperCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : str = f"repo_txt_data-{int(time.time() * 1_0e3 )}" __UpperCAmelCase : List[Any] = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(UpperCamelCase , token=UpperCamelCase , repo_type="dataset" , private=UpperCamelCase ) hf_api.upload_file( token=UpperCamelCase , path_or_fileobj=str(UpperCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=UpperCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase , token=UpperCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Dict = f"repo_zipped_txt_data-{int(time.time() * 1_0e3 )}" __UpperCAmelCase : Dict = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(UpperCamelCase , token=UpperCamelCase , repo_type="dataset" , private=UpperCamelCase ) hf_api.upload_file( token=UpperCamelCase , path_or_fileobj=str(UpperCamelCase ) , path_in_repo="data.zip" , repo_id=UpperCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase , token=UpperCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Any = f"repo_zipped_img_data-{int(time.time() * 1_0e3 )}" __UpperCAmelCase : List[Any] = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(UpperCamelCase , token=UpperCamelCase , repo_type="dataset" , private=UpperCamelCase ) hf_api.upload_file( token=UpperCamelCase , path_or_fileobj=str(UpperCamelCase ) , path_in_repo="data.zip" , repo_id=UpperCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase , token=UpperCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Any: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
77
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowerCAmelCase_ ( snake_case_ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: '''simple docstring''' UpperCAmelCase_ = [] if isinstance(snake_case_ , snake_case_ ): for v in tree.values(): shapes.extend(_fetch_dims(snake_case_ ) ) elif isinstance(snake_case_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(snake_case_ ) ) elif isinstance(snake_case_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Tuple[int, ...] ) -> Tuple[int, ...]: '''simple docstring''' UpperCAmelCase_ = [] for d in reversed(snake_case_ ): idx.append(flat_idx % d ) UpperCAmelCase_ = flat_idx // d return tuple(reversed(snake_case_ ) ) @torch.jit.ignore def lowerCAmelCase_ ( snake_case_ : Sequence[int] , snake_case_ : Sequence[int] , snake_case_ : Sequence[int] , snake_case_ : Optional[Sequence[bool]] = None , snake_case_ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: '''simple docstring''' def reduce_edge_list(snake_case_ : List[bool] ) -> None: UpperCAmelCase_ = True for i in range(len(snake_case_ ) ): UpperCAmelCase_ = -1 * (i + 1) l[reversed_idx] &= tally UpperCAmelCase_ = l[reversed_idx] if start_edges is None: UpperCAmelCase_ = [s == 0 for s in start] reduce_edge_list(snake_case_ ) if end_edges is None: UpperCAmelCase_ = [e == (d - 1) for e, d in zip(snake_case_ , snake_case_ )] reduce_edge_list(snake_case_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(snake_case_ ) == 0: return [()] elif len(snake_case_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCAmelCase_ = [] UpperCAmelCase_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(snake_case_ , snake_case_ ): if s == e: path_list.append(slice(snake_case_ , s + 1 ) ) else: break UpperCAmelCase_ = tuple(snake_case_ ) UpperCAmelCase_ = len(snake_case_ ) # start == end, and we're done if divergence_idx == len(snake_case_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = start[divergence_idx] return tuple( path + (slice(snake_case_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = end[divergence_idx] return tuple( path + (slice(snake_case_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCAmelCase_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowerCAmelCase_ ( snake_case_ : torch.Tensor , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> torch.Tensor: '''simple docstring''' UpperCAmelCase_ = t.shape[:no_batch_dims] UpperCAmelCase_ = list(_flat_idx_to_idx(snake_case_ , snake_case_ ) ) # _get_minimal_slice_set is inclusive UpperCAmelCase_ = list(_flat_idx_to_idx(flat_end - 1 , snake_case_ ) ) # Get an ordered list of slices to perform UpperCAmelCase_ = _get_minimal_slice_set( snake_case_ , snake_case_ , snake_case_ , ) UpperCAmelCase_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowerCAmelCase_ ( snake_case_ : Callable , snake_case_ : Dict[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : bool = False , snake_case_ : Any = None , snake_case_ : bool = False , ) -> Any: '''simple docstring''' if not (len(snake_case_ ) > 0): raise ValueError("Must provide at least one input" ) UpperCAmelCase_ = [shape[:no_batch_dims] for shape in _fetch_dims(snake_case_ )] UpperCAmelCase_ = tuple([max(snake_case_ ) for s in zip(*snake_case_ )] ) def _prep_inputs(snake_case_ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCAmelCase_ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCAmelCase_ = tensor_tree_map(_prep_inputs , snake_case_ ) UpperCAmelCase_ = None if _out is not None: UpperCAmelCase_ = tensor_tree_map(lambda snake_case_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCAmelCase_ = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCAmelCase_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(snake_case_ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCAmelCase_ = 0 UpperCAmelCase_ = prepped_outputs for _ in range(snake_case_ ): # Chunk the input if not low_mem: UpperCAmelCase_ = _select_chunk else: UpperCAmelCase_ = partial( _chunk_slice , flat_start=snake_case_ , flat_end=min(snake_case_ , i + chunk_size ) , no_batch_dims=len(snake_case_ ) , ) UpperCAmelCase_ = tensor_tree_map(snake_case_ , snake_case_ ) # Run the layer on the chunk UpperCAmelCase_ = layer(**snake_case_ ) # Allocate space for the output if out is None: UpperCAmelCase_ = tensor_tree_map(lambda snake_case_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , snake_case_ ) # Put the chunk in its pre-allocated space if isinstance(snake_case_ , snake_case_ ): def assign(snake_case_ : dict , snake_case_ : dict ) -> None: for k, v in da.items(): if isinstance(snake_case_ , snake_case_ ): assign(snake_case_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCAmelCase_ = da[k] assign(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): for xa, xa in zip(snake_case_ , snake_case_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCAmelCase_ = xa elif isinstance(snake_case_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCAmelCase_ = output_chunk else: raise ValueError("Not supported" ) i += chunk_size UpperCAmelCase_ = tensor_tree_map(lambda snake_case_ : t.view(orig_batch_dims + t.shape[1:] ) , snake_case_ ) return out class __A : def __init__(self : Dict , __a : int = 512 , ): UpperCAmelCase_ = max_chunk_size UpperCAmelCase_ = None UpperCAmelCase_ = None def _lowercase (self : List[Any] , __a : Callable , __a : tuple , __a : int ): logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCAmelCase_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCAmelCase_ = [c for c in candidates if c > min_chunk_size] UpperCAmelCase_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__a : int ) -> bool: try: with torch.no_grad(): fn(*__a , chunk_size=__a ) return True except RuntimeError: return False UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__a ) - 1 while i > min_viable_chunk_size_index: UpperCAmelCase_ = test_chunk_size(candidates[i] ) if not viable: UpperCAmelCase_ = (min_viable_chunk_size_index + i) // 2 else: UpperCAmelCase_ = i UpperCAmelCase_ = (i + len(__a ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowercase (self : int , __a : Iterable , __a : Iterable ): UpperCAmelCase_ = True for aa, aa in zip(__a , __a ): assert type(__a ) == type(__a ) if isinstance(__a , (list, tuple) ): consistent &= self._compare_arg_caches(__a , __a ) elif isinstance(__a , __a ): UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] consistent &= self._compare_arg_caches(__a , __a ) else: consistent &= aa == aa return consistent def _lowercase (self : List[str] , __a : Callable , __a : tuple , __a : int , ): UpperCAmelCase_ = True UpperCAmelCase_ = tree_map(lambda __a : a.shape if isinstance(__a , torch.Tensor ) else a , __a , __a ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__a ) UpperCAmelCase_ = self._compare_arg_caches(self.cached_arg_data , __a ) else: # Otherwise, we can reuse the precomputed value UpperCAmelCase_ = False if not consistent: UpperCAmelCase_ = self._determine_favorable_chunk_size( __a , __a , __a , ) UpperCAmelCase_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
78
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
0
SCREAMING_SNAKE_CASE__ : Dict = [0, 2, 4, 6, 8] SCREAMING_SNAKE_CASE__ : Optional[Any] = [1, 3, 5, 7, 9] def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCAmelCase__ : Optional[int] = 0 for digit in range(10 ): UpperCAmelCase__ : Dict = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __lowerCamelCase , __lowerCamelCase ) return result UpperCAmelCase__ : Dict = 0 for digita in range(10 ): UpperCAmelCase__ : Union[str, Any] = digita if (remainder + digita) % 2 == 0: UpperCAmelCase__ : Any = ODD_DIGITS else: UpperCAmelCase__ : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: UpperCAmelCase__ : Optional[Any] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __lowerCamelCase , __lowerCamelCase , ) return result def _lowerCamelCase ( __lowerCamelCase = 9 ) -> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__lowerCamelCase , 0 , [0] * length , __lowerCamelCase ) return result if __name__ == "__main__": print(f'''{solution() = }''')
79
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
def snake_case ( lowerCamelCase = 1_000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
80
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case : Any = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Dict = ["ChineseCLIPFeatureExtractor"] _snake_case : List[str] = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys _snake_case : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
81
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''ssube/stable-diffusion-x4-upscaler-onnx''' def lowercase__ ( self : str , _UpperCAmelCase : int=0 ) -> int: '''simple docstring''' UpperCAmelCase_ = floats_tensor((1, 3, 128, 128) , rng=random.Random(_UpperCAmelCase ) ) UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase_ = init_image.resize((128, 128) ) # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A fantasy landscape, trending on artstation" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase_ = init_image.resize((128, 128) ) UpperCAmelCase_ = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A fantasy landscape, trending on artstation" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
82
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
0
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example lowerCAmelCase__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCAmelCase__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case_ ( A_ : list[list[int]] ): '''simple docstring''' _lowerCamelCase : Any = [] for i in range(len(A_ ) ): _lowerCamelCase : Optional[int] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _lowerCamelCase : int = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _lowerCamelCase : Tuple = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A_ ) return next_generation def snake_case_ ( A_ : list[list[int]], A_ : int ): '''simple docstring''' _lowerCamelCase : List[str] = [] for _ in range(A_ ): # Create output image _lowerCamelCase : Tuple = Image.new('''RGB''', (len(cells[0] ), len(A_ )) ) _lowerCamelCase : Any = img.load() # Save cells to image for x in range(len(A_ ) ): for y in range(len(cells[0] ) ): _lowerCamelCase : int = 2_55 - cells[y][x] * 2_55 _lowerCamelCase : Tuple = (colour, colour, colour) # Save image images.append(A_ ) _lowerCamelCase : Optional[Any] = new_generation(A_ ) return images if __name__ == "__main__": lowerCAmelCase__ = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
83
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup UpperCAmelCase = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') UpperCAmelCase = parser.parse_args() if args.check_lib: UpperCAmelCase = importlib.import_module('''transformers''') UpperCAmelCase = Path(transformers_module.__file__).parent else: UpperCAmelCase = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
84
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE__ : List[str] = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE__ : Optional[int] = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE__ : Any = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE__ : Tuple = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
85
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Any=7 , UpperCAmelCase : Any=3 , UpperCAmelCase : str=18 , UpperCAmelCase : Union[str, Any]=30 , UpperCAmelCase : Union[str, Any]=400 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=None , ): A_ = size if size is not None else {"shortest_edge": 20} A_ = crop_size if crop_size is not None else {"height": 18, "width": 18} A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_center_crop A_ = crop_size def __A ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = MobileNetVaImageProcessor if is_vision_available() else None def __A ( self : Optional[Any] ): A_ = MobileNetVaImageProcessingTester(self ) @property def __A ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : List[Any] ): A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase , "crop_size" ) ) def __A ( self : int ): A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __A ( self : int ): pass def __A ( self : List[str] ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __A ( self : str ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __A ( self : str ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
86
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCamelCase : Union[str, Any] = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _lowerCamelCase : Union[str, Any] = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ _lowerCamelCase : str = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''') , id='''sequence'''), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''') , id='''sequence''') , id='''references'''), }) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : List[List[List[str]]] , UpperCAmelCase__ : List[List[str]] , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 4 , ) ->Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCAmelCase__ , hypotheses=UpperCAmelCase__ , min_len=UpperCAmelCase__ , max_len=UpperCAmelCase__) }
87
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _snake_case ( __snake_case : List[str] ): """simple docstring""" return getitem, k def _snake_case ( __snake_case : List[Any] , __snake_case : int ): """simple docstring""" return setitem, k, v def _snake_case ( __snake_case : str ): """simple docstring""" return delitem, k def _snake_case ( __snake_case : int , __snake_case : Optional[Any] , *__snake_case : Any ): """simple docstring""" try: return fun(__snake_case , *__snake_case ), None except Exception as e: return None, e UpperCAmelCase = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) UpperCAmelCase = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] UpperCAmelCase = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] UpperCAmelCase = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def _snake_case ( __snake_case : Any ): """simple docstring""" _lowerCamelCase : str = HashMap(initial_block_size=4 ) _lowerCamelCase : List[Any] = {} for _, (fun, *args) in enumerate(__snake_case ): _lowerCamelCase , _lowerCamelCase : List[str] = _run_operation(__snake_case , __snake_case , *__snake_case ) _lowerCamelCase , _lowerCamelCase : Dict = _run_operation(__snake_case , __snake_case , *__snake_case ) assert my_res == py_res assert str(__snake_case ) == str(__snake_case ) assert set(__snake_case ) == set(__snake_case ) assert len(__snake_case ) == len(__snake_case ) assert set(my.items() ) == set(py.items() ) def _snake_case ( ): """simple docstring""" def is_public(__snake_case : str ) -> bool: return not name.startswith("""_""" ) _lowerCamelCase : Any = {name for name in dir({} ) if is_public(__snake_case )} _lowerCamelCase : Tuple = {name for name in dir(HashMap() ) if is_public(__snake_case )} assert dict_public_names > hash_public_names
88
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
0
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowerCamelCase_ , n - 1 , lowerCamelCase_ ) * a) % mod else: _lowercase : str = binary_exponentiation(lowerCamelCase_ , n / 2 , lowerCamelCase_ ) return (b * b) % mod # a prime number SCREAMING_SNAKE_CASE : str = 701 SCREAMING_SNAKE_CASE : Optional[int] = 1000000000 SCREAMING_SNAKE_CASE : Optional[int] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
89
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCAmelCase = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
90
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[str] = BertTokenizer _lowerCamelCase: Optional[int] = BertTokenizerFast _lowerCamelCase: Optional[Any] = True _lowerCamelCase: int = True _lowerCamelCase: str = filter_non_english def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() A = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[int] ) -> str: A = 'UNwant\u00E9d,running' A = 'unwanted, running' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) ,[9, 6, 7, 12, 10, 11] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer() A = 'UNwant\u00E9d,running' A = tokenizer.tokenize(A_ ) A = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,A_ ) A = tokenizer.encode(A_ ,add_special_tokens=A_ ) A = rust_tokenizer.encode(A_ ,add_special_tokens=A_ ) self.assertListEqual(A_ ,A_ ) A = self.get_rust_tokenizer() A = tokenizer.encode(A_ ) A = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ ,A_ ) # With lower casing A = self.get_tokenizer(do_lower_case=A_ ) A = self.get_rust_tokenizer(do_lower_case=A_ ) A = 'UNwant\u00E9d,running' A = tokenizer.tokenize(A_ ) A = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,A_ ) A = tokenizer.encode(A_ ,add_special_tokens=A_ ) A = rust_tokenizer.encode(A_ ,add_special_tokens=A_ ) self.assertListEqual(A_ ,A_ ) A = self.get_rust_tokenizer() A = tokenizer.encode(A_ ) A = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: A = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: A = BasicTokenizer(do_lower_case=A_ ,strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = BasicTokenizer(do_lower_case=A_ ,strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: A = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = BasicTokenizer(do_lower_case=A_ ,strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = BasicTokenizer(do_lower_case=A_ ,strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: A = BasicTokenizer(do_lower_case=A_ ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: A = BasicTokenizer() A = 'a\n\'ll !!to?\'d of, can\'t.' A = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: A = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] A = {} for i, token in enumerate(A_ ): A = i A = WordpieceTokenizer(vocab=A_ ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.get_tokenizer() A = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.tokenizer_class.from_pretrained('bert-base-uncased' ) A = tokenizer.encode('sequence builders' ,add_special_tokens=A_ ) A = tokenizer.encode('multi-sequence build' ,add_special_tokens=A_ ) A = tokenizer.build_inputs_with_special_tokens(A_ ) A = tokenizer.build_inputs_with_special_tokens(A_ ,A_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = self.rust_tokenizer_class.from_pretrained(A_ ,**A_ ) A = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' A = tokenizer_r.encode_plus( A_ ,return_attention_mask=A_ ,return_token_type_ids=A_ ,return_offsets_mapping=A_ ,add_special_tokens=A_ ,) A = tokenizer_r.do_lower_case if hasattr(A_ ,'do_lower_case' ) else False A = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['offset_mapping'] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: A = ['的', '人', '有'] A = ''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = True A = self.tokenizer_class.from_pretrained(A_ ,**A_ ) A = self.rust_tokenizer_class.from_pretrained(A_ ,**A_ ) A = tokenizer_p.encode(A_ ,add_special_tokens=A_ ) A = tokenizer_r.encode(A_ ,add_special_tokens=A_ ) A = tokenizer_r.convert_ids_to_tokens(A_ ) A = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ ,A_ ) self.assertListEqual(A_ ,A_ ) A = False A = self.rust_tokenizer_class.from_pretrained(A_ ,**A_ ) A = self.tokenizer_class.from_pretrained(A_ ,**A_ ) A = tokenizer_r.encode(A_ ,add_special_tokens=A_ ) A = tokenizer_p.encode(A_ ,add_special_tokens=A_ ) A = tokenizer_r.convert_ids_to_tokens(A_ ) A = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". A = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ ,A_ ) self.assertListEqual(A_ ,A_ )
91
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowercase__ ): def __init__( self : Optional[int] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Tuple ): '''simple docstring''' warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
92
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def snake_case ( *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __magic_name__ :int = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) lowerCAmelCase__ :int = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase__ :Optional[Any] = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { 'score': ANY(__UpperCAmelCase ), 'label': ANY(__UpperCAmelCase ), 'box': {'xmin': ANY(__UpperCAmelCase ), 'ymin': ANY(__UpperCAmelCase ), 'xmax': ANY(__UpperCAmelCase ), 'ymax': ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def snake_case ( self ): '''simple docstring''' pass @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) lowerCAmelCase__ :str = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.72_35, 'label': 'cat', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.72_18, 'label': 'remote', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.71_84, 'label': 'couch', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.67_48, 'label': 'remote', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.66_56, 'label': 'cat', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.66_14, 'label': 'couch', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.64_56, 'label': 'remote', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, {'score': 0.6_42, 'label': 'remote', 'box': {'xmin': 6_7, 'ymin': 2_7_4, 'xmax': 9_3, 'ymax': 2_9_7}}, {'score': 0.64_19, 'label': 'cat', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, ] , ) lowerCAmelCase__ :Any = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.72_35, 'label': 'cat', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.72_18, 'label': 'remote', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.71_84, 'label': 'couch', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.67_48, 'label': 'remote', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.66_56, 'label': 'cat', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.66_14, 'label': 'couch', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.64_56, 'label': 'remote', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, {'score': 0.6_42, 'label': 'remote', 'box': {'xmin': 6_7, 'ymin': 2_7_4, 'xmax': 9_3, 'ymax': 2_9_7}}, {'score': 0.64_19, 'label': 'cat', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, ] ] , ) @require_torch @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = pipeline('zero-shot-object-detection' ) lowerCAmelCase__ :str = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ] , ) lowerCAmelCase__ :Any = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def snake_case ( self ): '''simple docstring''' pass @require_torch @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = 0.2 lowerCAmelCase__ :Optional[Any] = pipeline('zero-shot-object-detection' ) lowerCAmelCase__ :Optional[Any] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, ] , ) @require_torch @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 2 lowerCAmelCase__ :Tuple = pipeline('zero-shot-object-detection' ) lowerCAmelCase__ :str = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, ] , )
93
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
0
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase : Dict =ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowercase : Optional[Any] =1_2_8 elif "12-12" in model_name: lowercase : Union[str, Any] =1_2 lowercase : Tuple =1_2 elif "14-14" in model_name: lowercase : Optional[Any] =1_4 lowercase : List[str] =1_4 elif "16-16" in model_name: lowercase : Union[str, Any] =1_6 lowercase : Optional[int] =1_6 else: raise ValueError('''Model not supported''' ) lowercase : List[Any] ='''huggingface/label-files''' if "speech-commands" in model_name: lowercase : str =3_5 lowercase : Union[str, Any] ='''speech-commands-v2-id2label.json''' else: lowercase : Optional[int] =5_2_7 lowercase : str ='''audioset-id2label.json''' lowercase : List[str] =json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) lowercase : Tuple ={int(__A ): v for k, v in idalabel.items()} lowercase : Dict =idalabel lowercase : List[str] ={v: k for k, v in idalabel.items()} return config def lowercase_ ( __A : Dict ) -> List[str]: """simple docstring""" if "module.v" in name: lowercase : int =name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: lowercase : Tuple =name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: lowercase : int =name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: lowercase : Optional[int] =name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase : Optional[Any] =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: lowercase : List[Any] =name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: lowercase : int =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase : Dict =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase : List[Any] =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase : List[str] =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase : int =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase : str =name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowercase : Optional[int] =name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: lowercase : Any =name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: lowercase : Dict =name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def lowercase_ ( __A : str , __A : List[str] ) -> Tuple: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase : Dict =orig_state_dict.pop(__A ) if "qkv" in key: lowercase : Union[str, Any] =key.split('''.''' ) lowercase : Any =int(key_split[3] ) lowercase : int =config.hidden_size if "weight" in key: lowercase : str =val[:dim, :] lowercase : int =val[dim : dim * 2, :] lowercase : Tuple =val[-dim:, :] else: lowercase : Dict =val[:dim] lowercase : str =val[dim : dim * 2] lowercase : Optional[int] =val[-dim:] else: lowercase : List[Any] =val return orig_state_dict def lowercase_ ( __A : Dict ) -> List[str]: """simple docstring""" lowercase : str =[ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(__A , __A ) @torch.no_grad() def lowercase_ ( __A : str , __A : Optional[Any] , __A : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" lowercase : Any =get_audio_spectrogram_transformer_config(__A ) lowercase : List[Any] ={ '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict lowercase : Dict =model_name_to_url[model_name] lowercase : Optional[Any] =torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' ) # remove some keys remove_keys(__A ) # rename some keys lowercase : Optional[Any] =convert_state_dict(__A , __A ) # load 🤗 model lowercase : str =ASTForAudioClassification(__A ) model.eval() model.load_state_dict(__A ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowercase : List[Any] =-4.2677393 if '''speech-commands''' not in model_name else -6.845978 lowercase : Union[str, Any] =4.5689974 if '''speech-commands''' not in model_name else 5.5654526 lowercase : Optional[int] =1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 lowercase : List[Any] =ASTFeatureExtractor(mean=__A , std=__A , max_length=__A ) if "speech-commands" in model_name: lowercase : Tuple =load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) lowercase : str =dataset[0]['''audio''']['''array'''] else: lowercase : int =hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) lowercase , lowercase : Optional[int] =torchaudio.load(__A ) lowercase : Any =waveform.squeeze().numpy() lowercase : Optional[int] =feature_extractor(__A , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' ) # forward pass lowercase : Optional[int] =model(**__A ) lowercase : List[Any] =outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowercase : Union[str, Any] =torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowercase : str =torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowercase : Dict =torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowercase : List[str] =torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowercase : str =torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowercase : List[Any] =torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowercase : Any =torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowercase : Optional[Any] =torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , __A , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__A ).mkdir(exist_ok=__A ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(__A ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
94
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
0
"""simple docstring""" from __future__ import annotations lowerCamelCase_ = 8.988E9 # units = N * m^s * C^-2 def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : str = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: UpperCAmelCase_ : Any = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: UpperCAmelCase_ : Optional[Any] = abs(A__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: UpperCAmelCase_ : Any = abs(A__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: UpperCAmelCase_ : Tuple = (COULOMBS_CONSTANT * charge_product / abs(A__ )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
95
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowerCamelCase = 'pt' elif is_tf_available(): __lowerCamelCase = 'tf' else: __lowerCamelCase = 'jax' class __A ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = ByTaTokenizer UpperCAmelCase__ = False def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: super().setUp() __magic_name__: Union[str, Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ ( self : str ) -> str: return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def lowerCamelCase__ ( self : str , **__snake_case : List[str] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : List[str]=False , __snake_case : str=2_0 , __snake_case : Dict=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__: List[Any] = [] for i in range(len(__snake_case ) ): try: __magic_name__: Any = tokenizer.decode([i] , clean_up_tokenization_spaces=__snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__: List[Any] = list(filter(lambda __snake_case : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , __snake_case ) ) __magic_name__: Union[str, Any] = list(filter(lambda __snake_case : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__snake_case ) , __snake_case ) ) if max_length is not None and len(__snake_case ) > max_length: __magic_name__: Dict = toks[:max_length] if min_length is not None and len(__snake_case ) < min_length and len(__snake_case ) > 0: while len(__snake_case ) < min_length: __magic_name__: int = toks + toks # toks_str = [t[1] for t in toks] __magic_name__: str = [t[0] for t in toks] # Ensure consistency __magic_name__: int = tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case ) if " " not in output_txt and len(__snake_case ) > 1: __magic_name__: List[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__snake_case ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__snake_case ) ) if with_prefix_space: __magic_name__: Any = """ """ + output_txt __magic_name__: List[Any] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) return output_txt, output_ids def lowerCamelCase__ ( self : Any ) -> Optional[Any]: __magic_name__: int = self.ta_base_tokenizer __magic_name__: List[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) __magic_name__: List[Any] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __magic_name__: Any = self.ta_base_tokenizer __magic_name__: str = """Unicode €.""" __magic_name__: Any = tokenizer(__snake_case ) __magic_name__: Any = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded["""input_ids"""] , __snake_case ) # decoding __magic_name__: Optional[Any] = tokenizer.decode(__snake_case ) self.assertEqual(__snake_case , """Unicode €.</s>""" ) __magic_name__: str = tokenizer("""e è é ê ë""" ) __magic_name__: List[str] = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded["""input_ids"""] , __snake_case ) # decoding __magic_name__: Optional[int] = tokenizer.decode(__snake_case ) self.assertEqual(__snake_case , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def lowerCamelCase__ ( self : str ) -> List[Any]: __magic_name__: Optional[int] = self.ta_base_tokenizer __magic_name__: Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __magic_name__: Any = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on __magic_name__: Dict = tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) if FRAMEWORK != "jax": __magic_name__: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: __magic_name__: List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__snake_case , __snake_case ) self.assertEqual((2, 3_7) , batch.input_ids.shape ) self.assertEqual((2, 3_7) , batch.attention_mask.shape ) def lowerCamelCase__ ( self : List[str] ) -> int: __magic_name__: Tuple = self.ta_base_tokenizer __magic_name__: Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __magic_name__: Tuple = tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __snake_case ) self.assertIn("""attention_mask""" , __snake_case ) self.assertNotIn("""decoder_input_ids""" , __snake_case ) self.assertNotIn("""decoder_attention_mask""" , __snake_case ) def lowerCamelCase__ ( self : List[str] ) -> List[Any]: __magic_name__: Optional[int] = self.ta_base_tokenizer __magic_name__: Dict = [ """Summary of the text.""", """Another summary.""", ] __magic_name__: List[str] = tokenizer( text_target=__snake_case , max_length=3_2 , padding="""max_length""" , truncation=__snake_case , return_tensors=__snake_case ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) def lowerCamelCase__ ( self : List[str] ) -> int: __magic_name__: str = self.ta_base_tokenizer __magic_name__: Union[str, Any] = ["""A long paragraph for summarization. </s>"""] __magic_name__: Any = ["""Summary of the text. </s>"""] # fmt: off __magic_name__: int = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] __magic_name__: List[str] = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on __magic_name__: Optional[int] = tokenizer(__snake_case , text_target=__snake_case ) self.assertEqual(__snake_case , batch["""input_ids"""][0] ) self.assertEqual(__snake_case , batch["""labels"""][0] ) def lowerCamelCase__ ( self : Dict ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test __magic_name__: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__: Optional[Any] = tempfile.mkdtemp() __magic_name__: str = """ He is very happy, UNwant\u00E9d,running""" __magic_name__: Dict = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) __magic_name__: int = tokenizer.__class__.from_pretrained(__snake_case ) __magic_name__: Any = after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) shutil.rmtree(__snake_case ) __magic_name__: Optional[int] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__: Optional[int] = tempfile.mkdtemp() __magic_name__: str = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __magic_name__: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __magic_name__: List[Any] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) __magic_name__: List[str] = tokenizer.__class__.from_pretrained(__snake_case ) __magic_name__: Any = after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) __magic_name__: Optional[int] = tokenizer.__class__.from_pretrained(__snake_case , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__snake_case ) def lowerCamelCase__ ( self : str ) -> int: __magic_name__: Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) with open(os.path.join(__snake_case , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __magic_name__: Any = json.load(__snake_case ) with open(os.path.join(__snake_case , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __magic_name__: Any = json.load(__snake_case ) __magic_name__: Union[str, Any] = [F'<extra_id_{i}>' for i in range(1_2_5 )] __magic_name__: List[str] = added_tokens_extra_ids + [ """an_additional_special_token""" ] __magic_name__: List[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__snake_case , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__snake_case , __snake_case ) with open(os.path.join(__snake_case , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__snake_case , __snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__: Dict = tokenizer_class.from_pretrained( __snake_case , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__: Optional[int] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__snake_case )] __magic_name__: List[Any] = tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: __magic_name__: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) __magic_name__: Dict = tokenizer_class.from_pretrained(__snake_case ) self.assertTrue(tokenizer.decode([2_5_5] ) == """""" ) def lowerCamelCase__ ( self : str ) -> str: pass def lowerCamelCase__ ( self : str ) -> Tuple: pass def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: pass def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: pass def lowerCamelCase__ ( self : List[Any] ) -> List[str]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__: Tuple = self.get_tokenizers(fast=__snake_case , do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__: Any = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] __magic_name__: Optional[Any] = tokenizer.convert_tokens_to_string(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCamelCase__ ( self : List[Any] ) -> Any: __magic_name__: Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__: str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __magic_name__: List[Any] = 0 __magic_name__: Optional[int] = tokenizer.convert_ids_to_tokens( __snake_case , skip_special_tokens=__snake_case ) for attr in attributes_list: setattr(__snake_case , attr + """_id""" , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + """_id""" ) , __snake_case ) setattr(__snake_case , attr + """_id""" , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + """_id""" ) , __snake_case ) setattr(__snake_case , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens_ids""" ) , [] ) setattr(__snake_case , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
96
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowercase__( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ) -> Optional[Any]: super().__init__() lowercase_ = nn.Linear(3 , 4 ) lowercase_ = nn.BatchNormad(4 ) lowercase_ = nn.Linear(4 , 5 ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_ ) ) ) class lowercase__( UpperCAmelCase ): """simple docstring""" def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : int , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : str ) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class lowercase__( UpperCAmelCase ): """simple docstring""" def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: return output + 1 class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[Any] ) -> Dict: lowercase_ = ModelForTest() lowercase_ = ModelHook() add_hook_to_module(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(test_model._hf_hook , SCREAMING_SNAKE_CASE_ ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(SCREAMING_SNAKE_CASE_ ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE_ , '''_hf_hook''' ) ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE_ , '''_old_forward''' ) ) def _lowercase ( self : int ) -> Tuple: lowercase_ = ModelForTest() lowercase_ = ModelHook() add_hook_to_module(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) add_hook_to_module(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , append=SCREAMING_SNAKE_CASE_ ) self.assertEqual(isinstance(test_model._hf_hook , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(SCREAMING_SNAKE_CASE_ ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE_ , '''_hf_hook''' ) ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE_ , '''_old_forward''' ) ) def _lowercase ( self : List[Any] ) -> int: lowercase_ = ModelForTest() lowercase_ = torch.randn(2 , 3 ) lowercase_ = test_model(x + 1 ) lowercase_ = test_model(x + 2 ) lowercase_ = PreForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = test_model(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowercase_ = PreForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = test_model(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowercase_ = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = test_model(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-5 ) def _lowercase ( self : Optional[Any] ) -> int: lowercase_ = ModelForTest() lowercase_ = torch.randn(2 , 3 ) lowercase_ = test_model(SCREAMING_SNAKE_CASE_ ) lowercase_ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = test_model(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowercase_ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = test_model(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowercase_ = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = test_model(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , output + 2 , atol=1e-5 ) def _lowercase ( self : List[str] ) -> Optional[Any]: lowercase_ = ModelForTest() lowercase_ = torch.randn(2 , 3 ) lowercase_ = test_model(SCREAMING_SNAKE_CASE_ ) lowercase_ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = test_model(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) lowercase_ = True lowercase_ = test_model(SCREAMING_SNAKE_CASE_ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _lowercase ( self : Optional[Any] ) -> int: lowercase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device lowercase_ = torch.randn(2 , 3 ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(SCREAMING_SNAKE_CASE_ , AlignDevicesHook(io_same_device=SCREAMING_SNAKE_CASE_ ) ) lowercase_ = torch.randn(2 , 3 ).to(0 ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.assertEqual(output.device , torch.device(0 ) ) def _lowercase ( self : List[str] ) -> Dict: lowercase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices lowercase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE_ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**SCREAMING_SNAKE_CASE_ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE_ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device lowercase_ = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.randn(2 , 3 ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload lowercase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE_ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**SCREAMING_SNAKE_CASE_ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE_ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) lowercase_ = torch.randn(2 , 3 ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def _lowercase ( self : Optional[Any] ) -> List[str]: lowercase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices lowercase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(SCREAMING_SNAKE_CASE_ , execution_device=SCREAMING_SNAKE_CASE_ , offload=SCREAMING_SNAKE_CASE_ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device lowercase_ = torch.device(SCREAMING_SNAKE_CASE_ ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.randn(2 , 3 ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE_ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(SCREAMING_SNAKE_CASE_ , execution_device=SCREAMING_SNAKE_CASE_ , offload=SCREAMING_SNAKE_CASE_ , offload_buffers=SCREAMING_SNAKE_CASE_ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) lowercase_ = torch.randn(2 , 3 ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE_ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def _lowercase ( self : Dict ) -> Any: lowercase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices lowercase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( SCREAMING_SNAKE_CASE_ , execution_device=SCREAMING_SNAKE_CASE_ , offload=SCREAMING_SNAKE_CASE_ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device lowercase_ = torch.device(SCREAMING_SNAKE_CASE_ ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.randn(2 , 3 ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE_ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( SCREAMING_SNAKE_CASE_ , execution_device=SCREAMING_SNAKE_CASE_ , offload=SCREAMING_SNAKE_CASE_ , weights_map=model.state_dict() , offload_buffers=SCREAMING_SNAKE_CASE_ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) lowercase_ = torch.randn(2 , 3 ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE_ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
97
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
0
'''simple docstring''' lowercase__ : Optional[int] = 2_56 # Modulus to hash a string lowercase__ : Any = 1_00_00_03 def a__ ( lowercase : str, lowercase : str ) -> bool: """simple docstring""" _UpperCamelCase = len(lowercase ) _UpperCamelCase = len(lowercase ) if p_len > t_len: return False _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase ): _UpperCamelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _UpperCamelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _UpperCamelCase = (modulus_power * alphabet_size) % modulus for i in range(0, t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _UpperCamelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def a__ ( ) -> None: """simple docstring""" _UpperCamelCase = '''abc1abc12''' _UpperCamelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _UpperCamelCase = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase, lowercase ) and not rabin_karp(lowercase, lowercase ) # Test 2) _UpperCamelCase = '''ABABX''' _UpperCamelCase = '''ABABZABABYABABX''' assert rabin_karp(lowercase, lowercase ) # Test 3) _UpperCamelCase = '''AAAB''' _UpperCamelCase = '''ABAAAAAB''' assert rabin_karp(lowercase, lowercase ) # Test 4) _UpperCamelCase = '''abcdabcy''' _UpperCamelCase = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase, lowercase ) # Test 5) _UpperCamelCase = '''Lü''' _UpperCamelCase = '''Lüsai''' assert rabin_karp(lowercase, lowercase ) _UpperCamelCase = '''Lue''' assert not rabin_karp(lowercase, lowercase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
98
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """pegasus""" _lowerCamelCase = ["""past_key_values"""] _lowerCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __A=50265 , __A=1024 , __A=12 , __A=4096 , __A=16 , __A=12 , __A=4096 , __A=16 , __A=0.0 , __A=0.0 , __A=True , __A=True , __A="gelu" , __A=1024 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.02 , __A=0 , __A=False , __A=0 , __A=1 , __A=1 , **__A , ): __a = vocab_size __a = max_position_embeddings __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = encoder_layerdrop __a = decoder_layerdrop __a = use_cache __a = encoder_layers __a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) @property def snake_case_ ( self ): return self.encoder_attention_heads @property def snake_case_ ( self ): return self.d_model
99
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = DanceDiffusionPipeline lowerCamelCase__ : List[str] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowerCamelCase__ : Any = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } lowerCamelCase__ : List[str] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowerCamelCase__ : Tuple = False lowerCamelCase__ : Dict = False def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=A_ , use_timestep_embedding=A_ , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) SCREAMING_SNAKE_CASE__ = IPNDMScheduler() SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, } return components def lowercase_ ( self , A_ , A_=0 ): '''simple docstring''' if str(A_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(A_ ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=A_ ).manual_seed(A_ ) SCREAMING_SNAKE_CASE__ = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = DanceDiffusionPipeline(**A_ ) SCREAMING_SNAKE_CASE__ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(A_ ) SCREAMING_SNAKE_CASE__ = pipe(**A_ ) SCREAMING_SNAKE_CASE__ = output.audios SCREAMING_SNAKE_CASE__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) SCREAMING_SNAKE_CASE__ = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowercase_ ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def lowercase_ ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def lowercase_ ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def lowercase_ ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def lowercase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch_device SCREAMING_SNAKE_CASE__ = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) SCREAMING_SNAKE_CASE__ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(generator=A_ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) SCREAMING_SNAKE_CASE__ = output.audios SCREAMING_SNAKE_CASE__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) SCREAMING_SNAKE_CASE__ = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch_device SCREAMING_SNAKE_CASE__ = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(generator=A_ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) SCREAMING_SNAKE_CASE__ = output.audios SCREAMING_SNAKE_CASE__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) SCREAMING_SNAKE_CASE__ = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
100
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected', [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 1_0, 'max_num_jobs': 1}, [range(1_0 )]), ({'num_shards': 1_0, 'max_num_jobs': 1_0}, [range(A__, i + 1 ) for i in range(1_0 )]), ({'num_shards': 1, 'max_num_jobs': 1_0}, [range(1 )]), ({'num_shards': 1_0, 'max_num_jobs': 3}, [range(0, 4 ), range(4, 7 ), range(7, 1_0 )]), ({'num_shards': 3, 'max_num_jobs': 1_0}, [range(0, 1 ), range(1, 2 ), range(2, 3 )]), ], ) def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = _distribute_shards(**A__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected', [ ({'foo': 0}, 1_0, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ], ) def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : List[str] = _split_gen_kwargs(A__, A__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected', [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ], ) def a__ ( A__, A__ ): if expected is RuntimeError: with pytest.raises(A__ ): _number_of_shards_in_gen_kwargs(A__ ) else: SCREAMING_SNAKE_CASE_ : str = _number_of_shards_in_gen_kwargs(A__ ) assert out == expected
101
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
"""simple docstring""" def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = len(SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = len(matrix[0] ) UpperCamelCase : str = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for row in range(SCREAMING_SNAKE_CASE ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[Any] = matrix[col][row] / matrix[row][row] for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase : Union[str, Any] = True for i in range(row + 1 , SCREAMING_SNAKE_CASE ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase : Union[str, Any] = matrix[i], matrix[row] UpperCamelCase : Any = False break if reduce: rank -= 1 for i in range(SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
102
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : str=1_8 , __lowerCamelCase : Any=3_0 , __lowerCamelCase : Any=4_0_0 , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Dict=True , __lowerCamelCase : Tuple=None , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowerCamelCase : List[Any]=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowerCamelCase : int=True , ): """simple docstring""" _snake_case = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _snake_case = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = do_convert_rgb def __UpperCAmelCase ( self : int ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[str]=False , __lowerCamelCase : int=False , __lowerCamelCase : Any=False ): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _snake_case = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _snake_case = [] for i in range(self.batch_size ): _snake_case , _snake_case = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _snake_case = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] if torchify: _snake_case = [torch.from_numpy(__lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Dict = ChineseCLIPImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = ChineseCLIPImageProcessingTester(self , do_center_crop=__lowerCamelCase ) @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_convert_rgb''' ) ) def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 2_2_4, '''width''': 2_2_4} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" pass def __UpperCAmelCase ( self : Dict ): """simple docstring""" # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : int = ChineseCLIPImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__lowerCamelCase ) _snake_case = 3 @property def __UpperCAmelCase ( self : str ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_convert_rgb''' ) ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" pass def __UpperCAmelCase ( self : str ): """simple docstring""" # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
103
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : List[Any] = "facebook/bart-large-mnli" A__ : int = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) A__ : Union[str, Any] = "text_classifier" A__ : int = AutoTokenizer A__ : str = AutoModelForSequenceClassification A__ : Union[str, Any] = ["text", ["text"]] A__ : int = ["text"] def snake_case__ ( self ) -> Tuple: super().setup() A__ = self.model.config A__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): A__ = int(SCREAMING_SNAKE_CASE__ ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: A__ = labels return self.pre_processor( [text] * len(SCREAMING_SNAKE_CASE__ ) , [f"""This example is {label}""" for label in labels] , return_tensors="pt" , padding="max_length" , ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Dict: A__ = outputs.logits A__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
104
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : complex , lowerCamelCase_ : str = "x" , lowerCamelCase_ : float = 10**-10 , lowerCamelCase_ : int = 1 , ) -> complex: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = symbols(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = lambdify(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = lambdify(lowerCamelCase_ , diff(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Dict = starting_point while True: if diff_function(lowerCamelCase_ ) != 0: SCREAMING_SNAKE_CASE_ : Optional[int] = prev_guess - multiplicity * func(lowerCamelCase_ ) / diff_function( lowerCamelCase_ ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess SCREAMING_SNAKE_CASE_ : str = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', F"""{newton_raphson("exp(x) - 1", 10, precision=0.0_05)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
105
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=13 , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : str=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : str=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Tuple=99 , __UpperCamelCase : Tuple=32 , __UpperCamelCase : int=5 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Dict=37 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : List[str]=512 , __UpperCamelCase : Optional[int]=16 , __UpperCamelCase : Any=2 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : str=4 , ) -> Union[str, Any]: A = parent A = batch_size A = seq_length A = is_training A = use_attention_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_choices def __UpperCamelCase ( self : Optional[int] ) -> Any: A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_attention_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__UpperCamelCase , ) return config, input_ids, attention_mask def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: A = FlaxDistilBertModelTester(self ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: for model_class_name in self.all_model_classes: A = model_class_name.from_pretrained('distilbert-base-uncased' ) A = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCamelCase ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: A = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) A = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) A = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] A = (1, 11, 768) self.assertEqual(output.shape , __UpperCamelCase ) A = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 ) )
106
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ ( _UpperCamelCase ): """simple docstring""" __lowerCAmelCase = ["image_processor", "tokenizer"] __lowerCAmelCase = "FlavaImageProcessor" __lowerCAmelCase = ("BertTokenizer", "BertTokenizerFast") def __init__( self : int, UpperCamelCase__ : str=None, UpperCamelCase__ : Any=None, **UpperCamelCase__ : List[Any] ) -> str: _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', UpperCamelCase__, ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase__, UpperCamelCase__ ) _A = self.image_processor def __call__( self : Union[str, Any], UpperCamelCase__ : Optional[ImageInput] = None, UpperCamelCase__ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, UpperCamelCase__ : bool = True, UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False, UpperCamelCase__ : Union[bool, str, TruncationStrategy] = False, UpperCamelCase__ : Optional[int] = None, UpperCamelCase__ : int = 0, UpperCamelCase__ : Optional[int] = None, UpperCamelCase__ : Optional[bool] = None, UpperCamelCase__ : Optional[bool] = None, UpperCamelCase__ : Optional[bool] = None, UpperCamelCase__ : Optional[bool] = None, UpperCamelCase__ : bool = False, UpperCamelCase__ : bool = False, UpperCamelCase__ : bool = False, UpperCamelCase__ : bool = False, UpperCamelCase__ : bool = True, UpperCamelCase__ : Optional[Union[str, TensorType]] = None, **UpperCamelCase__ : Dict, ) -> List[str]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _A = self.tokenizer( text=UpperCamelCase__, add_special_tokens=UpperCamelCase__, padding=UpperCamelCase__, truncation=UpperCamelCase__, max_length=UpperCamelCase__, stride=UpperCamelCase__, pad_to_multiple_of=UpperCamelCase__, return_token_type_ids=UpperCamelCase__, return_attention_mask=UpperCamelCase__, return_overflowing_tokens=UpperCamelCase__, return_special_tokens_mask=UpperCamelCase__, return_offsets_mapping=UpperCamelCase__, return_length=UpperCamelCase__, verbose=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__, ) if images is not None: _A = self.image_processor( UpperCamelCase__, return_image_mask=UpperCamelCase__, return_codebook_pixels=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__, ) if text is not None and images is not None: encoding.update(UpperCamelCase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ), tensor_type=UpperCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any], *UpperCamelCase__ : int, **UpperCamelCase__ : Tuple ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCamelCase__, **UpperCamelCase__ ) def __UpperCAmelCase ( self : Any, *UpperCamelCase__ : Dict, **UpperCamelCase__ : Tuple ) -> Optional[Any]: return self.tokenizer.decode(*UpperCamelCase__, **UpperCamelCase__ ) @property def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: _A = self.tokenizer.model_input_names _A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCAmelCase ( self : Any ) -> Optional[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', UpperCamelCase__, ) return self.image_processor_class @property def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.', UpperCamelCase__, ) return self.image_processor
107
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
0
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase = name _UpperCAmelCase = val def __str__( self : Tuple ) -> Optional[int]: """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self : Optional[int] , lowerCamelCase : Union[str, Any] ) -> Any: """simple docstring""" return self.val < other.val class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : int , lowerCamelCase : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = self.build_heap(lowerCamelCase ) def __getitem__( self : Any , lowerCamelCase : Union[str, Any] ) -> Any: """simple docstring""" return self.get_value(lowerCamelCase ) def lowerCamelCase ( self : int , lowerCamelCase : Optional[Any] ) -> Dict: """simple docstring""" return (idx - 1) // 2 def lowerCamelCase ( self : int , lowerCamelCase : Optional[int] ) -> int: """simple docstring""" return idx * 2 + 1 def lowerCamelCase ( self : int , lowerCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return idx * 2 + 2 def lowerCamelCase ( self : Dict , lowerCamelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" return self.heap_dict[key] def lowerCamelCase ( self : Any , lowerCamelCase : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = len(lowerCamelCase ) - 1 _UpperCAmelCase = self.get_parent_idx(lowerCamelCase ) for idx, i in enumerate(lowerCamelCase ): _UpperCAmelCase = idx _UpperCAmelCase = i.val for i in range(lowerCamelCase , -1 , -1 ): self.sift_down(lowerCamelCase , lowerCamelCase ) return array def lowerCamelCase ( self : str , lowerCamelCase : List[str] , lowerCamelCase : int ) -> List[str]: """simple docstring""" while True: _UpperCAmelCase = self.get_left_child_idx(lowerCamelCase ) # noqa: E741 _UpperCAmelCase = self.get_right_child_idx(lowerCamelCase ) _UpperCAmelCase = idx if l < len(lowerCamelCase ) and array[l] < array[idx]: _UpperCAmelCase = l if r < len(lowerCamelCase ) and array[r] < array[smallest]: _UpperCAmelCase = r if smallest != idx: _UpperCAmelCase , _UpperCAmelCase = array[smallest], array[idx] ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _UpperCAmelCase = smallest else: break def lowerCamelCase ( self : Tuple , lowerCamelCase : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase = self.get_parent_idx(lowerCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: _UpperCAmelCase , _UpperCAmelCase = self.heap[idx], self.heap[p] _UpperCAmelCase , _UpperCAmelCase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _UpperCAmelCase = p _UpperCAmelCase = self.get_parent_idx(lowerCamelCase ) def lowerCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" return self.heap[0] def lowerCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.heap[-1], self.heap[0] _UpperCAmelCase , _UpperCAmelCase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _UpperCAmelCase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : List[str] ) -> List[Any]: """simple docstring""" self.heap.append(lowerCamelCase ) _UpperCAmelCase = len(self.heap ) - 1 _UpperCAmelCase = node.val self.sift_up(len(self.heap ) - 1 ) def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" return len(self.heap ) == 0 def lowerCamelCase ( self : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ) -> List[str]: """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _UpperCAmelCase = new_value _UpperCAmelCase = new_value self.sift_up(self.idx_of_element[node] ) __a: str = Node('''R''', -1) __a: List[Any] = Node('''B''', 6) __a: List[str] = Node('''A''', 3) __a: Optional[Any] = Node('''X''', 1) __a: Tuple = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __a: List[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
108
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
0
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __SCREAMING_SNAKE_CASE = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , __UpperCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __magic_name__ ( ) -> Tuple: '''simple docstring''' assert _test_patching.open is open __SCREAMING_SNAKE_CASE = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , __UpperCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __magic_name__ ( ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , __UpperCAmelCase ): pass def __magic_name__ ( ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , __UpperCAmelCase ) is None with patch_submodule(_test_patching , """len""" , __UpperCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def __magic_name__ ( ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = """__test_patch_submodule_start_and_stop_mock__""" __SCREAMING_SNAKE_CASE = patch_submodule(_test_patching , """open""" , __UpperCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __SCREAMING_SNAKE_CASE = """__test_patch_submodule_successive_join__""" __SCREAMING_SNAKE_CASE = """__test_patch_submodule_successive_dirname__""" __SCREAMING_SNAKE_CASE = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , __UpperCAmelCase ): with patch_submodule(_test_patching , """os.rename""" , __UpperCAmelCase ): with patch_submodule(_test_patching , """os.path.dirname""" , __UpperCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , __UpperCAmelCase ): with patch_submodule(_test_patching , """os.path.join""" , __UpperCAmelCase ): with patch_submodule(_test_patching , """os.path.dirname""" , __UpperCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , __UpperCAmelCase ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , __UpperCAmelCase ): pass
109
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class a ( unittest.TestCase ): def __init__( self , UpperCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = parent def __snake_case ( self ): return {} def lowerCamelCase ( ): UpperCAmelCase__ : Dict = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' UpperCAmelCase__ : Optional[int] = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class a ( lowercase , unittest.TestCase ): UpperCamelCase : str = MarkupLMFeatureExtractor if is_bsa_available() else None def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = MarkupLMFeatureExtractionTester(self ) @property def __snake_case ( self ): return self.feature_extract_tester.prepare_feat_extract_dict() def __snake_case ( self ): # Initialize feature_extractor UpperCAmelCase__ : Any = self.feature_extraction_class() # Test not batched input UpperCAmelCase__ : Tuple = get_html_strings()[0] UpperCAmelCase__ : Optional[Any] = feature_extractor(UpperCamelCase_ ) # fmt: off UpperCAmelCase__ : Union[str, Any] = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] UpperCAmelCase__ : int = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , UpperCamelCase_ ) self.assertEqual(encoding.xpaths , UpperCamelCase_ ) # Test batched UpperCAmelCase__ : List[str] = get_html_strings() UpperCAmelCase__ : List[Any] = feature_extractor(UpperCamelCase_ ) # fmt: off UpperCAmelCase__ : Union[str, Any] = expected_nodes + [['My First Heading', 'My first paragraph.']] UpperCAmelCase__ : Dict = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , UpperCamelCase_ ) self.assertEqual(encoding.xpaths , UpperCamelCase_ )
110
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: if gpta_config_file == "": UpperCamelCase = GPTaConfig() else: UpperCamelCase = GPTaConfig.from_json_file(_lowerCAmelCase ) UpperCamelCase = GPTaModel(_lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model UpperCamelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCamelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) _snake_case = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
282
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
0
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): A__ : Union[str, Any] = True from torch.cuda.amp import autocast A__ : Tuple = logging.getLogger(__name__) def UpperCAmelCase__ ( UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=None ) -> Optional[Any]: return field(default_factory=lambda: default , metadata=_lowerCAmelCase ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : List[Any] = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase : Optional[Any] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase : Dict = field( default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowerCamelCase : Tuple = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) lowerCamelCase : Optional[int] = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) lowerCamelCase : Optional[Any] = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) lowerCamelCase : Optional[Any] = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) lowerCamelCase : Union[str, Any] = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) lowerCamelCase : int = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : List[Any] = field( default=_UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase : str = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase : Optional[Any] = field( default=_UpperCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCamelCase : str = field( default=_UpperCAmelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase : Any = field( default=_UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase : Optional[Any] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) lowerCamelCase : List[Any] = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = 4_2 lowerCamelCase : Optional[int] = True lowerCamelCase : Tuple = None lowerCamelCase : Any = None lowerCamelCase : Dict = None lowerCamelCase : Dict = None def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCamelCase : Optional[Any] = [{"input_values": feature["input_values"]} for feature in features] __lowerCamelCase : List[str] = [{"input_ids": feature["labels"]} for feature in features] __lowerCamelCase : Union[str, Any] = self.processor.pad( __A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCamelCase : Union[str, Any] = self.processor.pad( labels=__A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCamelCase : Dict = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) __lowerCamelCase : Optional[Any] = labels return batch class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: model.train() __lowerCamelCase : Dict = self._prepare_inputs(__A ) if self.use_amp: with autocast(): __lowerCamelCase : Union[str, Any] = self.compute_loss(__A , __A ) else: __lowerCamelCase : Union[str, Any] = self.compute_loss(__A , __A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCamelCase : Optional[int] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCamelCase : Union[str, Any] = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: __lowerCamelCase : int = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__A ).backward() elif self.use_apex: with amp.scale_loss(__A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__A ) else: loss.backward() return loss.detach() def UpperCAmelCase__ ( ) -> Any: __lowerCamelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase : Dict = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCamelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCamelCase : List[str] = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) __lowerCamelCase : Any = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer __lowerCamelCase : List[str] = F'[{"".join(data_args.chars_to_ignore )}]' def remove_special_characters(UpperCAmelCase_ : Optional[int] ): __lowerCamelCase : List[str] = re.sub(_lowerCAmelCase , '' , batch['sentence'] ).lower() + " " return batch __lowerCamelCase : int = train_dataset.map(_lowerCAmelCase , remove_columns=['sentence'] ) __lowerCamelCase : Optional[int] = eval_dataset.map(_lowerCAmelCase , remove_columns=['sentence'] ) def extract_all_chars(UpperCAmelCase_ : Optional[Any] ): __lowerCamelCase : List[Any] = " ".join(batch['text'] ) __lowerCamelCase : List[Any] = list(set(_lowerCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCamelCase : List[str] = train_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , batch_size=-1 , keep_in_memory=_lowerCAmelCase , remove_columns=train_dataset.column_names , ) __lowerCamelCase : List[str] = train_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , batch_size=-1 , keep_in_memory=_lowerCAmelCase , remove_columns=eval_dataset.column_names , ) __lowerCamelCase : Dict = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCamelCase : Any = {v: k for k, v in enumerate(_lowerCAmelCase )} __lowerCamelCase : str = vocab_dict[" "] del vocab_dict[" "] __lowerCamelCase : List[str] = len(_lowerCAmelCase ) __lowerCamelCase : Optional[int] = len(_lowerCAmelCase ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase : str = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) __lowerCamelCase : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase ) __lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __lowerCamelCase : List[Any] = min(len(_lowerCAmelCase ) , data_args.max_train_samples ) __lowerCamelCase : Any = train_dataset.select(range(_lowerCAmelCase ) ) if data_args.max_val_samples is not None: __lowerCamelCase : str = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCamelCase : Any = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(UpperCAmelCase_ : Optional[int] ): __lowerCamelCase : Dict = torchaudio.load(batch['path'] ) __lowerCamelCase : Dict = resampler(_lowerCAmelCase ).squeeze().numpy() __lowerCamelCase : List[str] = 1_60_00 __lowerCamelCase : str = batch["text"] return batch __lowerCamelCase : Optional[Any] = train_dataset.map( _lowerCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __lowerCamelCase : Optional[int] = eval_dataset.map( _lowerCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(UpperCAmelCase_ : List[str] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.' __lowerCamelCase : str = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(_lowerCAmelCase ) return batch __lowerCamelCase : Tuple = train_dataset.map( _lowerCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) __lowerCamelCase : Optional[int] = eval_dataset.map( _lowerCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric __lowerCamelCase : Optional[Any] = datasets.load_metric('wer' ) def compute_metrics(UpperCAmelCase_ : int ): __lowerCamelCase : Any = pred.predictions __lowerCamelCase : str = np.argmax(_lowerCAmelCase , axis=-1 ) __lowerCamelCase : Tuple = processor.tokenizer.pad_token_id __lowerCamelCase : str = processor.batch_decode(_lowerCAmelCase ) # we do not want to group tokens when computing the metrics __lowerCamelCase : Optional[int] = processor.batch_decode(pred.label_ids , group_tokens=_lowerCAmelCase ) __lowerCamelCase : str = wer_metric.compute(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCamelCase : Tuple = DataCollatorCTCWithPadding(processor=_lowerCAmelCase , padding=_lowerCAmelCase ) # Initialize our Trainer __lowerCamelCase : Any = CTCTrainer( model=_lowerCAmelCase , data_collator=_lowerCAmelCase , args=_lowerCAmelCase , compute_metrics=_lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCamelCase : str = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCamelCase : Optional[int] = model_args.model_name_or_path else: __lowerCamelCase : Optional[int] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCamelCase : Optional[int] = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) trainer.save_model() __lowerCamelCase : Union[str, Any] = train_result.metrics __lowerCamelCase : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCAmelCase ) ) __lowerCamelCase : List[str] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics('train' , _lowerCAmelCase ) trainer.save_metrics('train' , _lowerCAmelCase ) trainer.save_state() # Evaluation __lowerCamelCase : Optional[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCamelCase : Optional[Any] = trainer.evaluate() __lowerCamelCase : Optional[int] = data_args.max_val_samples if data_args.max_val_samples is not None else len(_lowerCAmelCase ) __lowerCamelCase : List[str] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics('eval' , _lowerCAmelCase ) trainer.save_metrics('eval' , _lowerCAmelCase ) return results if __name__ == "__main__": main()
13
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Any=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ :int = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ :str = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_lowerCAmelCase ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ :Dict = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_lowerCAmelCase ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ :Dict = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_lowerCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _SCREAMING_SNAKE_CASE: def __init__( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple=13 , UpperCamelCase_ : Optional[Any]=7 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Optional[int]=99 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : str=2 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : Optional[int]="relu" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : List[Any]=20 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Any=1 , UpperCamelCase_ : Tuple=0 , ) -> str: SCREAMING_SNAKE_CASE__ :Any = parent SCREAMING_SNAKE_CASE__ :Dict = batch_size SCREAMING_SNAKE_CASE__ :int = seq_length SCREAMING_SNAKE_CASE__ :Tuple = is_training SCREAMING_SNAKE_CASE__ :Tuple = use_labels SCREAMING_SNAKE_CASE__ :Optional[int] = vocab_size SCREAMING_SNAKE_CASE__ :Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ :Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE__ :Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ :List[str] = intermediate_size SCREAMING_SNAKE_CASE__ :str = hidden_act SCREAMING_SNAKE_CASE__ :List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ :int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ :Any = encoder_layerdrop SCREAMING_SNAKE_CASE__ :Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE__ :str = max_position_embeddings SCREAMING_SNAKE_CASE__ :int = eos_token_id SCREAMING_SNAKE_CASE__ :Optional[Any] = pad_token_id SCREAMING_SNAKE_CASE__ :List[Any] = bos_token_id def __lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ :List[str] = self.eos_token_id # Eos Token SCREAMING_SNAKE_CASE__ :Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE__ :Tuple = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ :Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ :Any = self.get_config() SCREAMING_SNAKE_CASE__ :Tuple = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def __lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __lowerCamelCase ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :str = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int ) -> Dict: SCREAMING_SNAKE_CASE__ :Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() SCREAMING_SNAKE_CASE__ :int = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE__ :Union[str, Any] = inputs_dict["attention_mask"] SCREAMING_SNAKE_CASE__ :List[str] = inputs_dict["head_mask"] # first forward pass SCREAMING_SNAKE_CASE__ :List[Any] = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) SCREAMING_SNAKE_CASE__ :int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ :int = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ :str = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ :List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ :Tuple = model(__A , attention_mask=__A )["last_hidden_state"] SCREAMING_SNAKE_CASE__ :Any = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice SCREAMING_SNAKE_CASE__ :str = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ :Dict = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ :Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def __lowerCamelCase ( self : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ :Tuple = MaMaaaModel(config=__A ).to(__A ).eval() SCREAMING_SNAKE_CASE__ :List[str] = model(**__A ) SCREAMING_SNAKE_CASE__ :Dict = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE__ :Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ :Optional[int] = model.get_encoder() encoder.save_pretrained(__A ) SCREAMING_SNAKE_CASE__ :Dict = MaMaaaEncoder.from_pretrained(__A ).to(__A ) SCREAMING_SNAKE_CASE__ :Any = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ :Tuple = model.get_decoder() decoder.save_pretrained(__A ) SCREAMING_SNAKE_CASE__ :List[str] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) SCREAMING_SNAKE_CASE__ :Tuple = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ : List[str] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) A_ : int = (MaMaaaForConditionalGeneration,) if is_torch_available() else () A_ : Union[str, Any] = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) A_ : Tuple = True A_ : List[str] = True A_ : Dict = False A_ : Tuple = False def __lowerCamelCase ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : str ) -> Union[str, Any]: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __lowerCamelCase ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :str = MaMaaaModelTester(self ) SCREAMING_SNAKE_CASE__ :Optional[Any] = ConfigTester(self , config_class=__A ) def __lowerCamelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def __lowerCamelCase ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ :Optional[int] = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) SCREAMING_SNAKE_CASE__ :Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info['missing_keys'] , [] ) def __lowerCamelCase ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def __lowerCamelCase ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ :Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def __lowerCamelCase ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): SCREAMING_SNAKE_CASE__ :int = model_class(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ :List[str] = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE__ :List[str] = inputs["input_ids"] del inputs["input_ids"] else: SCREAMING_SNAKE_CASE__ :Tuple = inputs["input_ids"] SCREAMING_SNAKE_CASE__ :Union[str, Any] = inputs.get('decoder_input_ids' , __A ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , __A ) SCREAMING_SNAKE_CASE__ :Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE__ :List[Any] = wte(__A ) else: SCREAMING_SNAKE_CASE__ :List[str] = wte(__A ) SCREAMING_SNAKE_CASE__ :Dict = wte(__A ) with torch.no_grad(): model(**__A )[0] def __lowerCamelCase ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ :int = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ :Union[str, Any] = input_dict["input_ids"] SCREAMING_SNAKE_CASE__ :Union[str, Any] = input_ids.ne(1 ).to(__A ) SCREAMING_SNAKE_CASE__ :Any = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def lowerCamelCase ( UpperCAmelCase__ : List[str] ) -> int: '''simple docstring''' return torch.tensor(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase ) UpperCamelCase_ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def __lowerCamelCase ( self : Optional[int] ) -> Dict: return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def __lowerCamelCase ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ :Any = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__A ) SCREAMING_SNAKE_CASE__ :Optional[int] = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) SCREAMING_SNAKE_CASE__ :List[Any] = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) SCREAMING_SNAKE_CASE__ :List[Any] = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ :Any = model(**__A )[0] SCREAMING_SNAKE_CASE__ :List[Any] = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , __A ) # change to expected output here SCREAMING_SNAKE_CASE__ :Union[str, Any] = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def __lowerCamelCase ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ :int = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__A ) # change to intended input SCREAMING_SNAKE_CASE__ :Optional[Any] = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) SCREAMING_SNAKE_CASE__ :List[str] = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) SCREAMING_SNAKE_CASE__ :List[Any] = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ :Any = model(**__A )[0] SCREAMING_SNAKE_CASE__ :str = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here SCREAMING_SNAKE_CASE__ :str = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def __lowerCamelCase ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ :List[str] = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__A ) SCREAMING_SNAKE_CASE__ :Any = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams SCREAMING_SNAKE_CASE__ :str = tokenizer(__A , padding=__A , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ :Tuple = model.generate( input_ids=dct['input_ids'].to(__A ) , attention_mask=dct['attention_mask'].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) SCREAMING_SNAKE_CASE__ :str = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] SCREAMING_SNAKE_CASE__ :str = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
209
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers __A : Dict = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase ( ): """simple docstring""" A__ : str =os.path.dirname(os.path.realpath(_lowerCAmelCase ) ) A__ : Tuple =os.path.join(_lowerCAmelCase , "words.txt" ) A__ : Dict ="" with open(_lowerCAmelCase ) as f: A__ : Optional[int] =f.readline() A__ : Optional[Any] =[word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] A__ : Optional[int] =[ word for word in [sum(ord(_lowerCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
656
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : int , lowerCAmelCase__ : int) -> str: '''simple docstring''' while b: _lowercase : Optional[Any] = b, a % b return a def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : int , lowerCAmelCase__ : int) -> str: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(_lowerCAmelCase , a % b) def SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5)}''') print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3)}''') print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3)}''') print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6)}''') print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3)}''') print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5)}''') print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3)}''') print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3)}''') print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6)}''') print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3)}''') if __name__ == "__main__": main()
125
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
0
def A__ ( lowerCamelCase = 50 ) -> Optional[Any]: UpperCamelCase_: Optional[int] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
548
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : Optional[Any] = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) snake_case__ : Dict = field( default=lowercase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case__ : Any = field( default=lowercase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) snake_case__ : Optional[Any] = field( default=lowercase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) snake_case__ : Dict = field(default=lowercase__ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) snake_case__ : List[Any] = field(default=lowercase__ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : Any = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case__ : Optional[int] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) snake_case__ : str = field( default=1_024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ : Optional[Any] = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ : Dict = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) snake_case__ : Optional[Any] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ : List[str] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) snake_case__ : str = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) snake_case__ : List[str] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) snake_case__ : List[str] = field(default=lowercase__ , metadata={'''help''': '''Source language id for translation.'''} ) snake_case__ : int = field(default=lowercase__ , metadata={'''help''': '''Target language id for translation.'''} ) snake_case__ : Optional[int] = field(default=lowercase__ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) snake_case__ : str = field( default=lowercase__ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : List[str] , __A : Any ) -> List[Any]: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: """simple docstring""" a_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a_ : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F"""({config.__class__.__name__}) doesn\'t have a `{p}` attribute""" setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) a_ : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a_ : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: a_ : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): a_ : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: a_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) a_ : int = SeqaSeqDataset # Get datasets a_ : Tuple = ( dataset_class( _lowerCAmelCase , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) a_ : List[Any] = ( dataset_class( _lowerCAmelCase , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) a_ : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer a_ : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) a_ : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) a_ : Optional[Any] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) a_ : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) a_ : int = train_result.metrics a_ : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) a_ : Optional[Any] = trainer.evaluate(metric_key_prefix='val' ) a_ : Dict = data_args.n_val a_ : List[Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) a_ : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix='test' ) a_ : Dict = test_output.metrics a_ : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): a_ : int = round(metrics['test_loss'] , 4 ) handle_metrics('test' , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: a_ : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) a_ : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE_ ( __A : int ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
570
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) def _A ( lowerCamelCase , lowerCamelCase=False ): a__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a__ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: a__ : Any = "" else: a__ : List[Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) a__ : int = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] a__ : Any = in_proj_bias[: config.hidden_size] a__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ : str = in_proj_weight[ -config.hidden_size :, : ] a__ : Optional[int] = in_proj_bias[-config.hidden_size :] def _A ( lowerCamelCase ): a__ : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): a__ : str = dct.pop(_lowerCAmelCase ) a__ : str = val def _A ( ): a__ : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" a__ : int = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True ): a__ : Dict = ViTConfig() # patch_size if model_name[-1] == "8": a__ : Dict = 8 # set labels if required if not base_model: a__ : Tuple = 1000 a__ : List[str] = "huggingface/label-files" a__ : Optional[int] = "imagenet-1k-id2label.json" a__ : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) a__ : Tuple = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} a__ : Dict = idalabel a__ : List[str] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: a__ : Any = 384 a__ : Union[str, Any] = 1536 a__ : Union[str, Any] = 12 a__ : Optional[int] = 6 # load original model from torch hub a__ : Optional[int] = torch.hub.load("facebookresearch/dino:main" , _lowerCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys a__ : Dict = original_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) a__ : Dict = create_rename_keys(_lowerCAmelCase , base_model=_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if base_model: a__ : Optional[int] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ).eval() else: a__ : Optional[int] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor a__ : Optional[int] = ViTImageProcessor() a__ : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) a__ : Optional[Any] = encoding["pixel_values"] a__ : Any = model(_lowerCAmelCase ) if base_model: a__ : Optional[int] = original_model(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: a__ : List[str] = original_model(_lowerCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) SCREAMING_SNAKE_CASE__ : str = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
112
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
596
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
262
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
0