code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False ) -> Tuple: '''simple docstring''' __lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): __lowercase = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) __lowercase = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[ : config.hidden_size, : ] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def __lowercase ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' __lowercase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: '''simple docstring''' __lowercase = dct.pop(_lowerCAmelCase ) __lowercase = val @torch.no_grad() def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: '''simple docstring''' __lowercase = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCAmelCase ) __lowercase = False __lowercase = False __lowercase = False __lowercase = False if "vqa" in checkpoint_url: __lowercase = True __lowercase = 3_129 __lowercase = "huggingface/label-files" __lowercase = "vqa2-id2label.json" __lowercase = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = ViltForQuestionAnswering(_lowerCAmelCase ) elif "nlvr" in checkpoint_url: __lowercase = True __lowercase = 2 __lowercase = {0: "False", 1: "True"} __lowercase = {v: k for k, v in config.idalabel.items()} __lowercase = 3 __lowercase = ViltForImagesAndTextClassification(_lowerCAmelCase ) elif "irtr" in checkpoint_url: __lowercase = True __lowercase = ViltForImageAndTextRetrieval(_lowerCAmelCase ) elif "mlm_itm" in checkpoint_url: __lowercase = True __lowercase = ViltForMaskedLM(_lowerCAmelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys __lowercase = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" )["state_dict"] __lowercase = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) if mlm_model or irtr_model: __lowercase = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: __lowercase = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCAmelCase ) # Define processor __lowercase = ViltImageProcessor(size=384 ) __lowercase = BertTokenizer.from_pretrained("bert-base-uncased" ) __lowercase = ViltProcessor(_lowerCAmelCase , _lowerCAmelCase ) # Forward pass on example inputs (image + text) if nlvr_model: __lowercase = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCAmelCase ).raw ) __lowercase = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCAmelCase ).raw ) __lowercase = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) __lowercase = processor(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) __lowercase = processor(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) __lowercase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: __lowercase = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCAmelCase ).raw ) if mlm_model: __lowercase = "a bunch of [MASK] laying on a [MASK]." else: __lowercase = "How many cats are there?" __lowercase = processor(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) __lowercase = model(**_lowerCAmelCase ) # Verify outputs if mlm_model: __lowercase = torch.Size([1, 11, 30_522] ) __lowercase = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) # verify masked token prediction equals "cats" __lowercase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: __lowercase = torch.Size([1, 3_129] ) __lowercase = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) # verify vqa prediction equals "2" __lowercase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: __lowercase = torch.Size([1, 2] ) __lowercase = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase__ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
321
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=13 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=99 , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=4 , SCREAMING_SNAKE_CASE__ : int=37 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=5_12 , SCREAMING_SNAKE_CASE__ : int=16 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : str=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = 13 UpperCamelCase = 7 UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = 99 UpperCamelCase = 32 UpperCamelCase = 2 UpperCamelCase = 4 UpperCamelCase = 37 UpperCamelCase = "gelu" UpperCamelCase = 0.1 UpperCamelCase = 0.1 UpperCamelCase = 5_12 UpperCamelCase = 16 UpperCamelCase = 2 UpperCamelCase = 0.02 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = None def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" UpperCamelCase = TFRoFormerModel(config=__A ) UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase = [input_ids, input_mask] UpperCamelCase = model(__A ) UpperCamelCase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" UpperCamelCase = True UpperCamelCase = TFRoFormerForCausalLM(config=__A ) UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase = model(__A )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" UpperCamelCase = TFRoFormerForMaskedLM(config=__A ) UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFRoFormerForSequenceClassification(config=__A ) UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" UpperCamelCase = self.num_choices UpperCamelCase = TFRoFormerForMultipleChoice(config=__A ) UpperCamelCase = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCamelCase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFRoFormerForTokenClassification(config=__A ) UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" UpperCamelCase = TFRoFormerForQuestionAnswering(config=__A ) UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( UpperCamelCase ) = config_and_inputs UpperCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] =( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : str =( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] =False SCREAMING_SNAKE_CASE_ : Optional[Any] =False def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFRoFormerModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__A , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__A ) def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def __lowerCAmelCase ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def __lowerCAmelCase ( self : str ): """simple docstring""" UpperCamelCase = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(__A ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : Any ): """simple docstring""" UpperCamelCase = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase = model(__A )[0] # TODO Replace vocab size UpperCamelCase = 5_00_00 UpperCamelCase = [1, 6, vocab_size] self.assertEqual(output.shape , __A ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCamelCase = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __A , atol=1e-4 ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =1E-4 def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" UpperCamelCase = tf.constant([[4, 10]] ) UpperCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCamelCase = emba(input_ids.shape ) UpperCamelCase = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__A , __A , atol=self.tolerance ) def __lowerCAmelCase ( self : Dict ): """simple docstring""" UpperCamelCase = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) UpperCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) UpperCamelCase = emba.weight[:3, :5] tf.debugging.assert_near(__A , __A , atol=self.tolerance ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =1E-4 def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 UpperCamelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 UpperCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCamelCase = embed_positions([2, 16, 7_68] )[None, None, :, :] UpperCamelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __A , __A , __A ) UpperCamelCase = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) UpperCamelCase = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __A , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __A , atol=self.tolerance )
282
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : list[list] ) -> List[str]: __lowerCamelCase : List[str] = current_set.copy() for row_index, row in enumerate(_lowerCAmelCase ): __lowerCamelCase : Optional[int] = row[0] for column_index, column in enumerate(_lowerCAmelCase ): if magnitude == 0: __lowerCamelCase : Optional[Any] = column continue __lowerCamelCase : List[str] = column / magnitude # Subtract to cancel term __lowerCamelCase : List[str] = current_set[0] __lowerCamelCase : Dict = [first_row] __lowerCamelCase : Union[str, Any] = current_set[1::] for row in current_set: __lowerCamelCase : int = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_lowerCAmelCase ) continue for column_index in range(len(_lowerCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_lowerCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: __lowerCamelCase : Optional[Any] = final_set[0] __lowerCamelCase : List[str] = [] __lowerCamelCase : Optional[Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) __lowerCamelCase : Optional[int] = simplify(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _lowerCAmelCase ) __lowerCamelCase : Any = resultant return final_set def UpperCAmelCase__ ( UpperCAmelCase_ : list[list] ) -> Optional[int]: if len(_lowerCAmelCase ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) __lowerCamelCase : str = len(_lowerCAmelCase ) + 1 if any(len(_lowerCAmelCase ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(_lowerCAmelCase , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(_lowerCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] __lowerCamelCase : int = equations.copy() if any(0 in row for row in data_set ): __lowerCamelCase : Union[str, Any] = data_set.copy() __lowerCamelCase : Optional[Any] = [] for row_index, row in enumerate(_lowerCAmelCase ): if 0 not in row: __lowerCamelCase : Dict = data_set.pop(_lowerCAmelCase ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , _lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = data_set.copy() __lowerCamelCase : Union[str, Any] = simplify(_lowerCAmelCase ) __lowerCamelCase : int = simplified[::-1] __lowerCamelCase : list = [] for row in simplified: __lowerCamelCase : List[Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue __lowerCamelCase : Optional[int] = row.copy()[: len(_lowerCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_lowerCAmelCase ) == 0: solutions.append(0 ) continue __lowerCamelCase : List[str] = temp_row[1::] __lowerCamelCase : Union[str, Any] = temp_row[::-1] for column_index, column in enumerate(_lowerCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_lowerCAmelCase ) __lowerCamelCase : Tuple = [] for item in solutions: final.append(float(round(_lowerCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A__ : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
13
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' import argparse import copy def lowerCamelCase ( UpperCAmelCase__ : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = {} with open(_lowerCAmelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ :Dict = [] _list.append([line.split()[1], line.split()[2]] ) SCREAMING_SNAKE_CASE__ :List[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ :List[Any] = [] _list.append([line.split()[0], line.split()[2]] ) SCREAMING_SNAKE_CASE__ :Dict = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict ) -> Tuple: '''simple docstring''' with open(_lowerCAmelCase ) as f: SCREAMING_SNAKE_CASE__ :Optional[Any] = f.read(1 ) SCREAMING_SNAKE_CASE__ :Optional[int] = start_node SCREAMING_SNAKE_CASE__ :List[Any] = [] SCREAMING_SNAKE_CASE__ :List[str] = start_node SCREAMING_SNAKE_CASE__ :Optional[Any] = 0 while visiting not in first_solution: SCREAMING_SNAKE_CASE__ :Any = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowerCAmelCase ) and k[0] not in first_solution: SCREAMING_SNAKE_CASE__ :Optional[int] = k[1] SCREAMING_SNAKE_CASE__ :Tuple = k[0] first_solution.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :Any = distance_of_first_solution + int(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :Optional[int] = best_node first_solution.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :Any = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 SCREAMING_SNAKE_CASE__ :Optional[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = [] for n in solution[1:-1]: SCREAMING_SNAKE_CASE__ :int = solution.index(_lowerCAmelCase ) for kn in solution[1:-1]: SCREAMING_SNAKE_CASE__ :List[str] = solution.index(_lowerCAmelCase ) if n == kn: continue SCREAMING_SNAKE_CASE__ :Dict = copy.deepcopy(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = kn SCREAMING_SNAKE_CASE__ :List[Any] = n SCREAMING_SNAKE_CASE__ :Any = 0 for k in _tmp[:-1]: SCREAMING_SNAKE_CASE__ :Union[str, Any] = _tmp[_tmp.index(_lowerCAmelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: SCREAMING_SNAKE_CASE__ :int = distance + int(i[1] ) _tmp.append(_lowerCAmelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) SCREAMING_SNAKE_CASE__ :List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCAmelCase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = 1 SCREAMING_SNAKE_CASE__ :Union[str, Any] = first_solution SCREAMING_SNAKE_CASE__ :Optional[Any] = [] SCREAMING_SNAKE_CASE__ :Optional[int] = distance_of_first_solution SCREAMING_SNAKE_CASE__ :List[str] = solution while count <= iters: SCREAMING_SNAKE_CASE__ :List[str] = find_neighborhood(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :List[Any] = 0 SCREAMING_SNAKE_CASE__ :List[Any] = neighborhood[index_of_best_solution] SCREAMING_SNAKE_CASE__ :Optional[Any] = len(_lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE__ :List[str] = False while not found: SCREAMING_SNAKE_CASE__ :str = 0 while i < len(_lowerCAmelCase ): if best_solution[i] != solution[i]: SCREAMING_SNAKE_CASE__ :str = best_solution[i] SCREAMING_SNAKE_CASE__ :Any = solution[i] break SCREAMING_SNAKE_CASE__ :List[Any] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) SCREAMING_SNAKE_CASE__ :Optional[int] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = best_solution[:-1] SCREAMING_SNAKE_CASE__ :Union[str, Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: SCREAMING_SNAKE_CASE__ :Tuple = cost SCREAMING_SNAKE_CASE__ :List[str] = solution else: SCREAMING_SNAKE_CASE__ :Dict = index_of_best_solution + 1 SCREAMING_SNAKE_CASE__ :Any = neighborhood[index_of_best_solution] if len(_lowerCAmelCase ) >= size: tabu_list.pop(0 ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = count + 1 return best_solution_ever, best_cost def lowerCamelCase ( UpperCAmelCase__ : List[str]=None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = generate_neighbours(args.File ) SCREAMING_SNAKE_CASE__ :Tuple = generate_first_solution( args.File , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :int = tabu_search( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
209
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __A : Optional[Any] = None __A : Optional[int] = logging.get_logger(__name__) __A : str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __A : str = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } __A : int = { 'facebook/nllb-large-en-ro': 1_024, 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off __A : List[str] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Any = VOCAB_FILES_NAMES __magic_name__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = ["""input_ids""", """attention_mask"""] __magic_name__ : List[str] = NllbTokenizer __magic_name__ : Tuple = [] __magic_name__ : Union[str, Any] = [] def __init__( self : Dict , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]="<s>" , UpperCamelCase__ : Union[str, Any]="</s>" , UpperCamelCase__ : Optional[int]="</s>" , UpperCamelCase__ : str="<s>" , UpperCamelCase__ : List[Any]="<unk>" , UpperCamelCase__ : Any="<pad>" , UpperCamelCase__ : List[str]="<mask>" , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=False , **UpperCamelCase__ : Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it A__ : Optional[int] =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token A__ : Tuple =legacy_behaviour super().__init__( vocab_file=__A , tokenizer_file=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , src_lang=__A , tgt_lang=__A , additional_special_tokens=__A , legacy_behaviour=__A , **__A , ) A__ : Dict =vocab_file A__ : int =False if not self.vocab_file else True A__ : Dict =FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) A__ : Dict ={ lang_code: self.convert_tokens_to_ids(__A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A__ : Union[str, Any] =src_lang if src_lang is not None else "eng_Latn" A__ : Optional[int] =self.convert_tokens_to_ids(self._src_lang ) A__ : str =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCAmelCase ( self : Optional[int] ): return self._src_lang @src_lang.setter def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : str ): A__ : List[Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self : List[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): A__ : Optional[int] =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : str ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) A__ : int =src_lang A__ : Optional[int] =self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) A__ : Optional[Any] =self.convert_tokens_to_ids(__A ) A__ : Any =tgt_lang_id return inputs def _UpperCAmelCase ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str = "eng_Latn" , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : str = "fra_Latn" , **UpperCamelCase__ : Tuple , ): A__ : Any =src_lang A__ : Tuple =tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def _UpperCAmelCase ( self : List[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self : Optional[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self : Any , UpperCamelCase__ : str ): A__ : int =self.convert_tokens_to_ids(__A ) if self.legacy_behaviour: A__ : Optional[int] =[] A__ : Dict =[self.eos_token_id, self.cur_lang_code] else: A__ : Optional[int] =[self.cur_lang_code] A__ : Any =[self.eos_token_id] A__ : int =self.convert_ids_to_tokens(self.prefix_tokens ) A__ : List[str] =self.convert_ids_to_tokens(self.suffix_tokens ) A__ : int =processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : str ): A__ : Dict =self.convert_tokens_to_ids(__A ) if self.legacy_behaviour: A__ : Dict =[] A__ : Union[str, Any] =[self.eos_token_id, self.cur_lang_code] else: A__ : List[Any] =[self.cur_lang_code] A__ : Tuple =[self.eos_token_id] A__ : int =self.convert_ids_to_tokens(self.prefix_tokens ) A__ : Tuple =self.convert_ids_to_tokens(self.suffix_tokens ) A__ : List[str] =processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCAmelCase ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return A__ : List[str] =os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
656
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def A__ ( lowerCamelCase ) -> str: if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) lowerCamelCase_ : Optional[Any] = parser.parse_args() lowerCamelCase_ : Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
548
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
0
from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[str] = '''Salesforce/blip-image-captioning-base''' snake_case__ : Optional[Any] = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) snake_case__ : Dict = '''image_captioner''' snake_case__ : Union[str, Any] = AutoModelForVisionaSeq snake_case__ : Tuple = ['''image'''] snake_case__ : Optional[Any] = ['''text'''] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: requires_backends(self , ['vision'] ) super().__init__(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : "Image" ) -> Optional[int]: return self.pre_processor(images=__A , return_tensors='pt' ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Dict ) -> int: return self.model.generate(**__A ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: return self.pre_processor.batch_decode(__A , skip_special_tokens=__A )[0].strip()
570
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
0
SCREAMING_SNAKE_CASE__ : Union[str, Any] = range(2, 2_0 + 1) SCREAMING_SNAKE_CASE__ : str = [1_0**k for k in range(ks[-1] + 1)] SCREAMING_SNAKE_CASE__ : dict[int, dict[int, list[list[int]]]] = {} def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): a__ : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) a__ : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) a__ : int = 0, 0 a__ : Dict = n - i a__ : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: a__ : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over a__ : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: a__ : Any = _k break if max_jump >= 0: a__ : str = jumps[max_jump] # since the difference between jumps is cached, add c a__ : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): a__ : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: a__ : int = [] else: a__ : Tuple = {c: []} a__ : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps a__ : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead a__ : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped a__ : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped a__ : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) a__ : List[str] = i a__ : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 a__ : int = ds_c + ds_b diff += addend a__ : List[str] = 0 for j in range(_lowerCAmelCase ): a__ : List[Any] = a_i[j] + addend a__ : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): a__ : Tuple = digits[j] + addend if s >= 10: a__ : Optional[int] = divmod(_lowerCAmelCase , 10 ) a__ : Any = addend // 10 + quotient else: a__ : Tuple = s a__ : List[Any] = addend // 10 if addend == 0: break while addend > 0: a__ : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def _A ( lowerCamelCase = 10**15 ): a__ : Tuple = [1] a__ : List[Any] = 1 a__ : List[str] = 0 while True: a__ : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break a__ : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'{solution() = }')
112
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: if (resistance, reactance, impedance).count(0) != 1: raise ValueError('One and only one argument must be 0') if resistance == 0: return {"resistance": sqrt(pow(_lowerCAmelCase , 2) - pow(_lowerCAmelCase , 2))} elif reactance == 0: return {"reactance": sqrt(pow(_lowerCAmelCase , 2) - pow(_lowerCAmelCase , 2))} elif impedance == 0: return {"impedance": sqrt(pow(_lowerCAmelCase , 2) + pow(_lowerCAmelCase , 2))} else: raise ValueError('Exactly one argument must be 0') if __name__ == "__main__": import doctest doctest.testmod()
596
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __lowerCAmelCase : Optional[Any] = False, False, False @dataclass class A : a_ = None a_ = True a_ = True a_ = None # Automatically constructed a_ = '''dict''' a_ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) a_ = field(default='''Audio''' , init=UpperCAmelCase , repr=UpperCAmelCase ) def __call__( self : Tuple ) -> str: return self.pa_type def snake_case__ ( self : Any , __a : Union[str, bytes, dict] ) -> List[str]: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(__A , __A ): return {"bytes": None, "path": value} elif isinstance(__A , __A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __UpperCAmelCase = BytesIO() sf.write(__A , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __UpperCAmelCase = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: __UpperCAmelCase = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2_7_6_7 __UpperCAmelCase = BytesIO(bytes() ) sf.write(__A , __A , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f"""An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def snake_case__ ( self : Optional[Any] , __a : dict , __a : Optional[Dict[str, Union[str, bool, None]]] = None ) -> int: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) __UpperCAmelCase = (value["path"], BytesIO(value['''bytes'''] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err __UpperCAmelCase = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ''' ) if file is None: __UpperCAmelCase = token_per_repo_id or {} __UpperCAmelCase = path.split('''::''' )[-1] try: __UpperCAmelCase = string_to_dict(__A , config.HUB_DATASETS_URL )["repo_id"] __UpperCAmelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): __UpperCAmelCase = None with xopen(__A , '''rb''' , use_auth_token=__A ) as f: __UpperCAmelCase = sf.read(__A ) else: __UpperCAmelCase = sf.read(__A ) __UpperCAmelCase = array.T if self.mono: __UpperCAmelCase = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: __UpperCAmelCase = librosa.resample(__A , orig_sr=__A , target_sr=self.sampling_rate ) __UpperCAmelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def snake_case__ ( self : Any ) -> Optional[int]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def snake_case__ ( self : List[str] , __a : Union[pa.StringArray, pa.StructArray] ) -> int: if pa.types.is_string(storage.type ): __UpperCAmelCase = pa.array([None] * len(__A ) , type=pa.binary() ) __UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __UpperCAmelCase = pa.array([None] * len(__A ) , type=pa.string() ) __UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): __UpperCAmelCase = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: __UpperCAmelCase = storage.field('''bytes''' ) else: __UpperCAmelCase = pa.array([None] * len(__A ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: __UpperCAmelCase = storage.field('''path''' ) else: __UpperCAmelCase = pa.array([None] * len(__A ) , type=pa.string() ) __UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(__A , self.pa_type ) def snake_case__ ( self : str , __a : pa.StructArray ) -> Optional[Any]: @no_op_if_value_is_null def path_to_bytes(__a : Dict ): with xopen(__A , '''rb''' ) as f: __UpperCAmelCase = f.read() return bytes_ __UpperCAmelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __UpperCAmelCase = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) __UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(__A , self.pa_type )
262
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
321
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def __lowerCamelCase ( _lowercase , _lowercase = 16 ) -> List[str]: UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( _lowerCAmelCase , padding='longest' , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: if os.environ.get('TESTING_MOCKED_DATALOADERS' , _lowerCAmelCase ) == "1": UpperCamelCase = 2 # Initialize accelerator UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["lr"] UpperCamelCase = int(config['num_epochs'] ) UpperCamelCase = int(config['seed'] ) UpperCamelCase = int(config['batch_size'] ) UpperCamelCase = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_lowerCAmelCase ) def inner_training_loop(_lowercase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) UpperCamelCase = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**_lowerCAmelCase ) UpperCamelCase = outputs.loss accelerator.backward(_lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**_lowerCAmelCase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , _lowerCAmelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __lowerCamelCase ( ) -> Optional[int]: UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
282
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github A__ : str = [ 'good first issue', 'feature request', 'wip', ] def UpperCAmelCase__ ( ) -> Union[str, Any]: __lowerCamelCase : List[Any] = Github(os.environ['GITHUB_TOKEN'] ) __lowerCamelCase : Optional[int] = g.get_repo('huggingface/accelerate' ) __lowerCamelCase : Dict = repo.get_issues(state='open' ) for issue in open_issues: __lowerCamelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCAmelCase_ : i.created_at , reverse=_lowerCAmelCase ) __lowerCamelCase : Any = comments[0] if len(_lowerCAmelCase ) > 0 else None __lowerCamelCase : List[Any] = dt.utcnow() __lowerCamelCase : Optional[Any] = (current_time - issue.updated_at).days __lowerCamelCase : Optional[int] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
13
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) A_ : Optional[int] = Features({'audio': Audio()} ) A_ : Union[str, Any] = Features({'transcription': Value('string' )} ) A_ : List[Any] = 'audio' A_ : Tuple = 'transcription' def __lowerCamelCase ( self : int , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , __A ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) SCREAMING_SNAKE_CASE__ :Optional[int] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ :int = self.input_schema.copy() SCREAMING_SNAKE_CASE__ :Any = features[self.audio_column] SCREAMING_SNAKE_CASE__ :Dict = input_schema return task_template @property def __lowerCamelCase ( self : Union[str, Any] ) -> List[str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
209
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
0
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __A : str = logging.get_logger(__name__) __A : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __A : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __A : List[str] = { 'allenai/led-base-16384': 16_384, } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Dict = VOCAB_FILES_NAMES __magic_name__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : str = LEDTokenizer __magic_name__ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]="replace" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : Union[str, Any]="</s>" , UpperCamelCase__ : Any="</s>" , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : Tuple="<mask>" , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=True , **UpperCamelCase__ : Optional[int] , ): super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) A__ : List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __A ) != add_prefix_space: A__ : str =getattr(__A , pre_tok_state.pop("type" ) ) A__ : List[Any] =add_prefix_space A__ : Tuple =pre_tok_class(**__A ) A__ : Optional[int] =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A__ : List[str] ="post_processor" A__ : int =getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: A__ : Tuple =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ : str =tuple(state["sep"] ) if "cls" in state: A__ : List[str] =tuple(state["cls"] ) A__ : Dict =False if state.get("add_prefix_space" , __A ) != add_prefix_space: A__ : List[str] =add_prefix_space A__ : List[Any] =True if state.get("trim_offsets" , __A ) != trim_offsets: A__ : List[str] =trim_offsets A__ : List[str] =True if changes_to_apply: A__ : Tuple =getattr(__A , state.pop("type" ) ) A__ : Any =component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : str ): A__ : Optional[Any] =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value A__ : str =value def _UpperCAmelCase ( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : int ): A__ : List[str] =kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def _UpperCAmelCase ( self : Optional[int] , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Union[str, Any] ): A__ : List[Any] =kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): A__ : List[str] =self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=None ): A__ : Optional[Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): A__ : Tuple =[self.sep_token_id] A__ : Union[str, Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self : Any , UpperCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , ): A__ : List[str] =super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: A__ : Any ="attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A__ : Union[str, Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A__ : Optional[Any] =len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: A__ : str =len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A__ : Tuple =( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": A__ : int =[-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
656
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : Dict = "mobilenet_v2" def __init__( self : str ,UpperCamelCase : Dict=3 ,UpperCamelCase : int=224 ,UpperCamelCase : List[Any]=1.0 ,UpperCamelCase : Any=8 ,UpperCamelCase : List[Any]=8 ,UpperCamelCase : Dict=6 ,UpperCamelCase : Tuple=32 ,UpperCamelCase : List[Any]=True ,UpperCamelCase : Union[str, Any]=True ,UpperCamelCase : int="relu6" ,UpperCamelCase : Tuple=True ,UpperCamelCase : Optional[Any]=0.8 ,UpperCamelCase : List[Any]=0.0_2 ,UpperCamelCase : List[Any]=0.0_0_1 ,UpperCamelCase : str=255 ,**UpperCamelCase : Dict ,) -> List[str]: super().__init__(**__A ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowercase : List[str] = num_channels _lowercase : Tuple = image_size _lowercase : Optional[Any] = depth_multiplier _lowercase : Optional[Any] = depth_divisible_by _lowercase : Any = min_depth _lowercase : Dict = expand_ratio _lowercase : Tuple = output_stride _lowercase : Tuple = first_layer_is_expansion _lowercase : Tuple = finegrained_output _lowercase : str = hidden_act _lowercase : List[Any] = tf_padding _lowercase : Dict = classifier_dropout_prob _lowercase : Any = initializer_range _lowercase : str = layer_norm_eps _lowercase : Any = semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : int = version.parse("1.11" ) @property def _lowerCamelCase ( self : Dict ) -> Any: return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def _lowerCamelCase ( self : Dict ) -> Optional[Any]: if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def _lowerCamelCase ( self : Dict ) -> List[Any]: return 1e-4
125
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = IFInpaintingSuperResolutionPipeline __UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __UpperCamelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __UpperCamelCase : Any = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase__ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self : str , snake_case_ : List[str] , snake_case_ : List[str]=0 ): if str(__A ).startswith("""mps""" ): UpperCamelCase_: List[str] = torch.manual_seed(__A ) else: UpperCamelCase_: Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) UpperCamelCase_: List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__A ) ).to(__A ) UpperCamelCase_: Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) UpperCamelCase_: Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) UpperCamelCase_: Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase__ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ ( self : Dict ): self._test_save_load_local() def lowerCAmelCase__ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
548
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict: raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: raise NotImplementedError()
570
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _A ( lowerCamelCase ): a__ : Tuple = tmp_path / "file.csv" a__ : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _A ( lowerCamelCase ): a__ : Any = tmp_path / "malformed_file.csv" a__ : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _A ( lowerCamelCase , lowerCamelCase ): a__ : int = tmp_path / "csv_with_image.csv" a__ : int = textwrap.dedent( F"""\\n image\n {image_file}\n """ ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _A ( lowerCamelCase ): a__ : Dict = tmp_path / "csv_with_label.csv" a__ : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _A ( lowerCamelCase ): a__ : Dict = tmp_path / "csv_with_int_list.csv" a__ : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): a__ : List[Any] = Csv() a__ : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def _A ( lowerCamelCase ): with open(_lowerCAmelCase , encoding="utf-8" ) as f: a__ : Any = f.read().splitlines()[1] a__ : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) a__ : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) a__ : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() a__ : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def _A ( lowerCamelCase ): with open(_lowerCAmelCase , encoding="utf-8" ) as f: a__ : List[Any] = f.read().splitlines()[1:] a__ : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) a__ : Tuple = csv._generate_tables([[csv_file_with_label]] ) a__ : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() a__ : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def _A ( lowerCamelCase ): a__ : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda lowerCamelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) a__ : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) a__ : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) a__ : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
112
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = 10 def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Any = [1, 2, 3, 4] UpperCamelCase__ : Dict = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__A , self.block_size , 0) , __A) def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCamelCase__ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__A , self.block_size , 0) , __A) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCamelCase__ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__A , self.block_size , 0) , __A) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : int = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." UpperCamelCase__ : List[str] = process_story(__A) self.assertEqual(__A , []) def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = "" UpperCamelCase__ : Optional[Any] = process_story(__A) self.assertEqual(__A , []) self.assertEqual(__A , []) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) UpperCamelCase__ : List[str] = process_story(__A) UpperCamelCase__ : Tuple = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(__A , __A) UpperCamelCase__ : str = ["It was the best of times."] self.assertEqual(__A , __A) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = torch.tensor([1, 2, 3, 4]) UpperCamelCase__ : str = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(__A , 0).numpy() , expected.numpy()) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : List[str] = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCamelCase__ : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(__A , 23).numpy() , expected.numpy()) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : List[str] = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCamelCase__ : Any = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(__A , 1).numpy() , expected.numpy()) def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[int] = 101 UpperCamelCase__ : str = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCamelCase__ : Dict = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCamelCase__ : List[Any] = compute_token_type_ids(__A , __A) np.testing.assert_array_equal(__A , __A)
596
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
0
'''simple docstring''' import os import sys import transformers __lowerCAmelCase : Any = '3' print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
262
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = ["""image_processor""", """tokenizer"""] __lowerCAmelCase = """AutoImageProcessor""" __lowerCAmelCase = """AutoTokenizer""" def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __A , ) __lowercase = kwargs.pop("feature_extractor" ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A , __A ) __lowercase = self.image_processor __lowercase = False def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __lowercase = kwargs.pop("images" , __A ) __lowercase = kwargs.pop("text" , __A ) if len(__A ) > 0: __lowercase = args[0] __lowercase = args[1:] if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: __lowercase = self.image_processor(__A , *__A , **__A ) if text is not None: __lowercase = self.tokenizer(__A , **__A ) if text is None: return inputs elif images is None: return encodings else: __lowercase = encodings["input_ids"] return inputs def snake_case__ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.batch_decode(*__A , **__A ) def snake_case__ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.decode(*__A , **__A ) @contextmanager def snake_case__ ( self ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your images inputs, or in a separate call." ) __lowercase = True __lowercase = self.tokenizer yield __lowercase = self.image_processor __lowercase = False def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=None ): if added_vocab is None: __lowercase = self.tokenizer.get_added_vocab() __lowercase = {} while tokens: __lowercase = re.search(r"<s_(.*?)>" , __A , re.IGNORECASE ) if start_token is None: break __lowercase = start_token.group(1 ) __lowercase = re.search(rf'''</s_{key}>''' , __A , re.IGNORECASE ) __lowercase = start_token.group() if end_token is None: __lowercase = tokens.replace(__A , "" ) else: __lowercase = end_token.group() __lowercase = re.escape(__A ) __lowercase = re.escape(__A ) __lowercase = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , __A , re.IGNORECASE ) if content is not None: __lowercase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __lowercase = self.tokenajson(__A , is_inner_value=__A , added_vocab=__A ) if value: if len(__A ) == 1: __lowercase = value[0] __lowercase = value else: # leaf nodes __lowercase = [] for leaf in content.split(r"<sep/>" ): __lowercase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __lowercase = leaf[1:-2] # for categorical special tokens output[key].append(__A ) if len(output[key] ) == 1: __lowercase = output[key][0] __lowercase = tokens[tokens.find(__A ) + len(__A ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__A , added_vocab=__A ) if len(__A ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def snake_case__ ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __A , ) return self.image_processor_class @property def snake_case__ ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __A , ) return self.image_processor
321
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _snake_case = input('''Enter image url: ''').strip() print(F"Downloading image from {url} ...") _snake_case = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image _snake_case = soup.find('''meta''', {'''property''': '''og:image'''})['content'] _snake_case = requests.get(image_url).content _snake_case = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
282
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
0
'''simple docstring''' import math import sys def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Optional[int]: __lowerCamelCase : Dict = "" try: with open(_lowerCAmelCase , 'rb' ) as binary_file: __lowerCamelCase : List[Any] = binary_file.read() for dat in data: __lowerCamelCase : Optional[Any] = F'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> str: __lowerCamelCase : Optional[int] = {"0": "0", "1": "1"} __lowerCamelCase : List[str] = "", "" __lowerCamelCase : List[Any] = len(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCamelCase : Optional[Any] = lexicon[curr_string] result += last_match_id __lowerCamelCase : List[str] = last_match_id + "0" if math.loga(_lowerCAmelCase ).is_integer(): __lowerCamelCase : Dict = {} for curr_key in list(_lowerCAmelCase ): __lowerCamelCase : Union[str, Any] = lexicon.pop(_lowerCAmelCase ) __lowerCamelCase : List[str] = new_lex __lowerCamelCase : Union[str, Any] = last_match_id + "1" index += 1 __lowerCamelCase : Union[str, Any] = "" return result def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> Any: __lowerCamelCase : str = 8 try: with open(_lowerCAmelCase , 'wb' ) as opened_file: __lowerCamelCase : int = [ to_write[i : i + byte_length] for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowerCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Dict: __lowerCamelCase : Optional[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 __lowerCamelCase : Tuple = data_bits[counter:] __lowerCamelCase : int = data_bits[counter + 1 :] return data_bits def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> Tuple: __lowerCamelCase : Dict = read_file_binary(_lowerCAmelCase ) __lowerCamelCase : List[str] = remove_prefix(_lowerCAmelCase ) __lowerCamelCase : List[Any] = decompress_data(_lowerCAmelCase ) write_file_binary(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
13
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class _SCREAMING_SNAKE_CASE: def __init__( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Optional[Any] = {} def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int]=1 ) -> List[str]: if self.graph.get(__A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: SCREAMING_SNAKE_CASE__ :Tuple = [[w, v]] if not self.graph.get(__A ): SCREAMING_SNAKE_CASE__ :Tuple = [] def __lowerCamelCase ( self : Optional[int] ) -> str: return list(self.graph ) def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] ) -> List[Any]: if self.graph.get(__A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__A ) def __lowerCamelCase ( self : int , UpperCamelCase_ : Any=-2 , UpperCamelCase_ : Optional[int]=-1 ) -> str: if s == d: return [] SCREAMING_SNAKE_CASE__ :Optional[Any] = [] SCREAMING_SNAKE_CASE__ :int = [] if s == -2: SCREAMING_SNAKE_CASE__ :str = list(self.graph )[0] stack.append(__A ) visited.append(__A ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ :Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__A ) != 0: SCREAMING_SNAKE_CASE__ :List[str] = stack[len(__A ) - 1] else: SCREAMING_SNAKE_CASE__ :int = ss # check if se have reached the starting point if len(__A ) == 0: return visited def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any]=-1 ) -> Any: if c == -1: SCREAMING_SNAKE_CASE__ :List[str] = floor(random() * 1_00_00 ) + 10 for i in range(__A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): SCREAMING_SNAKE_CASE__ :Dict = floor(random() * c ) + 1 if n != i: self.add_pair(__A , __A , 1 ) def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : Dict=-2 ) -> List[str]: SCREAMING_SNAKE_CASE__ :Tuple = deque() SCREAMING_SNAKE_CASE__ :Any = [] if s == -2: SCREAMING_SNAKE_CASE__ :Optional[Any] = list(self.graph )[0] d.append(__A ) visited.append(__A ) while d: SCREAMING_SNAKE_CASE__ :Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCamelCase ( self : Dict , UpperCamelCase_ : List[str] ) -> str: SCREAMING_SNAKE_CASE__ :int = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __lowerCamelCase ( self : Optional[Any] , UpperCamelCase_ : Dict ) -> Any: return len(self.graph[u] ) def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : Dict=-2 ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Union[str, Any] = [] SCREAMING_SNAKE_CASE__ :List[str] = [] if s == -2: SCREAMING_SNAKE_CASE__ :Tuple = list(self.graph )[0] stack.append(__A ) visited.append(__A ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = s SCREAMING_SNAKE_CASE__ :Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ :Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ :str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__A ) != 0: SCREAMING_SNAKE_CASE__ :Tuple = stack[len(__A ) - 1] else: SCREAMING_SNAKE_CASE__ :List[str] = ss # check if se have reached the starting point if len(__A ) == 0: return sorted_nodes def __lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :List[Any] = [] SCREAMING_SNAKE_CASE__ :str = [] SCREAMING_SNAKE_CASE__ :Tuple = list(self.graph )[0] stack.append(__A ) visited.append(__A ) SCREAMING_SNAKE_CASE__ :int = -2 SCREAMING_SNAKE_CASE__ :str = [] SCREAMING_SNAKE_CASE__ :List[Any] = s SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ :Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): SCREAMING_SNAKE_CASE__ :List[Any] = len(__A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ :Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() SCREAMING_SNAKE_CASE__ :str = True if len(__A ) != 0: SCREAMING_SNAKE_CASE__ :Union[str, Any] = stack[len(__A ) - 1] else: SCREAMING_SNAKE_CASE__ :int = False indirect_parents.append(__A ) SCREAMING_SNAKE_CASE__ :int = s SCREAMING_SNAKE_CASE__ :Dict = ss # check if se have reached the starting point if len(__A ) == 0: return list(__A ) def __lowerCamelCase ( self : int ) -> int: SCREAMING_SNAKE_CASE__ :Optional[Any] = [] SCREAMING_SNAKE_CASE__ :List[Any] = [] SCREAMING_SNAKE_CASE__ :Any = list(self.graph )[0] stack.append(__A ) visited.append(__A ) SCREAMING_SNAKE_CASE__ :List[str] = -2 SCREAMING_SNAKE_CASE__ :Dict = [] SCREAMING_SNAKE_CASE__ :Dict = s SCREAMING_SNAKE_CASE__ :Union[str, Any] = False SCREAMING_SNAKE_CASE__ :List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ :Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): SCREAMING_SNAKE_CASE__ :List[Any] = len(__A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ :List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() SCREAMING_SNAKE_CASE__ :Any = True if len(__A ) != 0: SCREAMING_SNAKE_CASE__ :str = stack[len(__A ) - 1] else: SCREAMING_SNAKE_CASE__ :Any = False indirect_parents.append(__A ) SCREAMING_SNAKE_CASE__ :Optional[int] = s SCREAMING_SNAKE_CASE__ :Any = ss # check if se have reached the starting point if len(__A ) == 0: return False def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : Any=-2 , UpperCamelCase_ : Union[str, Any]=-1 ) -> Tuple: SCREAMING_SNAKE_CASE__ :List[Any] = time() self.dfs(__A , __A ) SCREAMING_SNAKE_CASE__ :Any = time() return end - begin def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : List[str]=-2 ) -> Dict: SCREAMING_SNAKE_CASE__ :List[Any] = time() self.bfs(__A ) SCREAMING_SNAKE_CASE__ :List[Any] = time() return end - begin class _SCREAMING_SNAKE_CASE: def __init__( self : str ) -> str: SCREAMING_SNAKE_CASE__ :Optional[int] = {} def __lowerCamelCase ( self : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Tuple=1 ) -> int: # check if the u exists if self.graph.get(__A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist SCREAMING_SNAKE_CASE__ :Union[str, Any] = [[w, v]] # add the other way if self.graph.get(__A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist SCREAMING_SNAKE_CASE__ :Tuple = [[w, u]] def __lowerCamelCase ( self : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ) -> List[str]: if self.graph.get(__A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__A ) # the other way round if self.graph.get(__A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__A ) def __lowerCamelCase ( self : str , UpperCamelCase_ : List[str]=-2 , UpperCamelCase_ : List[Any]=-1 ) -> Any: if s == d: return [] SCREAMING_SNAKE_CASE__ :Any = [] SCREAMING_SNAKE_CASE__ :List[Any] = [] if s == -2: SCREAMING_SNAKE_CASE__ :int = list(self.graph )[0] stack.append(__A ) visited.append(__A ) SCREAMING_SNAKE_CASE__ :str = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ :Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ :str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__A ) != 0: SCREAMING_SNAKE_CASE__ :Optional[Any] = stack[len(__A ) - 1] else: SCREAMING_SNAKE_CASE__ :Any = ss # check if se have reached the starting point if len(__A ) == 0: return visited def __lowerCamelCase ( self : str , UpperCamelCase_ : List[str]=-1 ) -> int: if c == -1: SCREAMING_SNAKE_CASE__ :Union[str, Any] = floor(random() * 1_00_00 ) + 10 for i in range(__A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): SCREAMING_SNAKE_CASE__ :Any = floor(random() * c ) + 1 if n != i: self.add_pair(__A , __A , 1 ) def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : int=-2 ) -> List[str]: SCREAMING_SNAKE_CASE__ :List[str] = deque() SCREAMING_SNAKE_CASE__ :Optional[Any] = [] if s == -2: SCREAMING_SNAKE_CASE__ :Optional[int] = list(self.graph )[0] d.append(__A ) visited.append(__A ) while d: SCREAMING_SNAKE_CASE__ :Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: return len(self.graph[u] ) def __lowerCamelCase ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ :Optional[int] = [] SCREAMING_SNAKE_CASE__ :Optional[int] = [] SCREAMING_SNAKE_CASE__ :Optional[int] = list(self.graph )[0] stack.append(__A ) visited.append(__A ) SCREAMING_SNAKE_CASE__ :Tuple = -2 SCREAMING_SNAKE_CASE__ :Dict = [] SCREAMING_SNAKE_CASE__ :Any = s SCREAMING_SNAKE_CASE__ :Union[str, Any] = False SCREAMING_SNAKE_CASE__ :List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ :Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): SCREAMING_SNAKE_CASE__ :Optional[int] = len(__A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ :Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() SCREAMING_SNAKE_CASE__ :int = True if len(__A ) != 0: SCREAMING_SNAKE_CASE__ :int = stack[len(__A ) - 1] else: SCREAMING_SNAKE_CASE__ :str = False indirect_parents.append(__A ) SCREAMING_SNAKE_CASE__ :Optional[int] = s SCREAMING_SNAKE_CASE__ :str = ss # check if se have reached the starting point if len(__A ) == 0: return list(__A ) def __lowerCamelCase ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Dict = [] SCREAMING_SNAKE_CASE__ :List[str] = [] SCREAMING_SNAKE_CASE__ :Tuple = list(self.graph )[0] stack.append(__A ) visited.append(__A ) SCREAMING_SNAKE_CASE__ :str = -2 SCREAMING_SNAKE_CASE__ :Optional[Any] = [] SCREAMING_SNAKE_CASE__ :Any = s SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ :Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): SCREAMING_SNAKE_CASE__ :int = len(__A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ :Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() SCREAMING_SNAKE_CASE__ :int = True if len(__A ) != 0: SCREAMING_SNAKE_CASE__ :List[str] = stack[len(__A ) - 1] else: SCREAMING_SNAKE_CASE__ :Any = False indirect_parents.append(__A ) SCREAMING_SNAKE_CASE__ :Tuple = s SCREAMING_SNAKE_CASE__ :int = ss # check if se have reached the starting point if len(__A ) == 0: return False def __lowerCamelCase ( self : Dict ) -> Tuple: return list(self.graph ) def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : Optional[Any]=-2 , UpperCamelCase_ : Any=-1 ) -> Tuple: SCREAMING_SNAKE_CASE__ :Dict = time() self.dfs(__A , __A ) SCREAMING_SNAKE_CASE__ :Tuple = time() return end - begin def __lowerCamelCase ( self : Dict , UpperCamelCase_ : Union[str, Any]=-2 ) -> Tuple: SCREAMING_SNAKE_CASE__ :Optional[int] = time() self.bfs(__A ) SCREAMING_SNAKE_CASE__ :Dict = time() return end - begin
209
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __A : str = logging.get_logger(__name__) def lowercase ( UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Union[str, Any] ): """simple docstring""" A__ : Dict =UniSpeechSatForSequenceClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) A__ : Dict =downstream_dict["projector.weight"] A__ : Tuple =downstream_dict["projector.bias"] A__ : str =downstream_dict["model.post_net.linear.weight"] A__ : Tuple =downstream_dict["model.post_net.linear.bias"] return model def lowercase ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): """simple docstring""" A__ : Union[str, Any] =UniSpeechSatForAudioFrameClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) A__ : Optional[int] =downstream_dict["model.linear.weight"] A__ : Optional[int] =downstream_dict["model.linear.bias"] return model def lowercase ( UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Any ): """simple docstring""" A__ : int =UniSpeechSatForXVector.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) A__ : List[Any] =downstream_dict["connector.weight"] A__ : List[str] =downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): A__ : List[Any] =downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] A__ : int =downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] A__ : Optional[int] =downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] A__ : Tuple =downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] A__ : List[Any] =downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] A__ : Tuple =downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] A__ : Tuple =downstream_dict["objective.W"] return model @torch.no_grad() def lowercase ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] ): """simple docstring""" A__ : Tuple =torch.load(_lowerCAmelCase , map_location="cpu" ) A__ : str =checkpoint["Downstream"] A__ : str =UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) A__ : Optional[Any] =WavaVecaFeatureExtractor.from_pretrained( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , do_normalize=_lowerCAmelCase ) A__ : Optional[Any] =hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): A__ : List[str] =convert_classification(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForAudioFrameClassification" ): A__ : Optional[int] =convert_diarization(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForXVector" ): A__ : Dict =convert_xvector(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: A__ : List[str] =checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCAmelCase ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __A : Union[str, Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
656
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
0
import unittest from transformers import DonutProcessor lowerCamelCase_ : List[Any] = 'naver-clova-ix/donut-base' class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[str] = DonutProcessor.from_pretrained(__A ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Tuple = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } UpperCamelCase_: List[str] = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) UpperCamelCase_: Optional[int] = self.processor.tokenajson(__A ) self.assertDictEqual(__A , __A )
548
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : str = tempfile.mkdtemp() a_ : Union[str, Any] = BlipImageProcessor() a_ : Optional[int] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) a_ : Tuple = BlipaProcessor(__A , __A ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).tokenizer def SCREAMING_SNAKE_CASE ( self : str , **SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).image_processor def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] a_ : List[Any] = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: a_ : Optional[int] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a_ : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) a_ : Any = self.get_image_processor(do_normalize=__A , padding_value=1.0 ) a_ : Optional[int] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : Any = self.get_image_processor() a_ : Optional[Any] = self.get_tokenizer() a_ : Any = BlipaProcessor(tokenizer=__A , image_processor=__A ) a_ : int = self.prepare_image_inputs() a_ : int = image_processor(__A , return_tensors='np' ) a_ : Optional[int] = processor(images=__A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: a_ : List[str] = self.get_image_processor() a_ : List[str] = self.get_tokenizer() a_ : Tuple = BlipaProcessor(tokenizer=__A , image_processor=__A ) a_ : Optional[Any] = "lower newer" a_ : List[Any] = processor(text=__A ) a_ : Optional[int] = tokenizer(__A , return_token_type_ids=__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = self.get_image_processor() a_ : Optional[Any] = self.get_tokenizer() a_ : Any = BlipaProcessor(tokenizer=__A , image_processor=__A ) a_ : int = "lower newer" a_ : List[Any] = self.prepare_image_inputs() a_ : int = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : List[Any] = self.get_image_processor() a_ : Optional[Any] = self.get_tokenizer() a_ : str = BlipaProcessor(tokenizer=__A , image_processor=__A ) a_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ : Dict = processor.batch_decode(__A ) a_ : Tuple = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: a_ : List[str] = self.get_image_processor() a_ : Tuple = self.get_tokenizer() a_ : int = BlipaProcessor(tokenizer=__A , image_processor=__A ) a_ : Any = "lower newer" a_ : Optional[Any] = self.prepare_image_inputs() a_ : Optional[int] = processor(text=__A , images=__A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
570
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Optional[int] = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
112
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __lowercase : _lowerCamelCase = 42 # setable values _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None @classmethod def __UpperCamelCase ( cls : Union[str, Any] , UpperCAmelCase_ : CommonSchedulerState , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray): return cls(common=__A , init_noise_sigma=__A , timesteps=__A) @dataclass class __lowercase (__lowerCamelCase ): _lowerCamelCase = 42 class __lowercase (__lowerCamelCase , __lowerCamelCase ): _lowerCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowerCamelCase = 42 @property def __UpperCamelCase ( self : Dict): return True @register_to_config def __init__( self : List[str] , UpperCAmelCase_ : int = 1_000 , UpperCAmelCase_ : float = 0.00_01 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : Optional[jnp.ndarray] = None , UpperCAmelCase_ : str = "fixed_small" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : str = "epsilon" , UpperCAmelCase_ : jnp.dtype = jnp.floataa , ): UpperCamelCase__ : str = dtype def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[CommonSchedulerState] = None): if common is None: UpperCamelCase__ : Any = CommonSchedulerState.create(self) # standard deviation of the initial noise distribution UpperCamelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype) UpperCamelCase__ : Tuple = jnp.arange(0 , self.config.num_train_timesteps).round()[::-1] return DDPMSchedulerState.create( common=__A , init_noise_sigma=__A , timesteps=__A , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : DDPMSchedulerState , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : Optional[int] = None): return sample def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : DDPMSchedulerState , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple = ()): UpperCamelCase__ : int = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCamelCase__ : str = (jnp.arange(0 , __A) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__A , timesteps=__A , ) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : DDPMSchedulerState , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None): UpperCamelCase__ : List[str] = state.common.alphas_cumprod[t] UpperCamelCase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCamelCase__ : Any = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCamelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCamelCase__ : List[str] = jnp.clip(__A , a_min=1e-20) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCamelCase__ : Dict = jnp.log(jnp.clip(__A , a_min=1e-20)) elif variance_type == "fixed_large": UpperCamelCase__ : Dict = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCamelCase__ : Optional[Any] = jnp.log(state.common.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCamelCase__ : Optional[int] = variance UpperCamelCase__ : str = state.common.betas[t] UpperCamelCase__ : Optional[Any] = (predicted_variance + 1) / 2 UpperCamelCase__ : Tuple = frac * max_log + (1 - frac) * min_log return variance def __UpperCamelCase ( self : int , UpperCAmelCase_ : DDPMSchedulerState , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : Optional[jax.random.KeyArray] = None , UpperCAmelCase_ : bool = True , ): UpperCamelCase__ : int = timestep if key is None: UpperCamelCase__ : Dict = jax.random.PRNGKey(0) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCamelCase__ : Optional[int] = jnp.split(__A , sample.shape[1] , axis=1) else: UpperCamelCase__ : Optional[Any] = None # 1. compute alphas, betas UpperCamelCase__ : Optional[int] = state.common.alphas_cumprod[t] UpperCamelCase__ : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) UpperCamelCase__ : Union[str, Any] = 1 - alpha_prod_t UpperCamelCase__ : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCamelCase__ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCamelCase__ : str = model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase__ : Optional[int] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ' for the FlaxDDPMScheduler.') # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCamelCase__ : str = jnp.clip(__A , -1 , 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCamelCase__ : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase__ : List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCamelCase__ : Any = jax.random.split(__A , num=1) UpperCamelCase__ : List[str] = jax.random.normal(__A , shape=model_output.shape , dtype=self.dtype) return (self._get_variance(__A , __A , predicted_variance=__A) ** 0.5) * noise UpperCamelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype)) UpperCamelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__A , state=__A) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : DDPMSchedulerState , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , ): return add_noise_common(state.common , __A , __A , __A) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : DDPMSchedulerState , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , ): return get_velocity_common(state.common , __A , __A , __A) def __len__( self : Tuple): return self.config.num_train_timesteps
596
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
0
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase ( UpperCamelCase__ : dict , UpperCamelCase__ : str , UpperCamelCase__ : set , UpperCamelCase__ : set , UpperCamelCase__ : dict , UpperCamelCase__ : dict , UpperCamelCase__ : PriorityQueue , UpperCamelCase__ : dict , UpperCamelCase__ : float | int , ): """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue __UpperCAmelCase = cst_fwd.get(_lowerCAmelCase , np.inf ) __UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __UpperCAmelCase = new_cost_f __UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : dict , UpperCamelCase__ : dict ): """simple docstring""" __UpperCAmelCase = -1 __UpperCAmelCase = set() __UpperCAmelCase = set() __UpperCAmelCase = {source: 0} __UpperCAmelCase = {destination: 0} __UpperCAmelCase = {source: None} __UpperCAmelCase = {destination: None} __UpperCAmelCase = PriorityQueue() __UpperCAmelCase = PriorityQueue() __UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __UpperCAmelCase = queue_forward.get() visited_forward.add(_lowerCAmelCase ) __UpperCAmelCase = queue_backward.get() visited_backward.add(_lowerCAmelCase ) __UpperCAmelCase = pass_and_relaxation( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) __UpperCAmelCase = pass_and_relaxation( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __UpperCAmelCase = shortest_distance return shortest_path_distance __lowerCAmelCase : Optional[Any] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } __lowerCAmelCase : Dict = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
262
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase__ = 'http://www.mocksite.com/file1.txt' lowerCAmelCase__ = '"text": ["foo", "foo"]' lowerCAmelCase__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class snake_case : """simple docstring""" __lowerCAmelCase = 200 __lowerCAmelCase = {"""Content-Length""": """100"""} __lowerCAmelCase = {} def snake_case__ ( self , **lowerCAmelCase_ ): return [bytes(__A , "utf-8" )] def __lowercase ( *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' import requests monkeypatch.setattr(_lowerCAmelCase , "request" , _lowerCAmelCase ) __lowercase = URL if issubclass(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = url elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = [url] elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = {"train": url} __lowercase = "dummy" __lowercase = "downloads" __lowercase = tmp_path __lowercase = DownloadConfig( cache_dir=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , use_etag=_lowerCAmelCase , ) __lowercase = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase ) __lowercase = dl_manager.download(_lowerCAmelCase ) __lowercase = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = [downloaded_paths] __lowercase = [urls] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): assert "train" in downloaded_paths.keys() __lowercase = downloaded_paths.values() __lowercase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCAmelCase , _lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __lowercase = Path(_lowerCAmelCase ) __lowercase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __lowercase = downloaded_path.read_text() assert content == CONTENT __lowercase = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() __lowercase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: '''simple docstring''' __lowercase = str(_lowerCAmelCase ) if issubclass(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = filename elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = [filename] elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = {"train": filename} __lowercase = "dummy" __lowercase = xz_file.parent __lowercase = "extracted" __lowercase = DownloadConfig( cache_dir=_lowerCAmelCase , use_etag=_lowerCAmelCase , ) __lowercase = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase ) __lowercase = dl_manager.extract(_lowerCAmelCase ) __lowercase = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = [extracted_paths] __lowercase = [paths] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): assert "train" in extracted_paths.keys() __lowercase = extracted_paths.values() __lowercase = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCAmelCase , _lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __lowercase = Path(_lowerCAmelCase ) __lowercase = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCAmelCase , etag=_lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __lowercase = extracted_path.read_text() __lowercase = text_file.read_text() assert extracted_file_content == expected_file_content def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert path.endswith(".jsonl" ) for num_items, line in enumerate(_lowerCAmelCase , start=1 ): __lowercase = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = request.getfixturevalue(_lowerCAmelCase ) __lowercase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): _test_jsonl(_lowerCAmelCase , _lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = request.getfixturevalue(_lowerCAmelCase ) __lowercase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): _test_jsonl(_lowerCAmelCase , _lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def __lowercase ( _UpperCAmelCase ) -> Any: '''simple docstring''' __lowercase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCAmelCase ) , start=1 ): assert os.path.basename(_lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
321
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =LEDTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] =LEDTokenizerFast SCREAMING_SNAKE_CASE_ : Dict =True def __lowerCAmelCase ( self : Dict ): """simple docstring""" super().setUp() UpperCamelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase = dict(zip(__A , range(len(__A ) ) ) ) UpperCamelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase = {"unk_token": "<unk>"} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__A ) ) def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def __lowerCAmelCase ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return "lower newer", "lower newer" @cached_property def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" UpperCamelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(__A , max_length=len(__A ) , padding=__A , return_tensors='pt' ) self.assertIsInstance(__A , __A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(__A , __A ) @require_torch def __lowerCAmelCase ( self : Any ): """simple docstring""" UpperCamelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(__A , padding=__A , return_tensors='pt' ) self.assertIn('input_ids' , __A ) self.assertIn('attention_mask' , __A ) self.assertNotIn('labels' , __A ) self.assertNotIn('decoder_attention_mask' , __A ) @require_torch def __lowerCAmelCase ( self : str ): """simple docstring""" UpperCamelCase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(text_target=__A , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def __lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] , padding=__A , truncation=__A , return_tensors='pt' ) self.assertIsInstance(__A , __A ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def __lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = ["A long paragraph for summarization."] UpperCamelCase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(__A , return_tensors='pt' ) UpperCamelCase = tokenizer(text_target=__A , return_tensors='pt' ) UpperCamelCase = inputs["input_ids"] UpperCamelCase = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = ["Summary of the text.", "Another summary."] UpperCamelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCamelCase = tokenizer(__A , padding=__A ) UpperCamelCase = [[0] * len(__A ) for x in encoded_output["input_ids"]] UpperCamelCase = tokenizer.pad(__A ) self.assertSequenceEqual(outputs['global_attention_mask'] , __A ) def __lowerCAmelCase ( self : Any ): """simple docstring""" pass def __lowerCAmelCase ( self : str ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(__A , **__A ) UpperCamelCase = self.tokenizer_class.from_pretrained(__A , **__A ) UpperCamelCase = "A, <mask> AllenNLP sentence." UpperCamelCase = tokenizer_r.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A ) UpperCamelCase = tokenizer_p.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
282
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : list ) -> List[str]: if len(_lowerCAmelCase ) < 2: return collection def circle_sort_util(UpperCAmelCase_ : list , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> bool: __lowerCamelCase : str = False if low == high: return swapped __lowerCamelCase : str = low __lowerCamelCase : Dict = high while left < right: if collection[left] > collection[right]: __lowerCamelCase : Optional[int] = ( collection[right], collection[left], ) __lowerCamelCase : List[Any] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __lowerCamelCase : Any = ( collection[right + 1], collection[left], ) __lowerCamelCase : Optional[int] = True __lowerCamelCase : List[Any] = low + int((high - low) / 2 ) __lowerCamelCase : List[Any] = circle_sort_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase : Any = circle_sort_util(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) return swapped or left_swap or right_swap __lowerCamelCase : str = True while is_not_sorted is True: __lowerCamelCase : str = circle_sort_util(_lowerCAmelCase , 0 , len(_lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": A__ : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() A__ : Tuple = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
13
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=False ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE__ :Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any]=False ) -> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ :int = "" else: SCREAMING_SNAKE_CASE__ :int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ :Any = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ :Tuple = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ :List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ :List[str] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ :List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ :Any = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ :List[str] = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( UpperCAmelCase__ : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = dct.pop(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = val def lowerCamelCase ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE__ :Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ViTConfig() SCREAMING_SNAKE_CASE__ :List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE__ :Optional[Any] = True SCREAMING_SNAKE_CASE__ :Optional[Any] = int(vit_name[-1_2:-1_0] ) SCREAMING_SNAKE_CASE__ :str = int(vit_name[-9:-6] ) else: SCREAMING_SNAKE_CASE__ :List[Any] = 1_0_0_0 SCREAMING_SNAKE_CASE__ :str = "huggingface/label-files" SCREAMING_SNAKE_CASE__ :Any = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE__ :int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ :str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ :Optional[Any] = idalabel SCREAMING_SNAKE_CASE__ :List[str] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ :List[str] = int(vit_name[-6:-4] ) SCREAMING_SNAKE_CASE__ :str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): SCREAMING_SNAKE_CASE__ :List[Any] = 1_9_2 SCREAMING_SNAKE_CASE__ :Optional[int] = 7_6_8 SCREAMING_SNAKE_CASE__ :Union[str, Any] = 1_2 SCREAMING_SNAKE_CASE__ :Optional[Any] = 3 elif vit_name[9:].startswith('small' ): SCREAMING_SNAKE_CASE__ :Optional[Any] = 3_8_4 SCREAMING_SNAKE_CASE__ :Optional[Any] = 1_5_3_6 SCREAMING_SNAKE_CASE__ :int = 1_2 SCREAMING_SNAKE_CASE__ :List[str] = 6 else: pass else: if vit_name[4:].startswith('small' ): SCREAMING_SNAKE_CASE__ :List[str] = 7_6_8 SCREAMING_SNAKE_CASE__ :Optional[Any] = 2_3_0_4 SCREAMING_SNAKE_CASE__ :List[Any] = 8 SCREAMING_SNAKE_CASE__ :List[Any] = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): SCREAMING_SNAKE_CASE__ :List[Any] = 1_0_2_4 SCREAMING_SNAKE_CASE__ :Optional[Any] = 4_0_9_6 SCREAMING_SNAKE_CASE__ :List[Any] = 2_4 SCREAMING_SNAKE_CASE__ :Union[str, Any] = 1_6 elif vit_name[4:].startswith('huge' ): SCREAMING_SNAKE_CASE__ :str = 1_2_8_0 SCREAMING_SNAKE_CASE__ :List[Any] = 5_1_2_0 SCREAMING_SNAKE_CASE__ :List[str] = 3_2 SCREAMING_SNAKE_CASE__ :List[str] = 1_6 # load original model from timm SCREAMING_SNAKE_CASE__ :int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ :Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE__ :int = ViTModel(_lowerCAmelCase ).eval() else: SCREAMING_SNAKE_CASE__ :List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: SCREAMING_SNAKE_CASE__ :Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: SCREAMING_SNAKE_CASE__ :Union[str, Any] = ViTImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE__ :Optional[int] = image_processor(images=prepare_img() , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ :Optional[int] = encoding["pixel_values"] SCREAMING_SNAKE_CASE__ :Union[str, Any] = model(_lowerCAmelCase ) if base_model: SCREAMING_SNAKE_CASE__ :int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: SCREAMING_SNAKE_CASE__ :Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
209
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
0
"""simple docstring""" def lowercase ( UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" return x if y == 0 else greatest_common_divisor(_lowerCAmelCase , x % y ) def lowercase ( UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" return (x * y) // greatest_common_divisor(_lowerCAmelCase , _lowerCAmelCase ) def lowercase ( UpperCamelCase : int = 20 ): """simple docstring""" A__ : Tuple =1 for i in range(1 , n + 1 ): A__ : Any =lcm(_lowerCAmelCase , _lowerCAmelCase ) return g if __name__ == "__main__": print(f"""{solution() = }""")
656
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int=False) -> str: '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase) and isinstance(_lowerCAmelCase , _lowerCAmelCase): _lowercase : int = len(set_a.intersection(_lowerCAmelCase)) if alternative_union: _lowercase : str = len(_lowerCAmelCase) + len(_lowerCAmelCase) else: _lowercase : List[Any] = len(set_a.union(_lowerCAmelCase)) return intersection / union if isinstance(_lowerCAmelCase , (list, tuple)) and isinstance(_lowerCAmelCase , (list, tuple)): _lowercase : Dict = [element for element in set_a if element in set_b] if alternative_union: _lowercase : int = len(_lowerCAmelCase) + len(_lowerCAmelCase) return len(_lowerCAmelCase) / union else: _lowercase : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(_lowerCAmelCase) / len(_lowerCAmelCase) return len(_lowerCAmelCase) / len(_lowerCAmelCase) return None if __name__ == "__main__": A = {'a', 'b', 'c', 'd', 'e'} A = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
125
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Any ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCamelCase_: Optional[Any] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__A ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = "sshleifer/tiny-gpt2" UpperCamelCase_: str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__A , multi_process=__A , ) UpperCamelCase_: Optional[Any] = TensorFlowBenchmark(__A ) UpperCamelCase_: Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[int] = "sgugger/tiny-distilbert-classification" UpperCamelCase_: List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , only_pretrain_model=__A , ) UpperCamelCase_: Dict = TensorFlowBenchmark(__A ) UpperCamelCase_: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[str] = "sshleifer/tiny-gpt2" UpperCamelCase_: Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) UpperCamelCase_: str = TensorFlowBenchmark(__A ) UpperCamelCase_: int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = "sshleifer/tiny-gpt2" UpperCamelCase_: List[Any] = AutoConfig.from_pretrained(__A ) UpperCamelCase_: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__A , multi_process=__A , ) UpperCamelCase_: Any = TensorFlowBenchmark(__A , [config] ) UpperCamelCase_: Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = "sshleifer/tiny-gpt2" UpperCamelCase_: Tuple = AutoConfig.from_pretrained(__A ) UpperCamelCase_: Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) UpperCamelCase_: Optional[Any] = TensorFlowBenchmark(__A , [config] ) UpperCamelCase_: List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: int = "sshleifer/tiny-gpt2" UpperCamelCase_: List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) UpperCamelCase_: int = TensorFlowBenchmark(__A ) UpperCamelCase_: Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Dict = "sshleifer/tiny-gpt2" UpperCamelCase_: Dict = AutoConfig.from_pretrained(__A ) UpperCamelCase_: Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) UpperCamelCase_: Union[str, Any] = TensorFlowBenchmark(__A , [config] ) UpperCamelCase_: Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[Any] = "patrickvonplaten/t5-tiny-random" UpperCamelCase_: List[str] = AutoConfig.from_pretrained(__A ) UpperCamelCase_: Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) UpperCamelCase_: Dict = TensorFlowBenchmark(__A , configs=[config] ) UpperCamelCase_: List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Tuple = "sshleifer/tiny-gpt2" UpperCamelCase_: List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__A , multi_process=__A , ) UpperCamelCase_: str = TensorFlowBenchmark(__A ) UpperCamelCase_: List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__A , save_to_csv=__A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__A , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(__A , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(__A , """env.csv""" ) , multi_process=__A , ) UpperCamelCase_: Dict = TensorFlowBenchmark(__A ) benchmark.run() self.assertTrue(Path(os.path.join(__A , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__A , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__A , """env.csv""" ) ).exists() ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[int] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(snake_case_ : List[Any] ): self.assertTrue(hasattr(__A , """sequential""" ) ) self.assertTrue(hasattr(__A , """cumulative""" ) ) self.assertTrue(hasattr(__A , """current""" ) ) self.assertTrue(hasattr(__A , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__A , """log.txt""" ) , log_print=__A , trace_memory_line_by_line=__A , eager_mode=__A , multi_process=__A , ) UpperCamelCase_: Tuple = TensorFlowBenchmark(__A ) UpperCamelCase_: str = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__A , """log.txt""" ) ).exists() )
548
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
0
UpperCAmelCase_ : List[Any] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCAmelCase_ : str = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCAmelCase_ : str = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCAmelCase_ : Optional[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCAmelCase_ : int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCAmelCase_ : Optional[int] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCAmelCase_ : Optional[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCAmelCase_ : List[str] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
570
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = ['ConditionalDetrFeatureExtractor'] SCREAMING_SNAKE_CASE__ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
112
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> str: UpperCamelCase__ : Dict = len(_lowerCAmelCase) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board]) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCAmelCase): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCAmelCase , _lowerCAmelCase , ) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCAmelCase , _lowerCAmelCase) # Print all the boards for board in boards: for column in board: print(_lowerCAmelCase) print('') print(len(_lowerCAmelCase) , 'solutions were found.') if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
596
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
0
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def lowerCAmelCase ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray ): """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowerCAmelCase , _lowerCAmelCase ) ) ) def lowerCAmelCase ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray ): """simple docstring""" if dataset.ndim != value_array.ndim: __UpperCAmelCase = ( "Wrong input data's dimensions... " f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(_lowerCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: __UpperCAmelCase = ( "Wrong input data's shape... " f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(_lowerCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: __UpperCAmelCase = ( "Input data have different datatype... " f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(_lowerCAmelCase ) __UpperCAmelCase = [] for value in value_array: __UpperCAmelCase = euclidean(_lowerCAmelCase , dataset[0] ) __UpperCAmelCase = dataset[0].tolist() for dataset_value in dataset[1:]: __UpperCAmelCase = euclidean(_lowerCAmelCase , _lowerCAmelCase ) if dist > temp_dist: __UpperCAmelCase = temp_dist __UpperCAmelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def lowerCAmelCase ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray ): """simple docstring""" return np.dot(_lowerCAmelCase , _lowerCAmelCase ) / (norm(_lowerCAmelCase ) * norm(_lowerCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
262
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( __snake_case ,unittest.TestCase ): """simple docstring""" __lowerCAmelCase = BlenderbotSmallTokenizer __lowerCAmelCase = False def snake_case__ ( self ): super().setUp() __lowercase = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] __lowercase = dict(zip(__A , range(len(__A ) ) ) ) __lowercase = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] __lowercase = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def snake_case__ ( self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__A ) def snake_case__ ( self , lowerCAmelCase_ ): __lowercase = "adapt act apte" __lowercase = "adapt act apte" return input_text, output_text def snake_case__ ( self ): __lowercase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase = "adapt act apte" __lowercase = ["adapt", "act", "ap@@", "te"] __lowercase = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) __lowercase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __lowercase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def snake_case__ ( self ): __lowercase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1384] __lowercase = "I am a small frog." __lowercase = tok([src_text] , padding=__A , truncation=__A )["input_ids"] __lowercase = tok.batch_decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case__ ( self ): __lowercase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) __lowercase = "I am a small frog ." __lowercase = "." __lowercase = tok(__A )["input_ids"] __lowercase = tok(__A )["input_ids"] assert encoded[-1] == encoded_dot[0]
321
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
0
from __future__ import annotations _snake_case = 'Muhammad Umer Farooq' _snake_case = 'MIT' _snake_case = '1.0.0' _snake_case = 'Muhammad Umer Farooq' _snake_case = '[email protected]' _snake_case = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" super().__init__() UpperCamelCase = [] UpperCamelCase = domain def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[tuple[str, str | None]] ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: UpperCamelCase = parse.urljoin(self.domain , __A ) self.urls.append(__A ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: return ".".join(get_sub_domain_name(_lowerCAmelCase ).split('.' )[-2:] ) def __lowerCamelCase ( _lowercase ) -> Tuple: return parse.urlparse(_lowerCAmelCase ).netloc def __lowerCamelCase ( _lowercase = "https://github.com" ) -> Optional[int]: UpperCamelCase = get_domain_name(_lowerCAmelCase ) # Initialize the parser UpperCamelCase = Parser(_lowerCAmelCase ) try: # Open URL UpperCamelCase = requests.get(_lowerCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through UpperCamelCase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: UpperCamelCase = requests.get(_lowerCAmelCase ) # Get the valid email. UpperCamelCase = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_lowerCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_lowerCAmelCase ) if __name__ == "__main__": _snake_case = emails_from_url('''https://github.com''') print(F"{len(emails)} emails found:") print('''\n'''.join(sorted(emails)))
282
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
0
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : List[Any] = None lowerCamelCase : List[str] = False lowerCamelCase : Dict = False lowerCamelCase : int = False lowerCamelCase : Tuple = None lowerCamelCase : Tuple = None lowerCamelCase : str = False lowerCamelCase : Dict = False lowerCamelCase : Optional[Any] = False lowerCamelCase : str = True lowerCamelCase : List[Any] = None lowerCamelCase : int = 1 lowerCamelCase : str = None lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = None lowerCamelCase : Any = None def lowercase_ ( self ) -> str: return self.__class__(**{k: copy.deepcopy(__A ) for k, v in self.__dict__.items()} )
13
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): A_ : str = 'MCTCTFeatureExtractor' A_ : Tuple = 'AutoTokenizer' def __init__( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple ) -> str: super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ :Any = self.feature_extractor SCREAMING_SNAKE_CASE__ :Dict = False def __call__( self : Optional[Any] , *UpperCamelCase_ : int , **UpperCamelCase_ : Union[str, Any] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) SCREAMING_SNAKE_CASE__ :int = kwargs.pop('raw_speech' ) else: SCREAMING_SNAKE_CASE__ :int = kwargs.pop('audio' , __A ) SCREAMING_SNAKE_CASE__ :Optional[Any] = kwargs.pop('sampling_rate' , __A ) SCREAMING_SNAKE_CASE__ :Tuple = kwargs.pop('text' , __A ) if len(__A ) > 0: SCREAMING_SNAKE_CASE__ :List[Any] = args[0] SCREAMING_SNAKE_CASE__ :int = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: SCREAMING_SNAKE_CASE__ :Tuple = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if text is not None: SCREAMING_SNAKE_CASE__ :Optional[Any] = self.tokenizer(__A , **__A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE__ :str = encodings["input_ids"] return inputs def __lowerCamelCase ( self : Optional[Any] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[str] ) -> Optional[Any]: return self.tokenizer.batch_decode(*__A , **__A ) def __lowerCamelCase ( self : Union[str, Any] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__A , **__A ) SCREAMING_SNAKE_CASE__ :Optional[int] = kwargs.pop('input_features' , __A ) SCREAMING_SNAKE_CASE__ :int = kwargs.pop('labels' , __A ) if len(__A ) > 0: SCREAMING_SNAKE_CASE__ :str = args[0] SCREAMING_SNAKE_CASE__ :str = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE__ :Tuple = self.feature_extractor.pad(__A , *__A , **__A ) if labels is not None: SCREAMING_SNAKE_CASE__ :Optional[int] = self.tokenizer.pad(__A , **__A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE__ :List[Any] = labels["input_ids"] return input_features def __lowerCamelCase ( self : int , *UpperCamelCase_ : Dict , **UpperCamelCase_ : List[str] ) -> Optional[Any]: return self.tokenizer.decode(*__A , **__A ) @contextmanager def __lowerCamelCase ( self : List[Any] ) -> Optional[int]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.tokenizer yield SCREAMING_SNAKE_CASE__ :List[str] = self.feature_extractor SCREAMING_SNAKE_CASE__ :Optional[Any] = False
209
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
"""simple docstring""" __A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.35_5818, } def lowercase ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : float ): """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: A__ : List[str] =( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(_lowerCAmelCase )}''' ) raise ValueError(_lowerCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
0
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] ,UpperCamelCase : str ,UpperCamelCase : List[str]=13 ,UpperCamelCase : str=32 ,UpperCamelCase : Tuple=2 ,UpperCamelCase : Any=3 ,UpperCamelCase : Dict=16 ,UpperCamelCase : Dict=[32, 64, 128] ,UpperCamelCase : List[str]=[1, 2, 1] ,UpperCamelCase : str=[2, 2, 4] ,UpperCamelCase : Optional[int]=2 ,UpperCamelCase : Dict=2.0 ,UpperCamelCase : str=True ,UpperCamelCase : Tuple=0.0 ,UpperCamelCase : int=0.0 ,UpperCamelCase : List[str]=0.1 ,UpperCamelCase : Any="gelu" ,UpperCamelCase : List[Any]=False ,UpperCamelCase : Optional[Any]=True ,UpperCamelCase : List[str]=0.0_2 ,UpperCamelCase : Tuple=1e-5 ,UpperCamelCase : Any=True ,UpperCamelCase : Tuple=None ,UpperCamelCase : Tuple=True ,UpperCamelCase : Tuple=10 ,UpperCamelCase : List[Any]=8 ,UpperCamelCase : Optional[int]=["stage1", "stage2"] ,UpperCamelCase : int=[1, 2] ,) -> Optional[int]: _lowercase : List[Any] = parent _lowercase : Optional[Any] = batch_size _lowercase : Optional[int] = image_size _lowercase : int = patch_size _lowercase : Optional[Any] = num_channels _lowercase : int = embed_dim _lowercase : int = hidden_sizes _lowercase : List[Any] = depths _lowercase : Any = num_heads _lowercase : List[str] = window_size _lowercase : str = mlp_ratio _lowercase : Any = qkv_bias _lowercase : str = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : List[str] = drop_path_rate _lowercase : str = hidden_act _lowercase : Union[str, Any] = use_absolute_embeddings _lowercase : List[Any] = patch_norm _lowercase : Tuple = layer_norm_eps _lowercase : str = initializer_range _lowercase : Optional[int] = is_training _lowercase : Tuple = scope _lowercase : List[Any] = use_labels _lowercase : int = type_sequence_label_size _lowercase : Tuple = encoder_stride _lowercase : Any = out_features _lowercase : Any = out_indices def _lowerCamelCase ( self : Any ) -> List[str]: _lowercase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : List[Any] = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def _lowerCamelCase ( self : int ,UpperCamelCase : Union[str, Any] ,UpperCamelCase : Tuple ,UpperCamelCase : List[Any] ) -> int: _lowercase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowercase : Optional[Any] = model(__A ) _lowercase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowercase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def _lowerCamelCase ( self : int ,UpperCamelCase : Optional[int] ,UpperCamelCase : int ,UpperCamelCase : Optional[int] ) -> Dict: _lowercase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowercase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowercase : List[str] = None _lowercase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowercase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : Optional[int] ,UpperCamelCase : Dict ,UpperCamelCase : Dict ) -> Any: _lowercase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowercase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowercase : Dict = 1 _lowercase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowercase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCamelCase ( self : List[Any] ,UpperCamelCase : Union[str, Any] ,UpperCamelCase : List[Any] ,UpperCamelCase : Optional[Any] ) -> List[Any]: _lowercase : Union[str, Any] = self.type_sequence_label_size _lowercase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowercase : Optional[int] = model(__A ,labels=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowercase : str = 1 _lowercase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowercase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Optional[int] ) -> Dict: _lowercase : int = self.prepare_config_and_inputs() _lowercase : Union[str, Any] = config_and_inputs _lowercase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ : Tuple = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Any = False lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : Any = False def _lowerCamelCase ( self : int ) -> Optional[Any]: _lowercase : Optional[int] = FocalNetModelTester(self ) _lowercase : int = ConfigTester(self ,config_class=__A ,embed_dim=37 ,has_text_modality=__A ) def _lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : List[str] ) -> Any: return def _lowerCamelCase ( self : Any ) -> Optional[Any]: _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowerCamelCase ( self : int ) -> Optional[Any]: _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def _lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def _lowerCamelCase ( self : int ) -> List[Any]: _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def _lowerCamelCase ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def _lowerCamelCase ( self : List[str] ) -> Optional[Any]: pass def _lowerCamelCase ( self : List[str] ) -> Any: _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowercase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowercase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A ,nn.Linear ) ) def _lowerCamelCase ( self : List[Any] ) -> Tuple: _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowercase : Union[str, Any] = model_class(__A ) _lowercase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : int = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__A ) def _lowerCamelCase ( self : Tuple ,UpperCamelCase : Any ,UpperCamelCase : List[Any] ,UpperCamelCase : str ,UpperCamelCase : Any ) -> Optional[int]: _lowercase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(__A ,__A ) ) _lowercase : Optional[int] = outputs.hidden_states _lowercase : int = getattr( self.model_tester ,'expected_num_hidden_layers' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ) ,__A ) # FocalNet has a different seq_length _lowercase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowercase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) _lowercase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ) ,__A ) _lowercase : Tuple = reshaped_hidden_states[0].shape _lowercase : List[str] = ( reshaped_hidden_states[0].view(__A ,__A ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def _lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowercase : List[Any] = True self.check_hidden_states_output(__A ,__A ,__A ,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : List[Any] = True self.check_hidden_states_output(__A ,__A ,__A ,__A ) def _lowerCamelCase ( self : Optional[Any] ) -> Tuple: _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Tuple = 3 _lowercase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowercase : Tuple = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowercase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowercase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowercase : List[Any] = True self.check_hidden_states_output(__A ,__A ,__A ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True self.check_hidden_states_output(__A ,__A ,__A ,(padded_height, padded_width) ) @slow def _lowerCamelCase ( self : Tuple ) -> Optional[int]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _lowerCamelCase ( self : Tuple ) -> Union[str, Any]: _lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowercase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]: # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Union[str, Any] ) -> str: _lowercase : Any = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(__A ) _lowercase : int = self.default_image_processor _lowercase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowercase : Dict = image_processor(images=__A ,return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): _lowercase : Dict = model(**__A ) # verify the logits _lowercase : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,__A ) _lowercase : List[str] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__A ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ : int = FocalNetConfig lowerCAmelCase__ : int = False def _lowerCamelCase ( self : int ) -> Optional[Any]: _lowercase : int = FocalNetModelTester(self )
125
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_A ) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[str] = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __UpperCamelCase : Optional[Any] = Features({"""text""": Value("""string""" )} ) __UpperCamelCase : Union[str, Any] = Features({} ) __UpperCamelCase : List[Any] = """text""" @property def lowerCAmelCase__ ( self : Tuple ): return {self.text_column: "text"}
548
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : str = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
570
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _A ( lowerCamelCase , lowerCamelCase=() , lowerCamelCase=None , lowerCamelCase="no" , lowerCamelCase="29500" ): a__ : Any = False a__ : List[str] = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): a__ : Any = True elif "IPython" in sys.modules: a__ : Optional[Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: a__ : Union[str, Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , _lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: a__ : Optional[int] = 8 a__ : List[Any] = PrepareForLaunch(_lowerCAmelCase , distributed_type="TPU" ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*_lowerCAmelCase ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase , master_addr="127.0.01" , master_port=_lowerCAmelCase , mixed_precision=_lowerCAmelCase ): a__ : Tuple = PrepareForLaunch(_lowerCAmelCase , distributed_type="MULTI_GPU" ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): a__ : Union[str, Any] = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*_lowerCAmelCase ) def _A ( lowerCamelCase , lowerCamelCase=() , lowerCamelCase=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): a__ : int = PrepareForLaunch(_lowerCAmelCase , debug=_lowerCAmelCase ) start_processes(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="fork" )
112
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ = 1_000) -> List[Any]: UpperCamelCase__ : List[str] = 2**power UpperCamelCase__ : Any = str(_lowerCAmelCase) UpperCamelCase__ : Optional[int] = list(_lowerCAmelCase) UpperCamelCase__ : Any = 0 for i in list_num: sum_of_num += int(_lowerCAmelCase) return sum_of_num if __name__ == "__main__": lowerCAmelCase__ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) lowerCAmelCase__ = solution(power) print('Sum of the digits is: ', result)
596
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
0
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class A : @staticmethod def snake_case__ ( *__a : Any , **__a : int ) -> Optional[Any]: pass def lowerCAmelCase ( UpperCamelCase__ : Image ): """simple docstring""" __UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class A ( unittest.TestCase ): a_ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def snake_case__ ( self : List[str] , __a : List[str] , __a : List[Any] , __a : Tuple ) -> List[Any]: __UpperCAmelCase = DepthEstimationPipeline(model=__A , image_processor=__A ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case__ ( self : str , __a : Optional[Any] , __a : int ) -> List[Any]: __UpperCAmelCase = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , __A ) import datasets __UpperCAmelCase = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __UpperCAmelCase = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , __A , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: pass @slow @require_torch def snake_case__ ( self : Optional[int] ) -> str: __UpperCAmelCase = "Intel/dpt-large" __UpperCAmelCase = pipeline('''depth-estimation''' , model=__A ) __UpperCAmelCase = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) __UpperCAmelCase = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.6_6_2 ) @require_torch def snake_case__ ( self : List[Any] ) -> List[str]: # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
262
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def __lowercase ( _UpperCAmelCase=None , _UpperCAmelCase=None ) -> Dict: '''simple docstring''' return field(default_factory=lambda: default , metadata=_lowerCAmelCase ) @dataclass class snake_case : """simple docstring""" __lowerCAmelCase = list_field( default=[] ,metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } ,) __lowerCAmelCase = list_field( default=[8] ,metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) __lowerCAmelCase = list_field( default=[8, 32, 128, 512] ,metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) __lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Use FP16 to accelerate inference."""} ) __lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Benchmark training of model"""} ) __lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Verbose memory tracing"""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } ,) __lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Trace memory line by line"""} ) __lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Save result to a CSV file"""} ) __lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Save all print statements in a log file"""} ) __lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Whether to print environment information"""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } ,) __lowerCAmelCase = field( default=f'''inference_time_{round(time() )}.csv''' ,metadata={"""help""": """CSV filename used if saving time results to csv."""} ,) __lowerCAmelCase = field( default=f'''inference_memory_{round(time() )}.csv''' ,metadata={"""help""": """CSV filename used if saving memory results to csv."""} ,) __lowerCAmelCase = field( default=f'''train_time_{round(time() )}.csv''' ,metadata={"""help""": """CSV filename used if saving time results to csv for training."""} ,) __lowerCAmelCase = field( default=f'''train_memory_{round(time() )}.csv''' ,metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} ,) __lowerCAmelCase = field( default=f'''env_info_{round(time() )}.csv''' ,metadata={"""help""": """CSV filename used if saving environment information."""} ,) __lowerCAmelCase = field( default=f'''log_{round(time() )}.csv''' ,metadata={"""help""": """Log filename used if print statements are saved in log."""} ,) __lowerCAmelCase = field(default=3 ,metadata={"""help""": """Times an experiment will be run."""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } ,) def snake_case__ ( self ): warnings.warn( f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , __A , ) def snake_case__ ( self ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case__ ( self ): if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def snake_case__ ( self ): if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
321
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _snake_case = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def __lowerCamelCase ( ) -> Union[str, Any]: UpperCamelCase = argparse.ArgumentParser() parser.add_argument('-f' ) UpperCamelCase = parser.parse_args() return args.f def __lowerCamelCase ( _lowercase , _lowercase="eval" ) -> Dict: UpperCamelCase = os.path.join(_lowerCAmelCase , F'{split}_results.json' ) if os.path.exists(_lowerCAmelCase ): with open(_lowerCAmelCase , 'r' ) as f: return json.load(_lowerCAmelCase ) raise ValueError(F'can\'t find {path}' ) _snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __lowerCAmelCase ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(__A , 'argv' , __A ): run_flax_glue.main() UpperCamelCase = get_results(__A ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(__A , 'argv' , __A ): run_clm_flax.main() UpperCamelCase = get_results(__A ) self.assertLess(result['eval_perplexity'] , 1_00 ) @slow def __lowerCAmelCase ( self : str ): """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(__A , 'argv' , __A ): run_summarization_flax.main() UpperCamelCase = get_results(__A , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def __lowerCAmelCase ( self : List[str] ): """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(__A , 'argv' , __A ): run_mlm_flax.main() UpperCamelCase = get_results(__A ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(__A , 'argv' , __A ): run_ta_mlm_flax.main() UpperCamelCase = get_results(__A ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = 7 if get_gpu_count() > 1 else 2 UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(__A , 'argv' , __A ): run_flax_ner.main() UpperCamelCase = get_results(__A ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(__A , 'argv' , __A ): run_qa.main() UpperCamelCase = get_results(__A ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
282
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
0
'''simple docstring''' import math import sys import cva import numpy as np def UpperCAmelCase__ ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float ) -> Tuple: __lowerCamelCase : Dict = math.sqrt(_lowerCAmelCase ) __lowerCamelCase : Optional[int] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def UpperCAmelCase__ ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> List[str]: __lowerCamelCase : Optional[int] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : float ) -> str: __lowerCamelCase : Optional[Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _lowerCAmelCase ): for j in range(0 , _lowerCAmelCase ): __lowerCamelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : int , ) -> Dict: __lowerCamelCase : Dict = np.zeros(img.shape ) __lowerCamelCase : Optional[Any] = get_gauss_kernel(_lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase : Any = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowerCamelCase : Optional[Any] = get_slice(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase : Optional[int] = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowerCamelCase : Any = vec_gaussian(_lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase : List[Any] = np.multiply(_lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase : Optional[int] = np.multiply(_lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase : Tuple = np.sum(_lowerCAmelCase ) / np.sum(_lowerCAmelCase ) __lowerCamelCase : Optional[int] = val return imga def UpperCAmelCase__ ( UpperCAmelCase_ : list ) -> Optional[int]: __lowerCamelCase : Dict = args[1] if args[1:] else "../image_data/lena.jpg" __lowerCamelCase : List[str] = float(args[2] ) if args[2:] else 1.0 __lowerCamelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowerCamelCase : List[str] = int(args[4] ) __lowerCamelCase : Union[str, Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowerCamelCase : Optional[Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": A__ : str = parse_args(sys.argv) A__ : List[Any] = cva.imread(filename, 0) cva.imshow("""input image""", img) A__ : Tuple = img / 255 A__ : Optional[Any] = out.astype("""float32""") A__ : str = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) A__ : Optional[int] = out * 255 A__ : List[str] = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
13
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ : Tuple = StableDiffusionPanoramaPipeline A_ : str = TEXT_TO_IMAGE_PARAMS A_ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS A_ : int = TEXT_TO_IMAGE_IMAGE_PARAMS A_ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowerCamelCase ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ :Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ :List[Any] = DDIMScheduler() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ :Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ :List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) SCREAMING_SNAKE_CASE__ :Tuple = CLIPTextModel(__A ) SCREAMING_SNAKE_CASE__ :Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE__ :Tuple = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int]=0 ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ :Tuple = torch.manual_seed(__A ) SCREAMING_SNAKE_CASE__ :Any = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __lowerCamelCase ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ :Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ :Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ :str = StableDiffusionPanoramaPipeline(**__A ) SCREAMING_SNAKE_CASE__ :List[str] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ :Dict = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE__ :Tuple = sd_pipe(**__A ).images SCREAMING_SNAKE_CASE__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ :Tuple = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self : int ) -> str: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self : Tuple ) -> Any: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def __lowerCamelCase ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ :Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE__ :int = StableDiffusionPanoramaPipeline(**__A ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ :Any = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE__ :Tuple = "french fries" SCREAMING_SNAKE_CASE__ :Tuple = sd_pipe(**__A , negative_prompt=__A ) SCREAMING_SNAKE_CASE__ :Dict = output.images SCREAMING_SNAKE_CASE__ :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ :Union[str, Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ :Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ :Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ :Union[str, Any] = StableDiffusionPanoramaPipeline(**__A ) SCREAMING_SNAKE_CASE__ :int = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ :Any = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE__ :Any = sd_pipe(**__A , view_batch_size=2 ) SCREAMING_SNAKE_CASE__ :Tuple = output.images SCREAMING_SNAKE_CASE__ :Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ :List[Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ :int = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ :List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ :Optional[int] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' ) SCREAMING_SNAKE_CASE__ :Any = StableDiffusionPanoramaPipeline(**__A ) SCREAMING_SNAKE_CASE__ :Any = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ :Any = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = sd_pipe(**__A ).images SCREAMING_SNAKE_CASE__ :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ :str = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ :Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ :Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE__ :Optional[int] = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , skip_prk_steps=__A ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = StableDiffusionPanoramaPipeline(**__A ) SCREAMING_SNAKE_CASE__ :List[Any] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ :Tuple = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE__ :Dict = sd_pipe(**__A ).images SCREAMING_SNAKE_CASE__ :Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ :List[Any] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def __lowerCamelCase ( self : Optional[int] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : Dict=0 ) -> Dict: SCREAMING_SNAKE_CASE__ :List[Any] = torch.manual_seed(__A ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __lowerCamelCase ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ :List[str] = "stabilityai/stable-diffusion-2-base" SCREAMING_SNAKE_CASE__ :Any = DDIMScheduler.from_pretrained(__A , subfolder='scheduler' ) SCREAMING_SNAKE_CASE__ :Tuple = StableDiffusionPanoramaPipeline.from_pretrained(__A , scheduler=__A , safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ :str = self.get_inputs() SCREAMING_SNAKE_CASE__ :int = pipe(**__A ).images SCREAMING_SNAKE_CASE__ :Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) SCREAMING_SNAKE_CASE__ :List[Any] = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __lowerCamelCase ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=__A ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ :List[Any] = self.get_inputs() SCREAMING_SNAKE_CASE__ :Tuple = pipe(**__A ).images SCREAMING_SNAKE_CASE__ :List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) SCREAMING_SNAKE_CASE__ :List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowerCamelCase ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :Any = 0 def callback_fn(UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : torch.FloatTensor ) -> None: SCREAMING_SNAKE_CASE__ :str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE__ :int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) SCREAMING_SNAKE_CASE__ :Dict = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ :str = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: SCREAMING_SNAKE_CASE__ :Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) SCREAMING_SNAKE_CASE__ :Optional[int] = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ :Tuple = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 SCREAMING_SNAKE_CASE__ :List[str] = False SCREAMING_SNAKE_CASE__ :Optional[int] = "stabilityai/stable-diffusion-2-base" SCREAMING_SNAKE_CASE__ :Optional[Any] = DDIMScheduler.from_pretrained(__A , subfolder='scheduler' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained(__A , scheduler=__A , safety_checker=__A ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ :int = self.get_inputs() pipe(**__A , callback=__A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowerCamelCase ( self : Tuple ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ :int = "stabilityai/stable-diffusion-2-base" SCREAMING_SNAKE_CASE__ :Tuple = DDIMScheduler.from_pretrained(__A , subfolder='scheduler' ) SCREAMING_SNAKE_CASE__ :List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__A , scheduler=__A , safety_checker=__A ) SCREAMING_SNAKE_CASE__ :Optional[Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ :Optional[Any] = self.get_inputs() SCREAMING_SNAKE_CASE__ :str = pipe(**__A ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
209
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __A : int = False class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' pass @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' def _UpperCAmelCase ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : Optional[Any] ): A__ : int =VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) A__ : Optional[Any] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) A__ : int =torch.manual_seed(0 ) A__ : List[Any] =pipe.dual_guided( prompt="first prompt" , image=__A , text_to_image_strength=0.75 , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__A ) A__ : Dict =VersatileDiffusionPipeline.from_pretrained(__A , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) A__ : Tuple =generator.manual_seed(0 ) A__ : Optional[Any] =pipe.dual_guided( prompt="first prompt" , image=__A , text_to_image_strength=0.75 , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _UpperCAmelCase ( self : str ): A__ : Dict =VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) A__ : Tuple ="cyberpunk 2077" A__ : int =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) A__ : Tuple =torch.manual_seed(0 ) A__ : Tuple =pipe.dual_guided( prompt=__A , image=__A , text_to_image_strength=0.75 , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images A__ : int =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ : Union[str, Any] =np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 A__ : List[str] ="A painting of a squirrel eating a burger " A__ : Union[str, Any] =torch.manual_seed(0 ) A__ : Any =pipe.text_to_image( prompt=__A , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images A__ : Optional[int] =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 A__ : int =pipe.image_variation(__A , generator=__A , output_type="numpy" ).images A__ : int =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ : Optional[int] =np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
656
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : Tuple ,UpperCamelCase : Optional[Any] ,UpperCamelCase : int ) -> Union[str, Any]: super().__init__() # make sure scheduler can always be converted to DDIM _lowercase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__A ,scheduler=__A ) @torch.no_grad() def __call__( self : Tuple ,UpperCamelCase : int = 1 ,UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,UpperCamelCase : float = 0.0 ,UpperCamelCase : int = 50 ,UpperCamelCase : Optional[bool] = None ,UpperCamelCase : Optional[str] = "pil" ,UpperCamelCase : bool = True ,) -> str: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size ,__A ): _lowercase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowercase : int = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__A ,__A ) and len(__A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowercase : Tuple = randn_tensor(__A ,generator=__A ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowercase : Any = self.unet(__A ,__A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowercase : Any = self.scheduler.step( __A ,__A ,__A ,eta=__A ,use_clipped_model_output=__A ,generator=__A ).prev_sample _lowercase : Union[str, Any] = (image / 2 + 0.5).clamp(0 ,1 ) _lowercase : Tuple = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": _lowercase : Any = self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A )
125
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] lowerCamelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A__ ( lowerCamelCase ) -> Union[str, Any]: UpperCamelCase_: Optional[int] = torch.load(_lowerCAmelCase , map_location="""cpu""" ) return sd def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=rename_keys_prefix ) -> Union[str, Any]: UpperCamelCase_: Any = OrderedDict() UpperCamelCase_: str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue UpperCamelCase_: Any = key for name_pair in rename_keys_prefix: UpperCamelCase_: Dict = new_key.replace(name_pair[0] , name_pair[1] ) UpperCamelCase_: Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately UpperCamelCase_: List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase ) -> str: assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: UpperCamelCase_: Optional[int] = "pretraining" if "vcr" in checkpoint_path: UpperCamelCase_: Union[str, Any] = {"visual_embedding_dim": 5_12} elif "vqa_advanced" in checkpoint_path: UpperCamelCase_: List[str] = {"visual_embedding_dim": 20_48} elif "vqa" in checkpoint_path: UpperCamelCase_: int = {"visual_embedding_dim": 20_48} elif "nlvr" in checkpoint_path: UpperCamelCase_: List[str] = {"visual_embedding_dim": 10_24} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: UpperCamelCase_: Any = {"visual_embedding_dim": 5_12} UpperCamelCase_: List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: UpperCamelCase_: Tuple = {"visual_embedding_dim": 20_48} UpperCamelCase_: Dict = "vqa_advanced" elif "vqa" in checkpoint_path: UpperCamelCase_: Union[str, Any] = {"visual_embedding_dim": 20_48, "num_labels": 31_29} UpperCamelCase_: Optional[int] = "vqa" elif "nlvr" in checkpoint_path: UpperCamelCase_: Tuple = { "visual_embedding_dim": 10_24, "num_labels": 2, } UpperCamelCase_: Optional[Any] = "nlvr" UpperCamelCase_: str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict UpperCamelCase_: str = load_state_dict(_lowerCAmelCase ) UpperCamelCase_: List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": UpperCamelCase_: List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": UpperCamelCase_: Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": UpperCamelCase_: Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": UpperCamelCase_: str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") lowerCamelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
548
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: a_ : Optional[Any] = ort.SessionOptions() a_ : str = False return options def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) a_ : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) a_ : List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) a_ : str = "A red cat sitting on a park bench" a_ : Tuple = np.random.RandomState(0 ) a_ : List[str] = pipe( prompt=__A , image=__A , mask_image=__A , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__A , output_type='np' , ) a_ : Dict = output.images a_ : Tuple = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a_ : List[str] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: a_ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) a_ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) a_ : Dict = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) a_ : Dict = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=__A , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) a_ : Tuple = "A red cat sitting on a park bench" a_ : Tuple = np.random.RandomState(0 ) a_ : Tuple = pipe( prompt=__A , image=__A , mask_image=__A , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__A , output_type='np' , ) a_ : str = output.images a_ : List[Any] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a_ : List[Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
570
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _A ( lowerCamelCase , lowerCamelCase=0.999 , lowerCamelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) a__ : str = [] for i in range(_lowerCAmelCase ): a__ : Optional[int] = i / num_diffusion_timesteps a__ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class __lowerCAmelCase ( _UpperCamelCase ,_UpperCamelCase ): _UpperCamelCase : Dict = [e.name for e in KarrasDiffusionSchedulers] _UpperCamelCase : Dict = 2 @register_to_config def __init__( self , snake_case = 1_000 , snake_case = 0.00_085 , snake_case = 0.012 , snake_case = "linear" , snake_case = None , snake_case = "epsilon" , snake_case = "linspace" , snake_case = 0 , ) -> List[str]: """simple docstring""" if trained_betas is not None: a__ : List[str] = torch.tensor(__A , dtype=torch.floataa ) elif beta_schedule == "linear": a__ : Optional[Any] = torch.linspace(__A , __A , __A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__ : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__ : Union[str, Any] = betas_for_alpha_bar(__A ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) a__ : Dict = 1.0 - self.betas a__ : List[Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__A , __A , __A ) def _snake_case ( self , snake_case , snake_case=None ) -> Optional[Any]: """simple docstring""" if schedule_timesteps is None: a__ : Tuple = self.timesteps a__ : Optional[Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: a__ : Optional[int] = 1 if len(__A ) > 1 else 0 else: a__ : Optional[Any] = timestep.cpu().item() if torch.is_tensor(__A ) else timestep a__ : List[Any] = self._index_counter[timestep_int] return indices[pos].item() @property def _snake_case ( self ) -> str: """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _snake_case ( self , snake_case , snake_case , ) -> int: """simple docstring""" a__ : Tuple = self.index_for_timestep(__A ) if self.state_in_first_order: a__ : str = self.sigmas[step_index] else: a__ : Dict = self.sigmas_interpol[step_index] a__ : Tuple = sample / ((sigma**2 + 1) ** 0.5) return sample def _snake_case ( self , snake_case , snake_case = None , snake_case = None , ) -> str: """simple docstring""" a__ : int = num_inference_steps a__ : Optional[int] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a__ : Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , __A , dtype=__A )[::-1].copy() elif self.config.timestep_spacing == "leading": a__ : Optional[int] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__ : Tuple = (np.arange(0 , __A ) * step_ratio).round()[::-1].copy().astype(__A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a__ : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__ : Union[str, Any] = (np.arange(__A , 0 , -step_ratio )).round().copy().astype(__A ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.""" ) a__ : int = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) a__ : Dict = torch.from_numpy(np.log(__A ) ).to(__A ) a__ : Union[str, Any] = np.interp(__A , np.arange(0 , len(__A ) ) , __A ) a__ : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) a__ : Dict = torch.from_numpy(__A ).to(device=__A ) # interpolate sigmas a__ : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() a__ : Tuple = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) a__ : Dict = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__A ).startswith("mps" ): # mps does not support float64 a__ : List[Any] = torch.from_numpy(__A ).to(__A , dtype=torch.floataa ) else: a__ : Tuple = torch.from_numpy(__A ).to(__A ) # interpolate timesteps a__ : Optional[Any] = self.sigma_to_t(__A ).to(__A , dtype=timesteps.dtype ) a__ : List[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() a__ : Any = torch.cat([timesteps[:1], interleaved_timesteps] ) a__ : Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a__ : List[str] = defaultdict(__A ) def _snake_case ( self , snake_case ) -> Any: """simple docstring""" a__ : Any = sigma.log() # get distribution a__ : int = log_sigma - self.log_sigmas[:, None] # get sigmas range a__ : List[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) a__ : Dict = low_idx + 1 a__ : Dict = self.log_sigmas[low_idx] a__ : Dict = self.log_sigmas[high_idx] # interpolate sigmas a__ : List[str] = (low - log_sigma) / (low - high) a__ : Dict = w.clamp(0 , 1 ) # transform interpolation to time range a__ : Dict = (1 - w) * low_idx + w * high_idx a__ : List[str] = t.view(sigma.shape ) return t @property def _snake_case ( self ) -> List[Any]: """simple docstring""" return self.sample is None def _snake_case ( self , snake_case , snake_case , snake_case , snake_case = True , ) -> Union[str, Any]: """simple docstring""" a__ : List[str] = self.index_for_timestep(__A ) # advance index counter by 1 a__ : str = timestep.cpu().item() if torch.is_tensor(__A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a__ : int = self.sigmas[step_index] a__ : List[Any] = self.sigmas_interpol[step_index + 1] a__ : Dict = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method a__ : Union[str, Any] = self.sigmas[step_index - 1] a__ : Union[str, Any] = self.sigmas_interpol[step_index] a__ : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a__ : List[str] = 0 a__ : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a__ : Optional[int] = sigma_hat if self.state_in_first_order else sigma_interpol a__ : List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a__ : List[Any] = sigma_hat if self.state_in_first_order else sigma_interpol a__ : Any = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a__ : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a__ : List[str] = sigma_interpol - sigma_hat # store for 2nd order step a__ : Union[str, Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order a__ : str = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep a__ : str = sigma_next - sigma_hat a__ : List[Any] = self.sample a__ : Optional[int] = None a__ : Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__A ) def _snake_case ( self , snake_case , snake_case , snake_case , ) -> str: """simple docstring""" a__ : Union[str, Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__A ): # mps does not support float64 a__ : List[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) a__ : str = timesteps.to(original_samples.device , dtype=torch.floataa ) else: a__ : Tuple = self.timesteps.to(original_samples.device ) a__ : Any = timesteps.to(original_samples.device ) a__ : Optional[int] = [self.index_for_timestep(__A , __A ) for t in timesteps] a__ : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): a__ : Dict = sigma.unsqueeze(-1 ) a__ : Tuple = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
112
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: if not nums: raise ValueError('List is empty') return sum(_lowerCAmelCase) / len(_lowerCAmelCase) if __name__ == "__main__": import doctest doctest.testmod()
596
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
0
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = len(_lowerCAmelCase ) + 1 __UpperCAmelCase = len(_lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __UpperCAmelCase = [[0 for i in range(_lowerCAmelCase )] for j in range(_lowerCAmelCase )] # since string of zero length match pattern of zero length __UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowerCAmelCase ): __UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowerCAmelCase ): __UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowerCAmelCase ): for j in range(1 , _lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __UpperCAmelCase = dp[i - 1][j] else: __UpperCAmelCase = 0 else: __UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase : Optional[Any] = 'aab' __lowerCAmelCase : List[str] = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
262
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase__ = logging.getLogger(__name__) def __lowercase ( ) -> Dict: '''simple docstring''' __lowercase = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=_lowerCAmelCase , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=_lowerCAmelCase , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=_lowerCAmelCase , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=_lowerCAmelCase , default=1_000 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=_lowerCAmelCase , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=_lowerCAmelCase , default=512 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=_lowerCAmelCase , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) __lowercase = parser.parse_args() return args def __lowercase ( _UpperCAmelCase ) -> Dict: '''simple docstring''' def fn(_UpperCAmelCase ): return tokenizer(examples["text"] ) return fn def __lowercase ( _UpperCAmelCase ) -> Any: '''simple docstring''' __lowercase = [] for i in range(len(tokenized_data["input_ids"] ) ): __lowercase = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } __lowercase = tf.train.Features(feature=_lowerCAmelCase ) __lowercase = tf.train.Example(features=_lowerCAmelCase ) __lowercase = example.SerializeToString() records.append(_lowerCAmelCase ) return records def __lowercase ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' __lowercase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __lowercase = min(len(_lowerCAmelCase ) , args.limit ) __lowercase = dataset.select(range(_lowerCAmelCase ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) __lowercase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __lowercase = os.path.join(args.output_dir , args.split ) if not os.path.exists(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) else: __lowercase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __lowercase = tokenize_function(_lowerCAmelCase ) __lowercase = dataset.map(_lowerCAmelCase , batched=_lowerCAmelCase , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_UpperCAmelCase ): # Concatenate all texts. __lowercase = {k: sum(examples[k] , [] ) for k in examples.keys()} __lowercase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __lowercase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __lowercase = { k: [t[i : i + args.max_length] for i in range(0 , _lowerCAmelCase , args.max_length )] for k, t in concatenated_examples.items() } return result __lowercase = dataset_tokenized.map(_lowerCAmelCase , batched=_lowerCAmelCase , batch_size=1_000 , num_proc=4 ) __lowercase = 0 __lowercase = 0 for shard in range(0 , len(_lowerCAmelCase ) , args.shard_size ): __lowercase = grouped_dataset[shard : shard + args.shard_size] __lowercase = len(dataset_snapshot["input_ids"] ) __lowercase = os.path.join(_lowerCAmelCase , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) __lowercase = get_serialized_examples(_lowerCAmelCase ) with tf.io.TFRecordWriter(_lowerCAmelCase ) as out_file: for i in range(len(_lowerCAmelCase ) ): __lowercase = serialized_examples[i] out_file.write(_lowerCAmelCase ) print("Wrote file {} containing {} records".format(_lowerCAmelCase , _lowerCAmelCase ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , "w" ) as f: print(f'''Total {args.split} records: {total_records}''' , file=_lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ = parse_args() main(args)
321
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" UpperCamelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) UpperCamelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase = model(__A )["last_hidden_state"].detach() self.assertEqual(output.shape , __A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __A , atol=1e-3 ) ) @slow def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) UpperCamelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase = model(__A )["last_hidden_state"].detach() self.assertEqual(output.shape , __A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __A , atol=1e-3 ) )
282
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A__ : int = 16 A__ : Union[str, Any] = 32 def UpperCAmelCase__ ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 16 ) -> Any: __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('bert-base-cased' ) __lowerCamelCase : List[str] = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ : List[str] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase : str = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase : Optional[int] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase : Optional[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase : List[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase : List[Any] = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase : str = 8 else: __lowerCamelCase : Optional[Any] = None return tokenizer.pad( _lowerCAmelCase , padding='longest' , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. __lowerCamelCase : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) __lowerCamelCase : List[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A__ : List[Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ) -> Union[str, Any]: if os.environ.get('TESTING_MOCKED_DATALOADERS' , _lowerCAmelCase ) == "1": __lowerCamelCase : Union[str, Any] = 2 # Initialize accelerator __lowerCamelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase : Tuple = config["lr"] __lowerCamelCase : int = int(config['num_epochs'] ) __lowerCamelCase : Any = int(config['seed'] ) __lowerCamelCase : Tuple = int(config['batch_size'] ) __lowerCamelCase : Optional[int] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __lowerCamelCase : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCamelCase : List[Any] = batch_size // MAX_GPU_BATCH_SIZE __lowerCamelCase : Any = MAX_GPU_BATCH_SIZE set_seed(_lowerCAmelCase ) __lowerCamelCase : Optional[int] = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase : Dict = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase : Dict = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler __lowerCamelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase : Optional[int] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase : Any = model(**_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = outputs.loss __lowerCamelCase : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __lowerCamelCase : Union[str, Any] = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : Any = model(**_lowerCAmelCase ) __lowerCamelCase : Dict = outputs.logits.argmax(dim=-1 ) __lowerCamelCase : int = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_lowerCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __lowerCamelCase : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) __lowerCamelCase : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , _lowerCAmelCase ) def UpperCAmelCase__ ( ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : Optional[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
13
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = int(_lowerCAmelCase ) if n_element < 1: SCREAMING_SNAKE_CASE__ :Any = ValueError('a should be a positive number' ) raise my_error SCREAMING_SNAKE_CASE__ :List[Any] = [1] SCREAMING_SNAKE_CASE__ :str = (0, 0, 0) SCREAMING_SNAKE_CASE__ :Tuple = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCamelCase_ = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') UpperCamelCase_ = hamming(int(n)) print('''-----------------------------------------------------''') print(f"The list with nth numbers is: {hamming_numbers}") print('''-----------------------------------------------------''')
209
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
"""simple docstring""" import argparse import os import re __A : int = 'src/transformers' # Pattern that looks at the indentation in a line. __A : int = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __A : Optional[int] = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __A : Any = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __A : int = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __A : List[Any] = re.compile(R"\[([^\]]+)\]") def lowercase ( UpperCamelCase : Any ): """simple docstring""" A__ : List[str] =_re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def lowercase ( UpperCamelCase : List[str] , UpperCamelCase : List[Any]="" , UpperCamelCase : List[str]=None , UpperCamelCase : Union[str, Any]=None ): """simple docstring""" A__ : Union[str, Any] =0 A__ : Dict =code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 A__ : List[Any] =["\n".join(lines[:index] )] else: A__ : Tuple =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). A__ : Optional[Any] =[lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: A__ : List[str] =[lines[index + 1]] index += 1 else: A__ : Any =[] else: blocks.append("\n".join(_lowerCAmelCase ) ) A__ : Any =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("\n".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("\n".join(lines[index:] ) ) return blocks def lowercase ( UpperCamelCase : Tuple ): """simple docstring""" def _inner(UpperCamelCase : List[str] ): return key(_lowerCAmelCase ).lower().replace("_" , "" ) return _inner def lowercase ( UpperCamelCase : Any , UpperCamelCase : str=None ): """simple docstring""" def noop(UpperCamelCase : int ): return x if key is None: A__ : Union[str, Any] =noop # Constants are all uppercase, they go first. A__ : List[str] =[obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A__ : Optional[int] =[obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. A__ : Optional[int] =[obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] A__ : Dict =ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def lowercase ( UpperCamelCase : Optional[Any] ): """simple docstring""" def _replace(UpperCamelCase : List[Any] ): A__ : Tuple =match.groups()[0] if "," not in imports: return F'''[{imports}]''' A__ : Optional[int] =[part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ : Optional[Any] =keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(_lowerCAmelCase )] ) + "]" A__ : int =import_statement.split("\n" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A__ : Dict =2 if lines[1].strip() == "[" else 1 A__ : List[Any] =[(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A__ : Optional[Any] =sort_objects(_lowerCAmelCase , key=lambda UpperCamelCase : x[1] ) A__ : Optional[Any] =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A__ : List[Any] =_re_bracket_content.sub(_replace , lines[1] ) else: A__ : int =[part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ : int =keys[:-1] A__ : str =get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line A__ : List[Any] =_re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def lowercase ( UpperCamelCase : Tuple , UpperCamelCase : Dict=True ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: A__ : Tuple =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A__ : int =split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A__ : List[Any] =main_blocks[block_idx] A__ : Tuple =block.split("\n" ) # Get to the start of the imports. A__ : Tuple =0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A__ : str =len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. A__ : Dict ="\n".join(block_lines[line_idx:-1] ) A__ : int =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A__ : Dict =split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend A__ : List[str] =_re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A__ : str =[(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A__ : Optional[Any] =[(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] A__ : Optional[int] =[x[0] for x in sorted(_lowerCAmelCase , key=lambda UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A__ : Dict =0 A__ : List[str] =[] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: A__ : Optional[int] =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. A__ : Optional[Any] ="\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write("\n".join(_lowerCAmelCase ) ) def lowercase ( UpperCamelCase : Optional[int]=True ): """simple docstring""" A__ : Any =[] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: A__ : Optional[Any] =sort_imports(os.path.join(_lowerCAmelCase , "__init__.py" ) , check_only=_lowerCAmelCase ) if result: A__ : Optional[int] =[os.path.join(_lowerCAmelCase , "__init__.py" )] if len(_lowerCAmelCase ) > 0: raise ValueError(F'''Would overwrite {len(_lowerCAmelCase )} files, run `make style`.''' ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __A : str = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
656
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
0
def A__ ( lowerCamelCase ) -> Tuple: if number > 0: raise ValueError("""input must be a negative integer""" ) UpperCamelCase_: str = len(bin(_lowerCAmelCase )[3:] ) UpperCamelCase_: List[str] = bin(abs(_lowerCAmelCase ) - (1 << binary_number_length) )[3:] UpperCamelCase_: List[str] = ( ( "1" + "0" * (binary_number_length - len(_lowerCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
548
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase_ : List[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: super().__init__() a_ : Optional[Any] = torchvision.models.resnetaaa(pretrained=__A ) a_ : Optional[Any] = list(model.children() )[:-2] a_ : Optional[Any] = nn.Sequential(*__A ) a_ : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 a_ : Optional[Any] = self.pool(self.model(__A ) ) a_ : Optional[Any] = torch.flatten(__A , start_dim=2 ) a_ : Optional[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: a_ : List[Any] = [json.loads(__A ) for l in open(__A )] a_ : Dict = os.path.dirname(__A ) a_ : Union[str, Any] = tokenizer a_ : str = labels a_ : int = len(__A ) a_ : str = max_seq_length a_ : Tuple = transforms def __len__( self : Union[str, Any] ) -> Optional[Any]: return len(self.data ) def __getitem__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: a_ : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=__A ) ) a_ : List[Any] = sentence[0], sentence[1:-1], sentence[-1] a_ : Tuple = sentence[: self.max_seq_length] a_ : Optional[int] = torch.zeros(self.n_classes ) a_ : List[Any] = 1 a_ : str = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) a_ : Optional[int] = self.transforms(__A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: a_ : str = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Optional[Any]: """simple docstring""" a_ : Optional[int] = [len(row['sentence'] ) for row in batch] a_ : List[Any] = len(_lowerCAmelCase ), max(_lowerCAmelCase ) a_ : Tuple = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) a_ : Tuple = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowerCAmelCase , _lowerCAmelCase ) ): a_ : Optional[int] = input_row["sentence"] a_ : Tuple = 1 a_ : Any = torch.stack([row['image'] for row in batch] ) a_ : Union[str, Any] = torch.stack([row['label'] for row in batch] ) a_ : int = torch.stack([row['image_start_token'] for row in batch] ) a_ : Optional[Any] = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def SCREAMING_SNAKE_CASE_ ( ) -> str: """simple docstring""" return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
570
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _A ( lowerCamelCase ): a__ : Tuple = torch.exp(_lowerCAmelCase ) a__ : int = torch.sum(_lowerCAmelCase , dim=1 ) # sum of exp(x_i) a__ : Optional[int] = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowerCAmelCase ) - B / A class __lowerCAmelCase ( nn.Module ): def __init__( self , snake_case ) -> Optional[int]: """simple docstring""" super().__init__() a__ : Optional[int] = config.output_attentions a__ : Any = config.output_hidden_states a__ : str = nn.ModuleList([BertLayer(__A ) for _ in range(config.num_hidden_layers )] ) a__ : str = nn.ModuleList([BertHighway(__A ) for _ in range(config.num_hidden_layers )] ) a__ : List[str] = [-1 for _ in range(config.num_hidden_layers )] def _snake_case ( self , snake_case ) -> List[Any]: """simple docstring""" if (type(__A ) is float) or (type(__A ) is int): for i in range(len(self.early_exit_entropy ) ): a__ : List[Any] = x else: a__ : List[str] = x def _snake_case ( self , snake_case ) -> Tuple: """simple docstring""" a__ : List[str] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def _snake_case ( self , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ) -> Optional[int]: """simple docstring""" a__ : Tuple = () a__ : Tuple = () a__ : Optional[Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: a__ : int = all_hidden_states + (hidden_states,) a__ : List[Any] = layer_module( __A , __A , head_mask[i] , __A , __A ) a__ : Dict = layer_outputs[0] if self.output_attentions: a__ : str = all_attentions + (layer_outputs[1],) a__ : List[str] = (hidden_states,) if self.output_hidden_states: a__ : str = current_outputs + (all_hidden_states,) if self.output_attentions: a__ : Dict = current_outputs + (all_attentions,) a__ : Any = self.highway[i](__A ) # logits, pooled_output if not self.training: a__ : int = highway_exit[0] a__ : Optional[Any] = entropy(__A ) a__ : Tuple = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy a__ : List[str] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: a__ : int = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__A , i + 1 ) else: a__ : int = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: a__ : Optional[Any] = all_hidden_states + (hidden_states,) a__ : List[Any] = (hidden_states,) if self.output_hidden_states: a__ : int = outputs + (all_hidden_states,) if self.output_attentions: a__ : Optional[int] = outputs + (all_attentions,) a__ : Tuple = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ ,_UpperCamelCase ,) class __lowerCAmelCase ( _UpperCamelCase ): def __init__( self , snake_case ) -> str: """simple docstring""" super().__init__(__A ) a__ : str = config a__ : str = BertEmbeddings(__A ) a__ : Tuple = DeeBertEncoder(__A ) a__ : List[str] = BertPooler(__A ) self.init_weights() def _snake_case ( self ) -> str: """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def _snake_case ( self ) -> str: """simple docstring""" return self.embeddings.word_embeddings def _snake_case ( self , snake_case ) -> int: """simple docstring""" a__ : str = value def _snake_case ( self , snake_case ) -> Union[str, Any]: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__A ) @add_start_docstrings_to_model_forward(__A ) def _snake_case ( self , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ) -> Optional[Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: a__ : List[str] = input_ids.size() elif inputs_embeds is not None: a__ : Optional[int] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) a__ : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: a__ : List[str] = torch.ones(__A , device=__A ) if encoder_attention_mask is None: a__ : List[Any] = torch.ones(__A , device=__A ) if token_type_ids is None: a__ : List[str] = torch.zeros(__A , dtype=torch.long , device=__A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. a__ : torch.Tensor = self.get_extended_attention_mask(__A , __A , __A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: a__ : List[str] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: a__ : Optional[int] = encoder_attention_mask[:, None, None, :] a__ : Union[str, Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility a__ : Any = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] a__ : Union[str, Any] = self.get_head_mask(__A , self.config.num_hidden_layers ) a__ : List[Any] = self.embeddings( input_ids=__A , position_ids=__A , token_type_ids=__A , inputs_embeds=__A ) a__ : Union[str, Any] = self.encoder( __A , attention_mask=__A , head_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , ) a__ : Union[str, Any] = encoder_outputs[0] a__ : Tuple = self.pooler(__A ) a__ : Optional[int] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __lowerCAmelCase ( _UpperCamelCase ): def __init__( self , snake_case , snake_case ) -> Any: """simple docstring""" a__ : Tuple = message a__ : Union[str, Any] = exit_layer # start from 1! class __lowerCAmelCase ( nn.Module ): def __init__( self , snake_case ) -> Dict: """simple docstring""" super().__init__() a__ : List[Any] = BertPooler(__A ) a__ : List[Any] = nn.Dropout(config.hidden_dropout_prob ) a__ : Tuple = nn.Linear(config.hidden_size , config.num_labels ) def _snake_case ( self , snake_case ) -> int: """simple docstring""" a__ : int = encoder_outputs[0] a__ : Tuple = self.pooler(__A ) # "return" pooler_output # BertModel a__ : Any = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification a__ : List[Any] = bmodel_output[1] a__ : Optional[int] = self.dropout(__A ) a__ : Optional[Any] = self.classifier(__A ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. """ ,_UpperCamelCase ,) class __lowerCAmelCase ( _UpperCamelCase ): def __init__( self , snake_case ) -> Union[str, Any]: """simple docstring""" super().__init__(__A ) a__ : Tuple = config.num_labels a__ : Dict = config.num_hidden_layers a__ : Union[str, Any] = DeeBertModel(__A ) a__ : List[Any] = nn.Dropout(config.hidden_dropout_prob ) a__ : int = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__A ) def _snake_case ( self , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=-1 , snake_case=False , ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = self.num_layers try: a__ : Optional[Any] = self.bert( __A , attention_mask=__A , token_type_ids=__A , position_ids=__A , head_mask=__A , inputs_embeds=__A , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits a__ : Union[str, Any] = outputs[1] a__ : List[Any] = self.dropout(__A ) a__ : str = self.classifier(__A ) a__ : int = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: a__ : Tuple = e.message a__ : Optional[int] = e.exit_layer a__ : Optional[Any] = outputs[0] if not self.training: a__ : List[Any] = entropy(__A ) a__ : Dict = [] a__ : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression a__ : List[Any] = MSELoss() a__ : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: a__ : Optional[int] = CrossEntropyLoss() a__ : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits a__ : Union[str, Any] = [] for highway_exit in outputs[-1]: a__ : Any = highway_exit[0] if not self.training: highway_logits_all.append(__A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression a__ : List[str] = MSELoss() a__ : str = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: a__ : Optional[int] = CrossEntropyLoss() a__ : str = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__A ) if train_highway: a__ : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: a__ : Union[str, Any] = (loss,) + outputs if not self.training: a__ : Dict = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: a__ : str = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
112
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
0
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase__ : Optional[int] = LxmertConfig.from_json_file(_lowerCAmelCase) print(f'Building PyTorch model from configuration: {config}') UpperCamelCase__ : str = LxmertForPreTraining(_lowerCAmelCase) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}') torch.save(model.state_dict() , _lowerCAmelCase) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
596
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
0
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = "" for i in table: res += inp[i - 1] return res def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return data[1:] + data[0] def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase = "" for i in range(len(_lowerCAmelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = int('''0b''' + data[0] + data[-1] , 2 ) __UpperCAmelCase = int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase = message[:4] __UpperCAmelCase = message[4:] __UpperCAmelCase = apply_table(_lowerCAmelCase , _lowerCAmelCase ) __UpperCAmelCase = xor(_lowerCAmelCase , _lowerCAmelCase ) __UpperCAmelCase = apply_sbox(_lowerCAmelCase , temp[:4] ) # noqa: E741 __UpperCAmelCase = apply_sbox(_lowerCAmelCase , temp[4:] ) __UpperCAmelCase = "0" * (2 - len(_lowerCAmelCase )) + l # noqa: E741 __UpperCAmelCase = "0" * (2 - len(_lowerCAmelCase )) + r __UpperCAmelCase = apply_table(l + r , _lowerCAmelCase ) __UpperCAmelCase = xor(_lowerCAmelCase , _lowerCAmelCase ) return temp + right if __name__ == "__main__": __lowerCAmelCase : Dict = input("Enter 10 bit key: ") __lowerCAmelCase : str = input("Enter 8 bit message: ") __lowerCAmelCase : List[str] = [6, 3, 7, 4, 8, 5, 10, 9] __lowerCAmelCase : List[Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __lowerCAmelCase : int = [2, 4, 3, 1] __lowerCAmelCase : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] __lowerCAmelCase : Dict = [4, 1, 3, 5, 7, 2, 8, 6] __lowerCAmelCase : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] __lowerCAmelCase : Optional[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __lowerCAmelCase : Optional[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __lowerCAmelCase : List[str] = apply_table(key, paa_table) __lowerCAmelCase : Union[str, Any] = temp[:5] __lowerCAmelCase : Union[str, Any] = temp[5:] __lowerCAmelCase : Optional[int] = left_shift(left) __lowerCAmelCase : Optional[int] = left_shift(right) __lowerCAmelCase : Optional[Any] = apply_table(left + right, pa_table) __lowerCAmelCase : Optional[Any] = left_shift(left) __lowerCAmelCase : Optional[Any] = left_shift(right) __lowerCAmelCase : Union[str, Any] = left_shift(left) __lowerCAmelCase : List[str] = left_shift(right) __lowerCAmelCase : List[Any] = apply_table(left + right, pa_table) # encryption __lowerCAmelCase : Optional[Any] = apply_table(message, IP) __lowerCAmelCase : int = function(expansion, sa, sa, keya, temp) __lowerCAmelCase : Tuple = temp[4:] + temp[:4] __lowerCAmelCase : Optional[Any] = function(expansion, sa, sa, keya, temp) __lowerCAmelCase : str = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __lowerCAmelCase : Union[str, Any] = apply_table(CT, IP) __lowerCAmelCase : Any = function(expansion, sa, sa, keya, temp) __lowerCAmelCase : Optional[int] = temp[4:] + temp[:4] __lowerCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __lowerCAmelCase : Optional[Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
262
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowerCAmelCase__ = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """facebook/nllb-200-distilled-600M""" __lowerCAmelCase = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.""" ) __lowerCAmelCase = """translator""" __lowerCAmelCase = AutoTokenizer __lowerCAmelCase = AutoModelForSeqaSeqLM __lowerCAmelCase = LANGUAGE_CODES __lowerCAmelCase = ["""text""", """text""", """text"""] __lowerCAmelCase = ["""text"""] def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''' ) __lowercase = self.lang_to_code[src_lang] __lowercase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __A , return_tensors="pt" , src_lang=__A , tgt_lang=__A ) def snake_case__ ( self , lowerCAmelCase_ ): return self.model.generate(**__A ) def snake_case__ ( self , lowerCAmelCase_ ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__A )
321
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
0
from __future__ import annotations def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , ) -> Optional[Any]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
282
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> str: return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) -> Dict: __lowerCamelCase : str = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __lowerCamelCase : int = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) __lowerCamelCase : List[Any] = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) __lowerCamelCase : List[str] = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) __lowerCamelCase : int = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) __lowerCamelCase : Union[str, Any] = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) __lowerCamelCase : Any = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) __lowerCamelCase : str = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) __lowerCamelCase : Optional[Any] = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) __lowerCamelCase : int = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) __lowerCamelCase : Union[str, Any] = key.replace('image_encoder.module' , 'flava.image_model' ) __lowerCamelCase : List[Any] = key.replace('text_encoder.module' , 'flava.text_model' ) __lowerCamelCase : Union[str, Any] = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) __lowerCamelCase : Any = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) __lowerCamelCase : Optional[Any] = key.replace('text_projection' , 'flava.text_projection' ) __lowerCamelCase : Union[str, Any] = key.replace('image_projection' , 'flava.image_projection' ) __lowerCamelCase : Dict = value.float() for key, value in codebook_state_dict.items(): __lowerCamelCase : Union[str, Any] = value return upgrade @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=None ) -> Optional[int]: if config_path is not None: __lowerCamelCase : Optional[Any] = FlavaConfig.from_pretrained(_lowerCAmelCase ) else: __lowerCamelCase : List[Any] = FlavaConfig() __lowerCamelCase : Union[str, Any] = FlavaForPreTraining(_lowerCAmelCase ).eval() __lowerCamelCase : List[Any] = convert_dalle_checkpoint(_lowerCAmelCase , _lowerCAmelCase , save_checkpoint=_lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ): __lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location='cpu' ) else: __lowerCamelCase : Tuple = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location='cpu' ) __lowerCamelCase : Union[str, Any] = upgrade_state_dict(_lowerCAmelCase , _lowerCAmelCase ) hf_model.load_state_dict(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = hf_model.state_dict() __lowerCamelCase : Dict = count_parameters(_lowerCAmelCase ) __lowerCamelCase : Tuple = count_parameters(_lowerCAmelCase ) + count_parameters(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": A__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") A__ : Tuple = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
13
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCamelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = {} with open(_lowerCAmelCase , 'r' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = line.strip() if line: SCREAMING_SNAKE_CASE__ :int = line.split() SCREAMING_SNAKE_CASE__ :Optional[Any] = line_number SCREAMING_SNAKE_CASE__ :Tuple = words[0] SCREAMING_SNAKE_CASE__ :Optional[int] = value return result def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('.' ): SCREAMING_SNAKE_CASE__ :Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :List[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): SCREAMING_SNAKE_CASE__ :str = PARAM_MAPPING[full_name.split('.' )[-1]] SCREAMING_SNAKE_CASE__ :Any = "param" if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE__ :Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE__ :List[Any] = hf_pointer for attribute in hf_param_name.split('.' ): SCREAMING_SNAKE_CASE__ :Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :List[str] = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE__ :Optional[int] = value[0] else: SCREAMING_SNAKE_CASE__ :str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ :Union[str, Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ :List[str] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ :Optional[Any] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ :Optional[int] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): SCREAMING_SNAKE_CASE__ :Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :str = value else: SCREAMING_SNAKE_CASE__ :Optional[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): SCREAMING_SNAKE_CASE__ :str = PARAM_MAPPING[full_name.split('.' )[-1]] SCREAMING_SNAKE_CASE__ :List[Any] = "param" if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE__ :Union[str, Any] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE__ :str = ".".join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE__ :str = key SCREAMING_SNAKE_CASE__ :Union[str, Any] = value if "lm_head" in full_key else value[0] UpperCamelCase_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ :Dict = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: SCREAMING_SNAKE_CASE__ :List[str] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ :Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] SCREAMING_SNAKE_CASE__ :Tuple = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ :List[Any] = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE__ :int = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE__ :List[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE__ :int = "weight" else: SCREAMING_SNAKE_CASE__ :Union[str, Any] = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = [] SCREAMING_SNAKE_CASE__ :str = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ :List[str] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ :Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE__ :str = True else: SCREAMING_SNAKE_CASE__ :str = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE__ :List[Any] = name.split('.' ) SCREAMING_SNAKE_CASE__ :Optional[Any] = int(items[0] ) SCREAMING_SNAKE_CASE__ :List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ :List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ :Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ :int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : int=False ) -> Optional[int]: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE__ :Tuple = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ :List[str] = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE__ :Tuple = read_txt_into_dict(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :str = idalabel SCREAMING_SNAKE_CASE__ :int = WavaVecaForSequenceClassification(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ :List[str] = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ :Optional[int] = target_dict.pad_index SCREAMING_SNAKE_CASE__ :str = target_dict.bos_index SCREAMING_SNAKE_CASE__ :Tuple = target_dict.eos_index SCREAMING_SNAKE_CASE__ :Optional[Any] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ :Optional[int] = os.path.join(_lowerCAmelCase , 'vocab.json' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE__ :str = 0 SCREAMING_SNAKE_CASE__ :List[str] = 1 with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :Tuple = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE__ :Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ :Any = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :List[str] = WavaVecaForCTC(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ :List[str] = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE__ :Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: SCREAMING_SNAKE_CASE__ :str = argparse.Namespace(task='audio_pretraining' ) SCREAMING_SNAKE_CASE__ :Optional[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ :Optional[Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
209
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' def _UpperCAmelCase ( self : Optional[int] , UpperCamelCase__ : str ): with open(__A , encoding="utf-8" ) as input_file: A__ : List[str] =re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) A__ : List[str] =input_file.read() A__ : Union[str, Any] =regexp.search(__A ) return match def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : str ): with open(__A , encoding="utf-8" ) as input_file: A__ : List[Any] =re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) A__ : int =input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` A__ : Optional[Any] =regexp.finditer(__A ) A__ : Optional[Any] =[match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self : Tuple ): A__ : str =Path("./datasets" ) A__ : Optional[Any] =list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__A ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def _UpperCAmelCase ( self : List[Any] ): A__ : Any =Path("./datasets" ) A__ : Union[str, Any] =list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__A ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
656
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = False, False, False @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase_ = field(default='Audio' , init=A , repr=A ) def __call__( self : Tuple ): return self.pa_type def lowerCamelCase_ ( self : Any,__A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__A,__A ): return {"bytes": None, "path": value} elif isinstance(__A,__A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : List[Any] = BytesIO() sf.write(__A,value["array"],value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["bytes"],dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _lowerCamelCase : str = np.memmap(value["path"],dtype="h",mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _lowerCamelCase : Optional[int] = BytesIO(bytes() ) sf.write(__A,__A,value["sampling_rate"],format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self : Optional[Any],__A : dict,__A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _lowerCamelCase : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _lowerCamelCase : Tuple = token_per_repo_id or {} _lowerCamelCase : Union[str, Any] = path.split("::" )[-1] try: _lowerCamelCase : str = string_to_dict(__A,config.HUB_DATASETS_URL )["repo_id"] _lowerCamelCase : str = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Any = None with xopen(__A,"rb",use_auth_token=__A ) as f: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = sf.read(__A ) else: _lowerCamelCase , _lowerCamelCase : str = sf.read(__A ) _lowerCamelCase : List[str] = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(__A,orig_sr=__A,target_sr=self.sampling_rate ) _lowerCamelCase : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self : Any ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase_ ( self : List[str],__A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, storage],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : Dict = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Any = pa.StructArray.from_arrays([storage, path_array],["bytes", "path"],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowerCamelCase : Tuple = storage.field("bytes" ) else: _lowerCamelCase : Any = pa.array([None] * len(__A ),type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowerCamelCase : List[str] = storage.field("path" ) else: _lowerCamelCase : Tuple = pa.array([None] * len(__A ),type=pa.string() ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=storage.is_null() ) return array_cast(__A,self.pa_type ) def lowerCamelCase_ ( self : str,__A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A,"rb" ) as f: _lowerCamelCase : Any = f.read() return bytes_ _lowerCamelCase : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) _lowerCamelCase : str = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("path" ).to_pylist()],type=pa.string(),) _lowerCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array],["bytes", "path"],mask=bytes_array.is_null() ) return array_cast(__A,self.pa_type )
44
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,UpperCamelCase : Union[str, Any] ,UpperCamelCase : Optional[int]=7 ,UpperCamelCase : Optional[Any]=3 ,UpperCamelCase : List[str]=18 ,UpperCamelCase : Any=30 ,UpperCamelCase : str=400 ,UpperCamelCase : str=True ,UpperCamelCase : Tuple=None ,UpperCamelCase : Tuple=True ,UpperCamelCase : List[str]=None ,UpperCamelCase : List[str]=True ,) -> Optional[int]: _lowercase : List[str] = size if size is not None else {"shortest_edge": 20} _lowercase : str = crop_size if crop_size is not None else {"height": 18, "width": 18} _lowercase : Union[str, Any] = parent _lowercase : Optional[Any] = batch_size _lowercase : Tuple = num_channels _lowercase : Optional[int] = image_size _lowercase : Optional[Any] = min_resolution _lowercase : List[Any] = max_resolution _lowercase : Any = do_resize _lowercase : int = size _lowercase : Optional[Any] = do_center_crop _lowercase : Optional[Any] = crop_size _lowercase : List[Any] = do_flip_channel_order def _lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : str = MobileViTImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : List[Any] ) -> Any: _lowercase : List[str] = MobileViTImageProcessingTester(self ) @property def _lowerCamelCase ( self : List[str] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : Any ) -> List[str]: _lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A ,'do_resize' ) ) self.assertTrue(hasattr(__A ,'size' ) ) self.assertTrue(hasattr(__A ,'do_center_crop' ) ) self.assertTrue(hasattr(__A ,'center_crop' ) ) self.assertTrue(hasattr(__A ,'do_flip_channel_order' ) ) def _lowerCamelCase ( self : Dict ) -> List[str]: _lowercase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) _lowercase : Any = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def _lowerCamelCase ( self : Dict ) -> List[Any]: pass def _lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: # Initialize image_processing _lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A ,Image.Image ) # Test not batched input _lowercase : int = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowercase : Optional[Any] = image_processing(__A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def _lowerCamelCase ( self : str ) -> Any: # Initialize image_processing _lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ,numpify=__A ) for image in image_inputs: self.assertIsInstance(__A ,np.ndarray ) # Test not batched input _lowercase : Dict = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowercase : Optional[Any] = image_processing(__A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def _lowerCamelCase ( self : Dict ) -> int: # Initialize image_processing _lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ,torchify=__A ) for image in image_inputs: self.assertIsInstance(__A ,torch.Tensor ) # Test not batched input _lowercase : str = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowercase : Optional[Any] = image_processing(__A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
125
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCamelCase_ : Union[str, Any] = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str , snake_case_ : str , snake_case_ : bool , snake_case_ : str = None , snake_case_ : list = None ): UpperCamelCase_: List[str] = None UpperCamelCase_: Optional[Any] = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) UpperCamelCase_: Optional[Any] = os.path.abspath("""examples""" ) for item in os.listdir(__A ): if item not in EXCLUDE_EXAMPLES: UpperCamelCase_: Any = os.path.join(__A , __A ) if os.path.isfile(__A ) and ".py" in item_path: with self.subTest( tested_script=__A , feature_script=__A , tested_section="""main()""" if parser_only else """training_function()""" , ): UpperCamelCase_: List[Any] = compare_against_test( os.path.join(__A , __A ) , __A , __A , __A ) UpperCamelCase_: Optional[Any] = "\n".join(__A ) if special_strings is not None: for string in special_strings: UpperCamelCase_: Union[str, Any] = diff.replace(__A , """""" ) self.assertEqual(__A , """""" ) def lowerCAmelCase__ ( self : Union[str, Any] ): self.one_complete_example("""complete_nlp_example.py""" , __A ) self.one_complete_example("""complete_nlp_example.py""" , __A ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[str] = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) UpperCamelCase_: Tuple = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("""complete_cv_example.py""" , __A , __A , __A ) self.one_complete_example("""complete_cv_example.py""" , __A , __A , __A ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Dict = False @classmethod def lowerCAmelCase__ ( cls : int ): super().setUpClass() UpperCamelCase_: Tuple = tempfile.mkdtemp() UpperCamelCase_: List[Any] = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_: str = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowerCAmelCase__ ( cls : Tuple ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = f'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[str] = f'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '''.split() UpperCamelCase_: List[str] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[Any] = f'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '''.split() UpperCamelCase_: Optional[Any] = run_command(self._launch_args + testargs , return_stdout=__A ) self.assertNotIn("""epoch 0:""" , __A ) self.assertIn("""epoch 1:""" , __A ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = f'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '''.split() UpperCamelCase_: List[Any] = run_command(self._launch_args + testargs , return_stdout=__A ) if torch.cuda.is_available(): UpperCamelCase_: Union[str, Any] = torch.cuda.device_count() else: UpperCamelCase_: Any = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , __A ) self.assertIn("""epoch 1:""" , __A ) else: self.assertIn("""epoch 0:""" , __A ) self.assertIn("""epoch 1:""" , __A ) @slow def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): UpperCamelCase_: Optional[Any] = run_command(self._launch_args + testargs , return_stdout=__A ) UpperCamelCase_: List[Any] = re.findall("""({.+})""" , __A ) UpperCamelCase_: int = [r for r in results if "accuracy" in r][-1] UpperCamelCase_: Optional[Any] = ast.literal_eval(__A ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Tuple = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdir: UpperCamelCase_: Tuple = f'''\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__A , """tracking""" ) ) ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[str] = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Optional[int] = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
548
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Any,__A : List[Any]=8_0,__A : Dict=1_6_0_0_0,__A : Tuple=0.0,__A : Dict=1_0,__A : int=2_5,__A : Union[str, Any]="hamming_window",__A : List[str]=32768.0,__A : Union[str, Any]=0.97,__A : str=1.0,__A : Union[str, Any]=True,__A : Tuple=True,__A : Optional[Any]=False,**__A : Optional[Any],): super().__init__(feature_size=__A,sampling_rate=__A,padding_value=__A,**__A ) _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Any = padding_value _lowerCamelCase : Dict = hop_length _lowerCamelCase : Tuple = win_length _lowerCamelCase : str = frame_signal_scale _lowerCamelCase : List[str] = preemphasis_coeff _lowerCamelCase : List[str] = mel_floor _lowerCamelCase : str = normalize_means _lowerCamelCase : Any = normalize_vars _lowerCamelCase : List[str] = win_function _lowerCamelCase : Tuple = return_attention_mask _lowerCamelCase : List[Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[Any] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Dict = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self : Any,__A : np.array ): if self.win_function == "hamming_window": _lowerCamelCase : Any = window_function(window_length=self.sample_size,name=self.win_function,periodic=__A ) else: _lowerCamelCase : Optional[int] = window_function(window_length=self.sample_size,name=self.win_function ) _lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs,num_mel_filters=self.feature_size,min_frequency=0.0,max_frequency=self.sampling_rate / 2.0,sampling_rate=self.sampling_rate,) _lowerCamelCase : List[str] = spectrogram( one_waveform * self.frame_signal_scale,window=__A,frame_length=self.sample_size,hop_length=self.sample_stride,fft_length=self.n_fft,center=__A,preemphasis=self.preemphasis_coeff,mel_filters=__A,mel_floor=self.mel_floor,log_mel="log",) return msfc_features.T def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Dict,__A : int ): # make sure we normalize float32 arrays if self.normalize_means: _lowerCamelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _lowerCamelCase : Optional[int] = np.subtract(__A,__A ) if self.normalize_vars: _lowerCamelCase : int = x[:input_length].std(axis=0 ) _lowerCamelCase : Any = np.divide(__A,__A ) if input_length < x.shape[0]: _lowerCamelCase : Tuple = padding_value # make sure array is in float32 _lowerCamelCase : Optional[int] = x.astype(np.floataa ) return x def lowerCamelCase_ ( self : Any,__A : List[np.ndarray],__A : Optional[np.ndarray] = None ): _lowerCamelCase : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A,__A,self.padding_value ) for x, n in zip(__A,__A )] def __call__( self : Optional[Any],__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : Union[bool, str, PaddingStrategy] = False,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[int] = None,**__A : Optional[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : List[str] = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : List[str] = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[Any] = [np.asarray(__A,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Tuple = [raw_speech] # extract fbank features _lowerCamelCase : str = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCamelCase : Union[str, Any] = BatchFeature({"input_features": features} ) _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=__A,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=__A,**__A,) # make sure list is in array format _lowerCamelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0],__A ): _lowerCamelCase : int = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] _lowerCamelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCamelCase : Dict = [np.asarray(__A,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCamelCase : Dict = ( np.array(__A,dtype=np.intaa ) if self._get_padding_strategies(__A,max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCamelCase : Tuple = self.normalize( padded_inputs["input_features"],attention_mask=__A ) if return_tensors is not None: _lowerCamelCase : Dict = padded_inputs.convert_to_tensors(__A ) return padded_inputs
44
0
from __future__ import annotations import math from collections.abc import Callable def SCREAMING_SNAKE_CASE_ ( __A : Callable[[int | float], int | float] , __A : int | float , __A : int | float , __A : int = 1_00 , ) -> Union[str, Any]: """simple docstring""" a_ : Optional[Any] = x_start a_ : List[str] = fnc(_lowerCAmelCase ) a_ : Optional[int] = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length a_ : Optional[Any] = (x_end - x_start) / steps + xa a_ : List[str] = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step a_ : Any = xa a_ : Union[str, Any] = fxa return length if __name__ == "__main__": def SCREAMING_SNAKE_CASE_ ( __A : str ) -> str: """simple docstring""" return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') UpperCAmelCase_ : Union[str, Any] = 10 while i <= 10_0000: print(F'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
570
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
0
from typing import Dict, Optional import numpy as np import datasets SCREAMING_SNAKE_CASE__ : List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' SCREAMING_SNAKE_CASE__ : Any = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' SCREAMING_SNAKE_CASE__ : Tuple = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False , ): if label_map is not None: for old_id, new_id in label_map.items(): a__ : Any = new_id # turn into Numpy arrays a__ : str = np.array(_lowerCAmelCase ) a__ : List[str] = np.array(_lowerCAmelCase ) if reduce_labels: a__ : Optional[int] = 255 a__ : Tuple = label - 1 a__ : List[Any] = 255 a__ : int = label != ignore_index a__ : str = np.not_equal(_lowerCAmelCase , _lowerCAmelCase ) a__ : List[str] = pred_label[mask] a__ : str = np.array(_lowerCAmelCase )[mask] a__ : Union[str, Any] = pred_label[pred_label == label] a__ : int = np.histogram(_lowerCAmelCase , bins=_lowerCAmelCase , range=(0, num_labels - 1) )[0] a__ : Dict = np.histogram(_lowerCAmelCase , bins=_lowerCAmelCase , range=(0, num_labels - 1) )[0] a__ : Tuple = np.histogram(_lowerCAmelCase , bins=_lowerCAmelCase , range=(0, num_labels - 1) )[0] a__ : List[str] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False , ): a__ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) a__ : Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa ) a__ : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa ) a__ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_lowerCAmelCase , _lowerCAmelCase ): a__ : Optional[int] = intersect_and_union( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , ): a__ : int = total_intersect_and_union( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # compute metrics a__ : Tuple = {} a__ : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() a__ : Optional[Any] = total_area_intersect / total_area_union a__ : str = total_area_intersect / total_area_label a__ : Union[str, Any] = np.nanmean(_lowerCAmelCase ) a__ : Dict = np.nanmean(_lowerCAmelCase ) a__ : Any = all_acc a__ : Tuple = iou a__ : str = acc if nan_to_num is not None: a__ : str = {metric: np.nan_to_num(_lowerCAmelCase , nan=_lowerCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _snake_case ( self ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def _snake_case ( self , snake_case , snake_case , snake_case , snake_case , snake_case = None , snake_case = None , snake_case = False , ) -> Tuple: """simple docstring""" a__ : Optional[int] = mean_iou( results=__A , gt_seg_maps=__A , num_labels=__A , ignore_index=__A , nan_to_num=__A , label_map=__A , reduce_labels=__A , ) return iou_result
112
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True) -> Any: print(f'Converting {name}...') with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": UpperCamelCase__ : Any = timm.create_model('levit_128s' , pretrained=_lowerCAmelCase) else: UpperCamelCase__ : Tuple = timm.create_model('levit_128' , pretrained=_lowerCAmelCase) if hidden_sizes == 192: UpperCamelCase__ : str = timm.create_model('levit_192' , pretrained=_lowerCAmelCase) if hidden_sizes == 256: UpperCamelCase__ : str = timm.create_model('levit_256' , pretrained=_lowerCAmelCase) if hidden_sizes == 384: UpperCamelCase__ : Tuple = timm.create_model('levit_384' , pretrained=_lowerCAmelCase) from_model.eval() UpperCamelCase__ : Any = LevitForImageClassificationWithTeacher(_lowerCAmelCase).eval() UpperCamelCase__ : Union[str, Any] = OrderedDict() UpperCamelCase__ : Tuple = from_model.state_dict() UpperCamelCase__ : Union[str, Any] = list(from_model.state_dict().keys()) UpperCamelCase__ : List[Any] = list(our_model.state_dict().keys()) print(len(_lowerCAmelCase) , len(_lowerCAmelCase)) for i in range(len(_lowerCAmelCase)): UpperCamelCase__ : str = weights[og_keys[i]] our_model.load_state_dict(_lowerCAmelCase) UpperCamelCase__ : str = torch.randn((2, 3, 224, 224)) UpperCamelCase__ : Any = from_model(_lowerCAmelCase) UpperCamelCase__ : List[Any] = our_model(_lowerCAmelCase).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase), "The model logits don't match the original one." UpperCamelCase__ : Dict = name print(_lowerCAmelCase) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name) UpperCamelCase__ : List[str] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name) print(f'Pushed {checkpoint_name}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = True) -> int: UpperCamelCase__ : Union[str, Any] = "imagenet-1k-id2label.json" UpperCamelCase__ : Union[str, Any] = 1_000 UpperCamelCase__ : str = (1, num_labels) UpperCamelCase__ : List[str] = "huggingface/label-files" UpperCamelCase__ : Optional[int] = num_labels UpperCamelCase__ : List[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset') , 'r')) UpperCamelCase__ : Union[str, Any] = {int(_lowerCAmelCase): v for k, v in idalabel.items()} UpperCamelCase__ : str = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase) UpperCamelCase__ : Any = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } UpperCamelCase__ : str = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
596
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Dict = MaskFormerConfig(backbone_config=_lowerCAmelCase ) _lowerCamelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : List[Any] = 847 _lowerCamelCase : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : Optional[int] = 150 _lowerCamelCase : Union[str, Any] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 171 _lowerCamelCase : str = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Optional[int] = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : str = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : List[Any] = 65 _lowerCamelCase : Optional[int] = "mapillary-vistas-id2label.json" _lowerCamelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = dct.pop(_lowerCAmelCase ) _lowerCamelCase : str = val def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _lowerCamelCase : List[str] = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCamelCase : Optional[int] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : int = in_proj_weight[-hidden_size :, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : Tuple = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : Dict = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model _lowerCamelCase : int = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results _lowerCamelCase : Any = prepare_img() if "vistas" in model_name: _lowerCamelCase : Any = 65 elif "cityscapes" in model_name: _lowerCamelCase : Optional[Any] = 65535 else: _lowerCamelCase : str = 255 _lowerCamelCase : List[str] = True if "ade" in model_name else False _lowerCamelCase : Union[str, Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) _lowerCamelCase : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) _lowerCamelCase : Tuple = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
44
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
262
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowercase ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(_lowerCAmelCase , "_dynamo" ): return False return isinstance(_lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase = True ) -> List[Any]: '''simple docstring''' __lowercase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowercase = is_compiled_module(_lowerCAmelCase ) if is_compiled: __lowercase = model __lowercase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = model.module if not keep_fpaa_wrapper: __lowercase = getattr(_lowerCAmelCase , "forward" ) __lowercase = model.__dict__.pop("_original_forward" , _lowerCAmelCase ) if original_forward is not None: while hasattr(_lowerCAmelCase , "__wrapped__" ): __lowercase = forward.__wrapped__ if forward == original_forward: break __lowercase = forward if getattr(_lowerCAmelCase , "_converted_to_transformer_engine" , _lowerCAmelCase ): convert_model(_lowerCAmelCase , to_transformer_engine=_lowerCAmelCase ) if is_compiled: __lowercase = model __lowercase = compiled_model return model def __lowercase ( ) -> Any: '''simple docstring''' PartialState().wait_for_everyone() def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowerCAmelCase , _lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(_lowerCAmelCase , _lowerCAmelCase ) @contextmanager def __lowercase ( **_UpperCAmelCase ) -> str: '''simple docstring''' for key, value in kwargs.items(): __lowercase = str(_lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowercase ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if not hasattr(_lowerCAmelCase , "__qualname__" ) and not hasattr(_lowerCAmelCase , "__name__" ): __lowercase = getattr(_lowerCAmelCase , "__class__" , _lowerCAmelCase ) if hasattr(_lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(_lowerCAmelCase , "__name__" ): return obj.__name__ return str(_lowerCAmelCase ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: '''simple docstring''' for key, value in source.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = destination.setdefault(_lowerCAmelCase , {} ) merge_dicts(_lowerCAmelCase , _lowerCAmelCase ) else: __lowercase = value return destination def __lowercase ( _UpperCAmelCase = None ) -> str: '''simple docstring''' if port is None: __lowercase = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
321
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCAmelCase_ = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Source language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Target language id for translation.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , F'{split}_results.json' ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : Tuple = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(_lowerCAmelCase , _lowerCAmelCase ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCamelCase : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Any = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCamelCase : int = SeqaSeqDataset # Get datasets _lowerCamelCase : Tuple = ( dataset_class( _lowerCAmelCase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( dataset_class( _lowerCAmelCase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCamelCase : Optional[int] = ( dataset_class( _lowerCAmelCase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCamelCase : int = ( build_compute_metrics_fn(data_args.task , _lowerCAmelCase ) if training_args.predict_with_generate else None ) _lowerCamelCase : List[Any] = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , data_collator=SeqaSeqDataCollator( _lowerCAmelCase , _lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) _lowerCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="val" ) _lowerCamelCase : Dict = data_args.n_val _lowerCamelCase : List[Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCamelCase : Any = trainer.predict(test_dataset=_lowerCAmelCase , metric_key_prefix="test" ) _lowerCamelCase : Dict = test_output.metrics _lowerCamelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCamelCase : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _lowerCAmelCase , training_args.output_dir ) all_metrics.update(_lowerCAmelCase ) if training_args.predict_with_generate: _lowerCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) _lowerCamelCase : Any = lmap(str.strip , _lowerCAmelCase ) write_txt_file(_lowerCAmelCase , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_lowerCAmelCase , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
44
0
_snake_case = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
282
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
0
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=False ) -> Any: try: __lowerCamelCase : Tuple = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase : str = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase : Optional[int] = strtobool(_lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value A__ : Any = parse_flag_from_env("""RUN_SLOW""", default=False) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> Union[str, Any]: return unittest.skip('Test was skipped' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Dict: return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> int: return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> List[Any]: return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> Dict: return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> str: return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> List[str]: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Dict: return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> str: return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> Optional[Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> List[str]: return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> Optional[int]: return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> Dict: return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> List[str]: return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> Any: return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> List[str]: return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Optional[int]=None ) -> List[Any]: if test_case is None: return partial(_lowerCAmelCase , version=_lowerCAmelCase ) return unittest.skipUnless(is_torch_version('>=' , _lowerCAmelCase ) , F'test requires torch version >= {version}' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> str: return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> Any: return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_lowerCAmelCase ) A__ : Optional[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCAmelCase__ ( UpperCAmelCase_ : Dict ) -> List[str]: return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_lowerCAmelCase ) class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : Dict = True @classmethod def lowercase_ ( cls ) -> List[str]: __lowerCamelCase : List[str] = tempfile.mkdtemp() @classmethod def lowercase_ ( cls ) -> List[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowercase_ ( self ) -> int: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__A ) class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = mocks if isinstance(__A , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> int: __lowerCamelCase : Tuple = AcceleratorState() __lowerCamelCase : str = tensor[None].clone().to(state.device ) __lowerCamelCase : List[Any] = gather(_lowerCAmelCase ).cpu() __lowerCamelCase : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _lowerCAmelCase ): return False return True class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Tuple = returncode __lowerCamelCase : List[str] = stdout __lowerCamelCase : Any = stderr async def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ) -> Any: while True: __lowerCamelCase : Optional[Any] = await stream.readline() if line: callback(_lowerCAmelCase ) else: break async def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Optional[int]=False ) -> int: if echo: print('\nRunning: ' , ' '.join(_lowerCAmelCase ) ) __lowerCamelCase : List[str] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase : List[Any] = [] __lowerCamelCase : List[str] = [] def tee(UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int="" ): __lowerCamelCase : Optional[Any] = line.decode('utf-8' ).rstrip() sink.append(_lowerCAmelCase ) if not quiet: print(_lowerCAmelCase , _lowerCAmelCase , file=_lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda UpperCAmelCase_ : tee(_lowerCAmelCase , _lowerCAmelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda UpperCAmelCase_ : tee(_lowerCAmelCase , _lowerCAmelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=_lowerCAmelCase , ) return _RunOutput(await p.wait() , _lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=1_80 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Optional[Any]=True ) -> int: __lowerCamelCase : Dict = asyncio.get_event_loop() __lowerCamelCase : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCAmelCase , env=_lowerCAmelCase , stdin=_lowerCAmelCase , timeout=_lowerCAmelCase , quiet=_lowerCAmelCase , echo=_lowerCAmelCase ) ) __lowerCamelCase : List[str] = " ".join(_lowerCAmelCase ) if result.returncode > 0: __lowerCamelCase : int = "\n".join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) return result class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" pass def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=False ) -> Optional[Any]: try: __lowerCamelCase : Optional[Any] = subprocess.check_output(_lowerCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_lowerCAmelCase , 'decode' ): __lowerCamelCase : List[str] = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'Command `{" ".join(_lowerCAmelCase )}` failed with the following error:\n\n{e.output.decode()}' ) from e
13
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): A_ : Tuple = 'codegen' A_ : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Dict , UpperCamelCase_ : Optional[int]=5_04_00 , UpperCamelCase_ : Optional[int]=20_48 , UpperCamelCase_ : Optional[Any]=20_48 , UpperCamelCase_ : Optional[int]=40_96 , UpperCamelCase_ : List[Any]=28 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : int=64 , UpperCamelCase_ : str=None , UpperCamelCase_ : Dict="gelu_new" , UpperCamelCase_ : Tuple=0.0 , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : List[Any]=1e-5 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : List[str]=5_02_56 , UpperCamelCase_ : Optional[int]=5_02_56 , UpperCamelCase_ : int=False , **UpperCamelCase_ : List[Any] , ) -> Dict: SCREAMING_SNAKE_CASE__ :Optional[int] = vocab_size SCREAMING_SNAKE_CASE__ :str = n_ctx SCREAMING_SNAKE_CASE__ :Optional[int] = n_positions SCREAMING_SNAKE_CASE__ :Any = n_embd SCREAMING_SNAKE_CASE__ :Dict = n_layer SCREAMING_SNAKE_CASE__ :Tuple = n_head SCREAMING_SNAKE_CASE__ :str = n_inner SCREAMING_SNAKE_CASE__ :List[str] = rotary_dim SCREAMING_SNAKE_CASE__ :str = activation_function SCREAMING_SNAKE_CASE__ :Any = resid_pdrop SCREAMING_SNAKE_CASE__ :List[Any] = embd_pdrop SCREAMING_SNAKE_CASE__ :Optional[Any] = attn_pdrop SCREAMING_SNAKE_CASE__ :Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE__ :Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE__ :Dict = use_cache SCREAMING_SNAKE_CASE__ :str = bos_token_id SCREAMING_SNAKE_CASE__ :Union[str, Any] = eos_token_id super().__init__( bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A ) class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): def __init__( self : Any , UpperCamelCase_ : PretrainedConfig , UpperCamelCase_ : str = "default" , UpperCamelCase_ : List[PatchingSpec] = None , UpperCamelCase_ : bool = False , ) -> Tuple: super().__init__(__A , task=__A , patching_specs=__A , use_past=__A ) if not getattr(self._config , 'pad_token_id' , __A ): # TODO: how to do that better? SCREAMING_SNAKE_CASE__ :Optional[Any] = 0 @property def __lowerCamelCase ( self : str ) -> Any: SCREAMING_SNAKE_CASE__ :List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__A , direction='inputs' ) SCREAMING_SNAKE_CASE__ :List[Any] = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE__ :Optional[int] = {0: "batch", 1: "sequence"} return common_inputs @property def __lowerCamelCase ( self : int ) -> Tuple: return self._config.n_layer @property def __lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: return self._config.n_head def __lowerCamelCase ( self : Any , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ) -> int: SCREAMING_SNAKE_CASE__ :Any = super(__A , self ).generate_dummy_inputs( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE__ :Tuple = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE__ :Any = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ :List[Any] = seqlen + 2 SCREAMING_SNAKE_CASE__ :Dict = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE__ :Dict = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE__ :Dict = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE__ :Optional[int] = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE__ :str = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__A , __A , dtype=__A )] , dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self : Tuple ) -> Union[str, Any]: return 13
209
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Any = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : int = """luke""" def __init__( self : Tuple , UpperCamelCase__ : str=50267 , UpperCamelCase__ : List[Any]=500000 , UpperCamelCase__ : int=768 , UpperCamelCase__ : Optional[int]=256 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=3072 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Any=512 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : Union[str, Any]=1E-12 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Any=None , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=0 , UpperCamelCase__ : Union[str, Any]=2 , **UpperCamelCase__ : Any , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) A__ : str =vocab_size A__ : List[str] =entity_vocab_size A__ : List[Any] =hidden_size A__ : Dict =entity_emb_size A__ : str =num_hidden_layers A__ : str =num_attention_heads A__ : str =hidden_act A__ : str =intermediate_size A__ : Union[str, Any] =hidden_dropout_prob A__ : int =attention_probs_dropout_prob A__ : Optional[Any] =max_position_embeddings A__ : Optional[Any] =type_vocab_size A__ : Tuple =initializer_range A__ : int =layer_norm_eps A__ : Tuple =use_entity_aware_attention A__ : Dict =classifier_dropout
656
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
0
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __SCREAMING_SNAKE_CASE ( yaml.SafeLoader ): '''simple docstring''' def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : int ) -> Dict: _lowercase : List[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] _lowercase : Optional[int] = [tuple(__A ) if isinstance(__A ,__A ) else key for key in keys] _lowercase : List[str] = Counter(__A ) _lowercase : List[Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def _lowerCamelCase ( self : int ,UpperCamelCase : List[Any] ,UpperCamelCase : Tuple=False ) -> Optional[int]: _lowercase : List[str] = super().construct_mapping(__A ,deep=__A ) self._check_no_duplicates_on_constructed_node(__A ) return mapping def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : str) -> Optional[int]: '''simple docstring''' _lowercase : Any = list(readme_content.splitlines()) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _lowercase : List[Any] = full_content[1:].index('---') + 1 _lowercase : Dict = "\n".join(full_content[1:sep_idx]) return yamlblock, "\n".join(full_content[sep_idx + 1 :]) return None, "\n".join(_lowerCAmelCase) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def _lowerCamelCase ( cls : List[str] ,UpperCamelCase : Path ) -> Any: with open(__A ,encoding='utf-8' ) as readme_file: _lowercase : Optional[int] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__A ) else: return cls() def _lowerCamelCase ( self : str ,UpperCamelCase : Path ) -> int: if path.exists(): with open(__A ,encoding='utf-8' ) as readme_file: _lowercase : Tuple = readme_file.read() else: _lowercase : Optional[Any] = None _lowercase : Union[str, Any] = self._to_readme(__A ) with open(__A ,'w' ,encoding='utf-8' ) as readme_file: readme_file.write(__A ) def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : Optional[str] = None ) -> Optional[Any]: if readme_content is not None: _lowercase : Union[str, Any] = _split_yaml_from_readme(__A ) _lowercase : List[str] = "---\n" + self.to_yaml_string() + "---\n" + content else: _lowercase : List[str] = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def _lowerCamelCase ( cls : List[Any] ,UpperCamelCase : str ) -> str: _lowercase : Any = yaml.load(__A ,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _lowercase : Optional[Any] = { (key.replace('-' ,'_' ) if key.replace('-' ,'_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__A ) def _lowerCamelCase ( self : str ) -> Union[str, Any]: return yaml.safe_dump( { (key.replace('_' ,'-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } ,sort_keys=__A ,allow_unicode=__A ,encoding='utf-8' ,).decode('utf-8' ) A = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser A = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') A = ap.parse_args() A = Path(args.readme_filepath) A = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
125
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
0
from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
548
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase_ : Union[str, Any] = parser.parse_args() if args.model_type == "bert": UpperCAmelCase_ : str = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase_ : Optional[int] = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase_ : str = model.state_dict() UpperCAmelCase_ : Union[str, Any] = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase_ : Tuple = state_dict[F'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: UpperCAmelCase_ : str = state_dict[F'{prefix}.embeddings.LayerNorm.{w}'] UpperCAmelCase_ : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCAmelCase_ : str = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] UpperCAmelCase_ : int = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] UpperCAmelCase_ : Tuple = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] UpperCAmelCase_ : int = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] UpperCAmelCase_ : List[Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] UpperCAmelCase_ : List[str] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] UpperCAmelCase_ : Optional[int] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] UpperCAmelCase_ : Optional[Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 UpperCAmelCase_ : str = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase_ : List[str] = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase_ : Any = state_dict[F'cls.predictions.transform.dense.{w}'] UpperCAmelCase_ : List[Any] = state_dict[F'cls.predictions.transform.LayerNorm.{w}'] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
570
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Any = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
112
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
0
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCAmelCase__ = '\\n\n' lowerCAmelCase__ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' lowerCAmelCase__ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): def __UpperCamelCase ( self : Optional[int]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string'), }) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int=None): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase__ : int = "cuda" else: UpperCamelCase__ : int = "cuda" if torch.cuda.is_available() else "cpu" UpperCamelCase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(__A) UpperCamelCase__ : Tuple = model.to(__A) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(__A) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase__ : Tuple = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(__A) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase__ : int = model.config.max_length - 1 else: UpperCamelCase__ : Tuple = model.config.max_length UpperCamelCase__ : int = tokenizer( __A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , return_tensors='pt' , return_attention_mask=__A , ).to(__A) UpperCamelCase__ : Optional[Any] = encodings["input_ids"] UpperCamelCase__ : Dict = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase__ : str = [] UpperCamelCase__ : str = CrossEntropyLoss(reduction='none') for start_index in logging.tqdm(range(0 , len(__A) , __A)): UpperCamelCase__ : int = min(start_index + batch_size , len(__A)) UpperCamelCase__ : int = encoded_texts[start_index:end_index] UpperCamelCase__ : Optional[Any] = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase__ : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(__A) UpperCamelCase__ : Optional[int] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1) UpperCamelCase__ : List[Any] = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(__A), attn_mask] , dim=1) UpperCamelCase__ : Dict = encoded_batch with torch.no_grad(): UpperCamelCase__ : str = model(__A , attention_mask=__A).logits UpperCamelCase__ : List[str] = out_logits[..., :-1, :].contiguous() UpperCamelCase__ : Optional[int] = labels[..., 1:].contiguous() UpperCamelCase__ : Dict = attn_mask[..., 1:].contiguous() UpperCamelCase__ : str = torch.expa( (loss_fct(shift_logits.transpose(1 , 2) , __A) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__A)}
596
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: __UpperCAmelCase = s_dict.pop(_lowerCAmelCase ) elif "subsample" in key: __UpperCAmelCase = s_dict.pop(_lowerCAmelCase ) def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = emb.weight.shape __UpperCAmelCase = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) __UpperCAmelCase = emb.weight.data return lin_layer def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = torch.load(_lowerCAmelCase , map_location='''cpu''' ) __UpperCAmelCase = mam_aaa["args"] __UpperCAmelCase = mam_aaa["model"] __UpperCAmelCase = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(_lowerCAmelCase ) rename_keys(_lowerCAmelCase ) __UpperCAmelCase = state_dict["decoder.embed_tokens.weight"].shape[0] __UpperCAmelCase = args.share_decoder_input_output_embed __UpperCAmelCase = [int(_lowerCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )] __UpperCAmelCase = SpeechaTextConfig( vocab_size=_lowerCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(_lowerCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=_lowerCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_lowerCAmelCase , num_beams=5 , max_length=2_0_0 , use_cache=_lowerCAmelCase , decoder_start_token_id=2 , early_stopping=_lowerCAmelCase , ) __UpperCAmelCase = SpeechaTextForConditionalGeneration(_lowerCAmelCase ) __UpperCAmelCase = model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0 and not set(_lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f""" but all the following weights are missing {missing}""" ) if tie_embeds: __UpperCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __UpperCAmelCase = lm_head_weights model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") __lowerCAmelCase : int = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
262
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = (PNDMScheduler,) __lowerCAmelCase = (("""num_inference_steps""", 50),) def snake_case__ ( self , **lowerCAmelCase_ ): __lowercase = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__A ) return config def snake_case__ ( self , lowerCAmelCase_=0 , **lowerCAmelCase_ ): __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop("num_inference_steps" , __A ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config(**__A ) __lowercase = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals __lowercase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) __lowercase = scheduler_class.from_pretrained(__A ) new_scheduler.set_timesteps(__A ) # copy over dummy past residuals __lowercase = dummy_past_residuals[:] __lowercase = scheduler.step_prk(__A , __A , __A , **__A ).prev_sample __lowercase = new_scheduler.step_prk(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __lowercase = scheduler.step_plms(__A , __A , __A , **__A ).prev_sample __lowercase = new_scheduler.step_plms(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): pass def snake_case__ ( self , lowerCAmelCase_=0 , **lowerCAmelCase_ ): __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop("num_inference_steps" , __A ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals (must be after setting timesteps) __lowercase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) __lowercase = scheduler_class.from_pretrained(__A ) # copy over dummy past residuals new_scheduler.set_timesteps(__A ) # copy over dummy past residual (must be after setting timesteps) __lowercase = dummy_past_residuals[:] __lowercase = scheduler.step_prk(__A , __A , __A , **__A ).prev_sample __lowercase = new_scheduler.step_prk(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __lowercase = scheduler.step_plms(__A , __A , __A , **__A ).prev_sample __lowercase = new_scheduler.step_plms(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self , **lowerCAmelCase_ ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(**__A ) __lowercase = scheduler_class(**__A ) __lowercase = 10 __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter scheduler.set_timesteps(__A ) for i, t in enumerate(scheduler.prk_timesteps ): __lowercase = model(__A , __A ) __lowercase = scheduler.step_prk(__A , __A , __A ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __lowercase = model(__A , __A ) __lowercase = scheduler.step_plms(__A , __A , __A ).prev_sample return sample def snake_case__ ( self ): __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop("num_inference_steps" , __A ) for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**__A ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample if num_inference_steps is not None and hasattr(__A , "set_timesteps" ): scheduler.set_timesteps(__A ) elif num_inference_steps is not None and not hasattr(__A , "set_timesteps" ): __lowercase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowercase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __lowercase = dummy_past_residuals[:] __lowercase = scheduler.step_prk(__A , 0 , __A , **__A ).prev_sample __lowercase = scheduler.step_prk(__A , 1 , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __lowercase = scheduler.step_plms(__A , 0 , __A , **__A ).prev_sample __lowercase = scheduler.step_plms(__A , 1 , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__ ( self ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def snake_case__ ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(steps_offset=1 ) __lowercase = scheduler_class(**__A ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def snake_case__ ( self ): for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def snake_case__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def snake_case__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def snake_case__ ( self ): for t in [1, 5, 10]: self.check_over_forward(time_step=__A ) def snake_case__ ( self ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__A ) def snake_case__ ( self ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __lowercase = 27 for scheduler_class in self.scheduler_classes: __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __lowercase = scheduler.step_prk(__A , __A , __A ).prev_sample def snake_case__ ( self ): with self.assertRaises(__A ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**__A ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def snake_case__ ( self ): __lowercase = self.full_loop() __lowercase = torch.sum(torch.abs(__A ) ) __lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def snake_case__ ( self ): __lowercase = self.full_loop(prediction_type="v_prediction" ) __lowercase = torch.sum(torch.abs(__A ) ) __lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def snake_case__ ( self ): # We specify different beta, so that the first alpha is 0.99 __lowercase = self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) __lowercase = torch.sum(torch.abs(__A ) ) __lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def snake_case__ ( self ): # We specify different beta, so that the first alpha is 0.99 __lowercase = self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) __lowercase = torch.sum(torch.abs(__A ) ) __lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
321
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : list[tuple[float, float]] ): _lowerCamelCase : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : int = len(__A ) - 1 def lowerCamelCase_ ( self : Optional[int],__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,__A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__A ),5 ) == 1 return output_values def lowerCamelCase_ ( self : int,__A : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : List[Any] = self.basis_function(__A ) _lowerCamelCase : str = 0.0 _lowerCamelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase_ ( self : Optional[Any],__A : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : Tuple = 0.0 while t <= 1: _lowerCamelCase : str = self.bezier_curve_function(__A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __A,__A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(__A,__A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
44
0