code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def A ( lowercase__ : Optional[Any]=None ) -> Dict: UpperCamelCase__ :int = argparse.ArgumentParser(add_help=lowercase__ , allow_abbrev=lowercase__ ) # The main config parser UpperCamelCase__ :Tuple = config_command_parser(lowercase__ ) # The subparser to add commands to UpperCamelCase__ :int = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(lowercase__ , parents=[parent_parser] ) update_command_parser(lowercase__ , parents=[parent_parser] ) return config_parser def A ( ) -> Tuple: UpperCamelCase__ :Any = get_config_parser() UpperCamelCase__ :Optional[int] = config_parser.parse_args() if not hasattr(lowercase__ , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(lowercase__ ) if __name__ == "__main__": main()
45
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
1
from statistics import mean import numpy as np def A ( lowercase__ : list , lowercase__ : list , lowercase__ : list , lowercase__ : int ) -> list: UpperCamelCase__ :Optional[Any] = 0 # Number of processes finished UpperCamelCase__ :List[str] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. UpperCamelCase__ :Optional[Any] = [0] * no_of_process # List to include calculation results UpperCamelCase__ :Tuple = [0] * no_of_process # Sort by arrival time. UpperCamelCase__ :Dict = [burst_time[i] for i in np.argsort(lowercase__ )] UpperCamelCase__ :Tuple = [process_name[i] for i in np.argsort(lowercase__ )] arrival_time.sort() while no_of_process > finished_process_count: UpperCamelCase__ :Union[str, Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: UpperCamelCase__ :List[Any] = arrival_time[i] UpperCamelCase__ :int = 0 # Index showing the location of the process being performed UpperCamelCase__ :List[str] = 0 # Saves the current response ratio. UpperCamelCase__ :Union[str, Any] = 0 for i in range(0 , lowercase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: UpperCamelCase__ :List[str] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: UpperCamelCase__ :Union[str, Any] = temp UpperCamelCase__ :Optional[Any] = i # Calculate the turn around time UpperCamelCase__ :Optional[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. UpperCamelCase__ :Union[str, Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def A ( lowercase__ : list , lowercase__ : list , lowercase__ : list , lowercase__ : int ) -> list: UpperCamelCase__ :List[str] = [0] * no_of_process for i in range(0 , lowercase__ ): UpperCamelCase__ :List[str] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": UpperCamelCase = 5 UpperCamelCase = ["A", "B", "C", "D", "E"] UpperCamelCase = [1, 2, 3, 4, 5] UpperCamelCase = [1, 2, 3, 4, 5] UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
45
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
1
from __future__ import annotations UpperCamelCase = 1.6021E-19 # units = C def A ( lowercase__ : float , lowercase__ : float , lowercase__ : float , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
45
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
1
from timeit import timeit def A ( lowercase__ : int ) -> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCamelCase__ :List[Any] = 0 while number: number &= number - 1 result += 1 return result def A ( lowercase__ : int ) -> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCamelCase__ :int = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A ( ) -> None: def do_benchmark(lowercase__ : int ) -> None: UpperCamelCase__ :str = """import __main__ as z""" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(lowercase__ ) = }""" ) UpperCamelCase__ :List[Any] = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=lowercase__ ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(lowercase__ ) = }""" ) UpperCamelCase__ :Optional[Any] = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=lowercase__ , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(lowercase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
45
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCamelCase = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: UpperCamelCase = json.load(f) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :List[Any] , lowerCamelCase__ :Tuple ): return FSMTTokenizer.from_pretrained(lowerCamelCase__ ) def __a ( self :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Union[str, Any] = FSMTForConditionalGeneration.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def __a ( self :Dict , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCamelCase__ :Optional[Any] = f"""facebook/wmt19-{pair}""" UpperCamelCase__ :List[str] = self.get_tokenizer(lowerCamelCase__ ) UpperCamelCase__ :List[str] = self.get_model(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = bleu_data[pair]["""src"""] UpperCamelCase__ :Optional[Any] = bleu_data[pair]["""tgt"""] UpperCamelCase__ :Union[str, Any] = tokenizer(lowerCamelCase__ , return_tensors="""pt""" , truncation=lowerCamelCase__ , padding="""longest""" ).to(lowerCamelCase__ ) UpperCamelCase__ :str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCamelCase__ :Any = tokenizer.batch_decode( lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) UpperCamelCase__ :Dict = calculate_bleu(lowerCamelCase__ , lowerCamelCase__ ) print(lowerCamelCase__ ) self.assertGreaterEqual(scores["""bleu"""] , lowerCamelCase__ )
45
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
1
import os # Precomputes a list of the 100 first triangular numbers UpperCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ) -> Optional[Any]: UpperCamelCase__ :Optional[int] = os.path.dirname(os.path.realpath(lowercase__ ) ) UpperCamelCase__ :Optional[Any] = os.path.join(lowercase__ , """words.txt""" ) UpperCamelCase__ :Optional[Any] = """""" with open(lowercase__ ) as f: UpperCamelCase__ :int = f.readline() UpperCamelCase__ :Optional[int] = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] UpperCamelCase__ :Union[str, Any] = [ word for word in [sum(ord(lowercase__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowercase__ ) if __name__ == "__main__": print(solution())
45
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } UpperCamelCase = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } UpperCamelCase = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A ( ) -> str: UpperCamelCase__ :Optional[int] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase__ :List[str] = bs[:] UpperCamelCase__ :List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 UpperCamelCase__ :List[Any] = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def A ( lowercase__ : Dict ) -> List[str]: UpperCamelCase__ :List[str] = set() UpperCamelCase__ :Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase__ :List[Any] = char return pairs class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Tuple = VOCAB_FILES_NAMES _snake_case : Any = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ["""input_ids""", """attention_mask"""] def __init__( self :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :int="replace" , lowerCamelCase__ :Tuple="<s>" , lowerCamelCase__ :Dict="</s>" , lowerCamelCase__ :List[Any]="</s>" , lowerCamelCase__ :int="<s>" , lowerCamelCase__ :List[Any]="<unk>" , lowerCamelCase__ :Any="<pad>" , lowerCamelCase__ :int="<mask>" , lowerCamelCase__ :List[Any]=False , **lowerCamelCase__ :Dict , ): UpperCamelCase__ :str = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token UpperCamelCase__ :Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token UpperCamelCase__ :Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token UpperCamelCase__ :Dict = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token UpperCamelCase__ :Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token UpperCamelCase__ :Union[str, Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ :List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) with open(lowerCamelCase__ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase__ :List[str] = json.load(lowerCamelCase__ ) UpperCamelCase__ :Any = {v: k for k, v in self.encoder.items()} UpperCamelCase__ :List[Any] = errors # how to handle errors in decoding UpperCamelCase__ :Union[str, Any] = bytes_to_unicode() UpperCamelCase__ :int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase__ :Dict = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase__ :Dict = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase__ :int = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ :Dict = {} UpperCamelCase__ :Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ :str = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __a ( self :Dict ): return len(self.encoder ) def __a ( self :Any ): return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self :List[str] , lowerCamelCase__ :Optional[Any] ): if token in self.cache: return self.cache[token] UpperCamelCase__ :Tuple = tuple(lowerCamelCase__ ) UpperCamelCase__ :Any = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: UpperCamelCase__ :Optional[int] = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase__ , UpperCamelCase__ :Dict = bigram UpperCamelCase__ :Dict = [] UpperCamelCase__ :Any = 0 while i < len(lowerCamelCase__ ): try: UpperCamelCase__ :Union[str, Any] = word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase__ :Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase__ :List[Any] = tuple(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = new_word if len(lowerCamelCase__ ) == 1: break else: UpperCamelCase__ :Union[str, Any] = get_pairs(lowerCamelCase__ ) UpperCamelCase__ :Any = """ """.join(lowerCamelCase__ ) UpperCamelCase__ :Dict = word return word def __a ( self :int , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Dict = [] for token in re.findall(self.pat , lowerCamelCase__ ): UpperCamelCase__ :Tuple = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(""" """ ) ) return bpe_tokens def __a ( self :Union[str, Any] , lowerCamelCase__ :str ): return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def __a ( self :Optional[Any] , lowerCamelCase__ :Dict ): return self.decoder.get(lowerCamelCase__ ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :str = """""".join(lowerCamelCase__ ) UpperCamelCase__ :Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[str] = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase__ :Tuple = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ :Optional[Any] = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + """\n""" ) UpperCamelCase__ :str = 0 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase__ :Optional[int] = token_index writer.write(""" """.join(lowerCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __a ( self :Optional[int] , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None , lowerCamelCase__ :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): UpperCamelCase__ :Optional[Any] = [self.sep_token_id] UpperCamelCase__ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple=False , **lowerCamelCase__ :Any ): UpperCamelCase__ :List[Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): UpperCamelCase__ :List[str] = """ """ + text return (text, kwargs) def __a ( self :Optional[int] , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def __a ( self :Tuple , lowerCamelCase__ :"Conversation" ): UpperCamelCase__ :List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(lowerCamelCase__ ) UpperCamelCase__ :Dict = """ """.join(lowerCamelCase__ ) UpperCamelCase__ :List[str] = self.encode(lowerCamelCase__ ) if len(lowerCamelCase__ ) > self.model_max_length: UpperCamelCase__ :Dict = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
45
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
1
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCamelCase = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def A ( lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : int ) -> Tuple: if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(lowercase__ ) , version.parse(lowercase__ ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def A ( lowercase__ : str , lowercase__ : Optional[str] = None ) -> None: UpperCamelCase__ :Union[str, Any] = f"""\n{hint}""" if hint is not None else """""" # non-versioned check if re.match(r"""^[\w_\-\d]+$""" , lowercase__ ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[int] = requirement, None, None else: UpperCamelCase__ :Tuple = re.findall(r"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , lowercase__ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f""" got {requirement}""" ) UpperCamelCase__ , UpperCamelCase__ :Tuple = match[0] UpperCamelCase__ :Optional[Any] = want_full.split(""",""" ) # there could be multiple requirements UpperCamelCase__ :List[str] = {} for w in want_range: UpperCamelCase__ :Dict = re.findall(r"""^([\s!=<>]{1,2})(.+)""" , lowercase__ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f""" but got {requirement}""" ) UpperCamelCase__ , UpperCamelCase__ :List[str] = match[0] UpperCamelCase__ :Tuple = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": UpperCamelCase__ :int = """.""".join([str(lowercase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return # check if any version is installed try: UpperCamelCase__ :int = importlib.metadata.version(lowercase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def A ( lowercase__ : Optional[int] ) -> List[str]: UpperCamelCase__ :Tuple = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(lowercase__ , lowercase__ )
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
UpperCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634E-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def A ( lowercase__ : str , lowercase__ : str , lowercase__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCamelCase__ :Any = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(lowercase__ )}""" ) raise ValueError(lowercase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
45
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def A ( lowercase__ : List[str] ) -> Tuple: UpperCamelCase__ :Dict = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"""{test_file} instead.""" ) UpperCamelCase__ :Optional[int] = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) UpperCamelCase__ :Union[str, Any] = components[:-1] + [test_fn.replace(""".py""" , """""" )] UpperCamelCase__ :List[Any] = """.""".join(lowercase__ ) return test_module_path def A ( lowercase__ : int ) -> Tuple: UpperCamelCase__ :Optional[Any] = get_module_path(lowercase__ ) UpperCamelCase__ :List[str] = importlib.import_module(lowercase__ ) return test_module def A ( lowercase__ : Union[str, Any] ) -> int: UpperCamelCase__ :Optional[int] = [] UpperCamelCase__ :str = get_test_module(lowercase__ ) for attr in dir(lowercase__ ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(lowercase__ , lowercase__ ) ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def A ( lowercase__ : Union[str, Any] ) -> Optional[Any]: UpperCamelCase__ :int = [] UpperCamelCase__ :Union[str, Any] = get_test_module(lowercase__ ) for attr in dir(lowercase__ ): UpperCamelCase__ :Optional[int] = getattr(lowercase__ , lowercase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCamelCase__ :Union[str, Any] = getattr(lowercase__ , """all_model_classes""" , [] ) if len(lowercase__ ) > 0: test_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def A ( lowercase__ : Dict ) -> Union[str, Any]: UpperCamelCase__ :List[str] = get_test_classes(lowercase__ ) UpperCamelCase__ :Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def A ( lowercase__ : List[str] ) -> List[str]: UpperCamelCase__ :Any = test_class() if hasattr(lowercase__ , """setUp""" ): test.setUp() UpperCamelCase__ :str = None if hasattr(lowercase__ , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCamelCase__ :str = test.model_tester.__class__ return model_tester def A ( lowercase__ : List[Any] , lowercase__ : Optional[Any] ) -> Optional[int]: UpperCamelCase__ :int = get_test_classes(lowercase__ ) UpperCamelCase__ :str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def A ( lowercase__ : Tuple , lowercase__ : Optional[int] ) -> List[Any]: UpperCamelCase__ :Optional[Any] = get_test_classes_for_model(lowercase__ , lowercase__ ) UpperCamelCase__ :Optional[Any] = [] for test_class in test_classes: UpperCamelCase__ :Optional[int] = get_model_tester_from_test_class(lowercase__ ) if tester_class is not None: tester_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def A ( lowercase__ : Tuple ) -> Optional[Any]: UpperCamelCase__ :Tuple = get_test_classes(lowercase__ ) UpperCamelCase__ :Any = {test_class: get_model_tester_from_test_class(lowercase__ ) for test_class in test_classes} return test_tester_mapping def A ( lowercase__ : int ) -> Tuple: UpperCamelCase__ :Tuple = get_model_classes(lowercase__ ) UpperCamelCase__ :Dict = { model_class: get_test_classes_for_model(lowercase__ , lowercase__ ) for model_class in model_classes } return model_test_mapping def A ( lowercase__ : str ) -> Union[str, Any]: UpperCamelCase__ :Optional[int] = get_model_classes(lowercase__ ) UpperCamelCase__ :Tuple = { model_class: get_tester_classes_for_model(lowercase__ , lowercase__ ) for model_class in model_classes } return model_to_tester_mapping def A ( lowercase__ : Optional[Any] ) -> List[str]: if isinstance(lowercase__ , lowercase__ ): return o elif isinstance(lowercase__ , lowercase__ ): return o.__name__ elif isinstance(lowercase__ , (list, tuple) ): return [to_json(lowercase__ ) for x in o] elif isinstance(lowercase__ , lowercase__ ): return {to_json(lowercase__ ): to_json(lowercase__ ) for k, v in o.items()} else: return o
45
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
import os from distutils.util import strtobool def A ( lowercase__ : List[str] , lowercase__ : Union[str, Any] ) -> List[str]: for e in env_keys: UpperCamelCase__ :Optional[Any] = int(os.environ.get(lowercase__ , -1 ) ) if val >= 0: return val return default def A ( lowercase__ : Optional[int] , lowercase__ : int=False ) -> Optional[int]: UpperCamelCase__ :Optional[Any] = os.environ.get(lowercase__ , str(lowercase__ ) ) return strtobool(lowercase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def A ( lowercase__ : Tuple , lowercase__ : Dict="no" ) -> List[Any]: UpperCamelCase__ :Optional[int] = os.environ.get(lowercase__ , str(lowercase__ ) ) return value
45
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[str] = (KDPMaDiscreteScheduler,) _snake_case : List[Any] = 10 def __a ( self :List[str] , **lowerCamelCase__ :Union[str, Any] ): UpperCamelCase__ :int = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCamelCase__ ) return config def __a ( self :Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def __a ( self :List[str] ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def __a ( self :Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def __a ( self :List[str] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def __a ( self :int ): UpperCamelCase__ :Optional[int] = self.scheduler_classes[0] UpperCamelCase__ :Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCamelCase__ :int = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase__ :Optional[Any] = self.dummy_model() UpperCamelCase__ :List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase__ :Dict = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ :Dict = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = model(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = output.prev_sample UpperCamelCase__ :Dict = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCamelCase__ :Tuple = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def __a ( self :Optional[int] ): if torch_device == "mps": return UpperCamelCase__ :Optional[int] = self.scheduler_classes[0] UpperCamelCase__ :Union[str, Any] = self.get_scheduler_config() UpperCamelCase__ :List[Any] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase__ :Any = self.dummy_model() UpperCamelCase__ :Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase__ :Tuple = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ :List[Any] = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :str = model(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = output.prev_sample UpperCamelCase__ :Tuple = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCamelCase__ :Any = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def __a ( self :str ): if torch_device == "mps": return UpperCamelCase__ :str = self.scheduler_classes[0] UpperCamelCase__ :int = self.get_scheduler_config() UpperCamelCase__ :List[str] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = self.dummy_model() UpperCamelCase__ :Optional[int] = self.dummy_sample_deter.to(lowerCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCamelCase__ :Union[str, Any] = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = model(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = output.prev_sample UpperCamelCase__ :str = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCamelCase__ :List[str] = torch.mean(torch.abs(lowerCamelCase__ ) ) if str(lowerCamelCase__ ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCamelCase = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" UpperCamelCase = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" UpperCamelCase = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): """simple docstring""" def __a ( self :Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def __a ( self :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict=4 , lowerCamelCase__ :List[Any]=False ): UpperCamelCase__ :Optional[Any] = compute_bleu( reference_corpus=lowerCamelCase__ , translation_corpus=lowerCamelCase__ , max_order=lowerCamelCase__ , smooth=lowerCamelCase__ ) ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Union[str, Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
45
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any]=3 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :str=3 , lowerCamelCase__ :str=10 , lowerCamelCase__ :Dict=[8, 16, 32, 64] , lowerCamelCase__ :Optional[int]=[1, 1, 2, 1] , lowerCamelCase__ :Tuple=True , lowerCamelCase__ :List[str]=True , lowerCamelCase__ :List[str]="relu" , lowerCamelCase__ :Tuple=3 , lowerCamelCase__ :Optional[int]=None , lowerCamelCase__ :List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase__ :Any=[2, 3, 4] , lowerCamelCase__ :Dict=1 , ): UpperCamelCase__ :List[str] = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :str = image_size UpperCamelCase__ :str = num_channels UpperCamelCase__ :Dict = embeddings_size UpperCamelCase__ :List[str] = hidden_sizes UpperCamelCase__ :str = depths UpperCamelCase__ :int = is_training UpperCamelCase__ :List[Any] = use_labels UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :str = num_labels UpperCamelCase__ :Optional[Any] = scope UpperCamelCase__ :str = len(lowerCamelCase__ ) UpperCamelCase__ :List[str] = out_features UpperCamelCase__ :Optional[Any] = out_indices UpperCamelCase__ :str = num_groups def __a ( self :Optional[int] ): UpperCamelCase__ :str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ :Union[str, Any] = self.get_config() return config, pixel_values, labels def __a ( self :List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __a ( self :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Dict , lowerCamelCase__ :str ): UpperCamelCase__ :List[Any] = BitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): UpperCamelCase__ :Tuple = self.num_labels UpperCamelCase__ :int = BitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :int = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Tuple = BitBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :int = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase__ :int = None UpperCamelCase__ :Any = BitBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __a ( self :Tuple ): UpperCamelCase__ :Dict = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = config_and_inputs UpperCamelCase__ :Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _snake_case : Optional[int] = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) _snake_case : str = False _snake_case : Any = False _snake_case : Tuple = False _snake_case : Dict = False _snake_case : Optional[Any] = False def __a ( self :str ): UpperCamelCase__ :List[str] = BitModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def __a ( self :List[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self :Any ): return @unittest.skip(reason="""Bit does not output attentions""" ) def __a ( self :List[str] ): pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def __a ( self :int ): pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def __a ( self :Any ): pass def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :List[Any] = model_class(lowerCamelCase__ ) UpperCamelCase__ :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :str = [*signature.parameters.keys()] UpperCamelCase__ :Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def __a ( self :Optional[Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :int = model_class(config=lowerCamelCase__ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def __a ( self :Tuple ): def check_hidden_states_output(lowerCamelCase__ :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Any ): UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase__ :str = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase__ :Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ :Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase__ , UpperCamelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Optional[int] = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase__ :Tuple = layer_type UpperCamelCase__ :Optional[int] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :Dict = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def __a ( self :Dict ): pass def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :str = BitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> Tuple: UpperCamelCase__ :Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Any ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __a ( self :Any ): UpperCamelCase__ :Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) UpperCamelCase__ :Dict = self.default_image_processor UpperCamelCase__ :Union[str, Any] = prepare_img() UpperCamelCase__ :List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase__ :Any = model(**lowerCamelCase__ ) # verify the logits UpperCamelCase__ :Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (BitBackbone,) if is_torch_available() else () _snake_case : List[Any] = BitConfig _snake_case : List[str] = False def __a ( self :Dict ): UpperCamelCase__ :Tuple = BitModelTester(self )
45
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
1
import argparse import json import subprocess def A ( lowercase__ : List[str] , lowercase__ : List[Any] ) -> Tuple: UpperCamelCase__ :str = [] UpperCamelCase__ :List[str] = ( f"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) UpperCamelCase__ :Any = subprocess.run(lowercase__ , shell=lowercase__ , stdout=subprocess.PIPE ) UpperCamelCase__ :List[str] = output.stdout.decode("""utf-8""" ) UpperCamelCase__ :Union[str, Any] = json.loads(lowercase__ ) UpperCamelCase__ :Tuple = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowercase__ ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(lowercase__ ) ) if len(lowercase__ ) > 0: UpperCamelCase__ :Dict = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def A ( lowercase__ : Tuple ) -> Tuple: return values.split(""",""" ) UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) UpperCamelCase = parser.parse_args() get_runner_status(args.target_runners, args.token)
45
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
1
def A ( ) -> int: return 1 def A ( lowercase__ : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def A ( lowercase__ : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowercase__ ) def A ( lowercase__ : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowercase__ ) def A ( lowercase__ : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowercase__ ) def A ( lowercase__ : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowercase__ ) def A ( lowercase__ : int ) -> int: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowercase__ ) def A ( lowercase__ : int ) -> int: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowercase__ ) def A ( lowercase__ : int = 200 ) -> int: return two_pound(lowercase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
45
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
1
from decimal import Decimal, getcontext from math import ceil, factorial def A ( lowercase__ : int ) -> str: if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) UpperCamelCase__ :Union[str, Any] = precision UpperCamelCase__ :List[str] = ceil(precision / 14 ) UpperCamelCase__ :Optional[int] = 42_6880 * Decimal(1_0005 ).sqrt() UpperCamelCase__ :Any = 1 UpperCamelCase__ :str = 1359_1409 UpperCamelCase__ :int = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): UpperCamelCase__ :Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCamelCase = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any]=13 , lowerCamelCase__ :List[Any]=7 , lowerCamelCase__ :int=6 , lowerCamelCase__ :Union[str, Any]=17 , lowerCamelCase__ :Any=23 , lowerCamelCase__ :str=11 , lowerCamelCase__ :List[Any]=True , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :List[Any] = seq_length UpperCamelCase__ :Any = act_dim UpperCamelCase__ :str = state_dim UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :List[str] = max_length UpperCamelCase__ :List[str] = is_training def __a ( self :Optional[Any] ): UpperCamelCase__ :Tuple = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCamelCase__ :Optional[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCamelCase__ :str = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCamelCase__ :int = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCamelCase__ :Any = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) UpperCamelCase__ :List[Any] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCamelCase__ :Union[str, Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self :Optional[Any] ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Union[str, Any] , ): UpperCamelCase__ :List[str] = DecisionTransformerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Any = model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Optional[Any] = config_and_inputs UpperCamelCase__ :Optional[Any] = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Any = (DecisionTransformerModel,) if is_torch_available() else () _snake_case : List[str] = () _snake_case : Any = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _snake_case : int = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _snake_case : List[Any] = False _snake_case : Any = False _snake_case : List[Any] = False _snake_case : List[Any] = False _snake_case : List[str] = False _snake_case : Tuple = False _snake_case : List[Any] = False _snake_case : Union[str, Any] = False _snake_case : int = False def __a ( self :Optional[Any] ): UpperCamelCase__ :Tuple = DecisionTransformerModelTester(self ) UpperCamelCase__ :Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Optional[Any] ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Any = DecisionTransformerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __a ( self :Optional[Any] ): UpperCamelCase__ , UpperCamelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :int = model_class(lowerCamelCase__ ) UpperCamelCase__ :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :Optional[int] = [*signature.parameters.keys()] UpperCamelCase__ :Optional[Any] = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(lowerCamelCase__ )] , lowerCamelCase__ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = 2 # number of steps of autoregressive prediction we will perform UpperCamelCase__ :Tuple = 10 # defined by the RL environment, may be normalized UpperCamelCase__ :Union[str, Any] = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) UpperCamelCase__ :List[Any] = model.to(lowerCamelCase__ ) UpperCamelCase__ :int = model.config torch.manual_seed(0 ) UpperCamelCase__ :List[str] = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCamelCase__ , dtype=torch.floataa ) # env.reset() UpperCamelCase__ :Optional[int] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = torch.tensor(lowerCamelCase__ , device=lowerCamelCase__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCamelCase__ :List[str] = state UpperCamelCase__ :str = torch.zeros(1 , 0 , config.act_dim , device=lowerCamelCase__ , dtype=torch.floataa ) UpperCamelCase__ :Dict = torch.zeros(1 , 0 , device=lowerCamelCase__ , dtype=torch.floataa ) UpperCamelCase__ :List[Any] = torch.tensor(0 , device=lowerCamelCase__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCamelCase__ ): UpperCamelCase__ :int = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCamelCase__ )] , dim=1 ) UpperCamelCase__ :Any = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCamelCase__ )] , dim=1 ) UpperCamelCase__ :List[Any] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = model( states=lowerCamelCase__ , actions=lowerCamelCase__ , rewards=lowerCamelCase__ , returns_to_go=lowerCamelCase__ , timesteps=lowerCamelCase__ , attention_mask=lowerCamelCase__ , return_dict=lowerCamelCase__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCamelCase__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCamelCase__ :List[str] = action_pred[0, -1] UpperCamelCase__ :List[Any] = torch.cat([states, state] , dim=1 ) UpperCamelCase__ :Any = returns_to_go[0, -1] - reward UpperCamelCase__ :Any = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCamelCase__ :Dict = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCamelCase__ , dtype=torch.long ) * (step + 1)] , dim=1 )
45
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } UpperCamelCase = "▁" class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Any = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ["""input_ids""", """attention_mask"""] _snake_case : Tuple = BarthezTokenizer def __init__( self :Union[str, Any] , lowerCamelCase__ :str=None , lowerCamelCase__ :Union[str, Any]=None , lowerCamelCase__ :List[Any]="<s>" , lowerCamelCase__ :Optional[int]="</s>" , lowerCamelCase__ :Dict="</s>" , lowerCamelCase__ :Optional[int]="<s>" , lowerCamelCase__ :List[Any]="<unk>" , lowerCamelCase__ :Union[str, Any]="<pad>" , lowerCamelCase__ :int="<mask>" , **lowerCamelCase__ :Any , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ :Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ :int = vocab_file UpperCamelCase__ :Optional[int] = False if not self.vocab_file else True def __a ( self :Optional[Any] , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ :List[Any] = [self.cls_token_id] UpperCamelCase__ :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self :List[Any] , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): UpperCamelCase__ :Union[str, Any] = [self.sep_token_id] UpperCamelCase__ :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase__ :Any = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
45
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
1
class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[str] ): UpperCamelCase__ :List[str] = """""" UpperCamelCase__ :Optional[Any] = """""" UpperCamelCase__ :Union[str, Any] = [] def __a ( self :List[str] , lowerCamelCase__ :int , lowerCamelCase__ :int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCamelCase__ :str = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCamelCase__ :Optional[Any] = self.__min_dist_top_down_dp(lowerCamelCase__ , n - 1 ) UpperCamelCase__ :List[Any] = self.__min_dist_top_down_dp(m - 1 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCamelCase__ :List[Any] = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return self.dp[m][n] def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = worda UpperCamelCase__ :Union[str, Any] = worda UpperCamelCase__ :str = [[-1 for _ in range(len(lowerCamelCase__ ) )] for _ in range(len(lowerCamelCase__ ) )] return self.__min_dist_top_down_dp(len(lowerCamelCase__ ) - 1 , len(lowerCamelCase__ ) - 1 ) def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :str ): UpperCamelCase__ :Union[str, Any] = worda UpperCamelCase__ :str = worda UpperCamelCase__ :Dict = len(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = len(lowerCamelCase__ ) UpperCamelCase__ :Any = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCamelCase__ :str = j elif j == 0: # second string is empty UpperCamelCase__ :List[Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCamelCase__ :Tuple = self.dp[i - 1][j - 1] else: UpperCamelCase__ :Optional[int] = self.dp[i][j - 1] UpperCamelCase__ :str = self.dp[i - 1][j] UpperCamelCase__ :Union[str, Any] = self.dp[i - 1][j - 1] UpperCamelCase__ :List[str] = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": UpperCamelCase = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() UpperCamelCase = input("Enter the first string: ").strip() UpperCamelCase = input("Enter the second string: ").strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
45
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCamelCase = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[str] = """maskformer""" _snake_case : Any = {"""hidden_size""": """mask_feature_size"""} _snake_case : Union[str, Any] = ["""resnet""", """swin"""] _snake_case : List[str] = ["""detr"""] def __init__( self :Any , lowerCamelCase__ :int = 2_56 , lowerCamelCase__ :int = 2_56 , lowerCamelCase__ :float = 0.1 , lowerCamelCase__ :bool = False , lowerCamelCase__ :Optional[Dict] = None , lowerCamelCase__ :Optional[Dict] = None , lowerCamelCase__ :float = 0.02 , lowerCamelCase__ :float = 1.0 , lowerCamelCase__ :float = 1.0 , lowerCamelCase__ :float = 1.0 , lowerCamelCase__ :float = 20.0 , lowerCamelCase__ :Optional[bool] = None , **lowerCamelCase__ :str , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCamelCase__ :Optional[Any] = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ :List[Any] = backbone_config.pop("""model_type""" ) UpperCamelCase__ :Any = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ :Optional[int] = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCamelCase__ :Tuple = DetrConfig() else: # verify that the decoder is supported UpperCamelCase__ :Optional[Any] = ( decoder_config.pop("""model_type""" ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ :Any = CONFIG_MAPPING[decoder_type] UpperCamelCase__ :Optional[Any] = config_class.from_dict(lowerCamelCase__ ) UpperCamelCase__ :Tuple = backbone_config UpperCamelCase__ :Optional[int] = decoder_config # main feature dimension for the model UpperCamelCase__ :Union[str, Any] = fpn_feature_size UpperCamelCase__ :int = mask_feature_size # initializer UpperCamelCase__ :Union[str, Any] = init_std UpperCamelCase__ :Tuple = init_xavier_std # Hungarian matcher && loss UpperCamelCase__ :Dict = cross_entropy_weight UpperCamelCase__ :int = dice_weight UpperCamelCase__ :Optional[Any] = mask_weight UpperCamelCase__ :int = use_auxiliary_loss UpperCamelCase__ :List[str] = no_object_weight UpperCamelCase__ :Any = output_auxiliary_logits UpperCamelCase__ :Union[str, Any] = self.decoder_config.encoder_attention_heads UpperCamelCase__ :Any = self.decoder_config.num_hidden_layers super().__init__(**lowerCamelCase__ ) @classmethod def __a ( cls :Tuple , lowerCamelCase__ :PretrainedConfig , lowerCamelCase__ :PretrainedConfig , **lowerCamelCase__ :List[Any] ): return cls( backbone_config=lowerCamelCase__ , decoder_config=lowerCamelCase__ , **lowerCamelCase__ , ) def __a ( self :List[Any] ): UpperCamelCase__ :List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase__ :Dict = self.backbone_config.to_dict() UpperCamelCase__ :str = self.decoder_config.to_dict() UpperCamelCase__ :Optional[int] = self.__class__.model_type return output
45
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCamelCase = 6_378_137.0 UpperCamelCase = 6_356_752.314_245 UpperCamelCase = 6_378_137 def A ( lowercase__ : float , lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> float: UpperCamelCase__ :List[str] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCamelCase__ :str = atan((1 - flattening) * tan(radians(lowercase__ ) ) ) UpperCamelCase__ :Dict = atan((1 - flattening) * tan(radians(lowercase__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCamelCase__ :int = haversine_distance(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCamelCase__ :str = (b_lata + b_lata) / 2 UpperCamelCase__ :List[str] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCamelCase__ :str = (sin(lowercase__ ) ** 2) * (cos(lowercase__ ) ** 2) UpperCamelCase__ :Union[str, Any] = cos(sigma / 2 ) ** 2 UpperCamelCase__ :Tuple = (sigma - sin(lowercase__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCamelCase__ :Optional[int] = (cos(lowercase__ ) ** 2) * (sin(lowercase__ ) ** 2) UpperCamelCase__ :Optional[Any] = sin(sigma / 2 ) ** 2 UpperCamelCase__ :List[str] = (sigma + sin(lowercase__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
45
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase , UpperCamelCase , UpperCamelCase = False, False, False @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[int] = None _snake_case : bool = True _snake_case : bool = True _snake_case : Optional[str] = None # Automatically constructed _snake_case : ClassVar[str] = "dict" _snake_case : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) _snake_case : str = field(default="""Audio""" , init=lowercase , repr=lowercase ) def __call__( self :List[str] ): return self.pa_type def __a ( self :List[Any] , lowerCamelCase__ :Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {"bytes": None, "path": value} elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCamelCase__ :str = BytesIO() sf.write(lowerCamelCase__ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCamelCase__ :List[Any] = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: UpperCamelCase__ :int = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_27_67 UpperCamelCase__ :Optional[Any] = BytesIO(bytes() ) sf.write(lowerCamelCase__ , lowerCamelCase__ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def __a ( self :Any , lowerCamelCase__ :dict , lowerCamelCase__ :Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) UpperCamelCase__ , UpperCamelCase__ :int = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err UpperCamelCase__ :int = xsplitext(lowerCamelCase__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: UpperCamelCase__ :Dict = token_per_repo_id or {} UpperCamelCase__ :Tuple = path.split("""::""" )[-1] try: UpperCamelCase__ :List[str] = string_to_dict(lowerCamelCase__ , config.HUB_DATASETS_URL )["""repo_id"""] UpperCamelCase__ :Dict = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCamelCase__ :List[str] = None with xopen(lowerCamelCase__ , """rb""" , use_auth_token=lowerCamelCase__ ) as f: UpperCamelCase__ , UpperCamelCase__ :Dict = sf.read(lowerCamelCase__ ) else: UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = sf.read(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = array.T if self.mono: UpperCamelCase__ :str = librosa.to_mono(lowerCamelCase__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCamelCase__ :Optional[int] = librosa.resample(lowerCamelCase__ , orig_sr=lowerCamelCase__ , target_sr=self.sampling_rate ) UpperCamelCase__ :List[str] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Dict ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def __a ( self :List[str] , lowerCamelCase__ :Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): UpperCamelCase__ :List[Any] = pa.array([None] * len(lowerCamelCase__ ) , type=pa.binary() ) UpperCamelCase__ :int = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ :Dict = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) UpperCamelCase__ :Union[str, Any] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): UpperCamelCase__ :int = pa.array([Audio().encode_example(lowerCamelCase__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: UpperCamelCase__ :int = storage.field("""bytes""" ) else: UpperCamelCase__ :Union[str, Any] = pa.array([None] * len(lowerCamelCase__ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: UpperCamelCase__ :Tuple = storage.field("""path""" ) else: UpperCamelCase__ :Any = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) UpperCamelCase__ :Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(lowerCamelCase__ , self.pa_type ) def __a ( self :Dict , lowerCamelCase__ :pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowerCamelCase__ :int ): with xopen(lowerCamelCase__ , """rb""" ) as f: UpperCamelCase__ :List[Any] = f.read() return bytes_ UpperCamelCase__ :Any = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase__ :int = pa.array( [os.path.basename(lowerCamelCase__ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) UpperCamelCase__ :Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase__ , self.pa_type )
45
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
1
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
1
import string import numpy def A ( lowercase__ : int , lowercase__ : int ) -> int: return b if a == 0 else greatest_common_divisor(b % a , lowercase__ ) class lowerCAmelCase_ : """simple docstring""" _snake_case : int = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _snake_case : Dict = numpy.vectorize(lambda lowercase : x % 36 ) _snake_case : Optional[Any] = numpy.vectorize(lowercase ) def __init__( self :Optional[Any] , lowerCamelCase__ :numpy.ndarray ): UpperCamelCase__ :Dict = self.modulus(lowerCamelCase__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key UpperCamelCase__ :Any = encrypt_key.shape[0] def __a ( self :List[Any] , lowerCamelCase__ :str ): return self.key_string.index(lowerCamelCase__ ) def __a ( self :List[Any] , lowerCamelCase__ :int ): return self.key_string[round(lowerCamelCase__ )] def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCamelCase__ :str = det % len(self.key_string ) UpperCamelCase__ :int = len(self.key_string ) if greatest_common_divisor(lowerCamelCase__ , len(self.key_string ) ) != 1: UpperCamelCase__ :int = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(lowerCamelCase__ ) def __a ( self :int , lowerCamelCase__ :str ): UpperCamelCase__ :str = [char for char in text.upper() if char in self.key_string] UpperCamelCase__ :int = chars[-1] while len(lowerCamelCase__ ) % self.break_key != 0: chars.append(lowerCamelCase__ ) return "".join(lowerCamelCase__ ) def __a ( self :Tuple , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[int] = self.process_text(text.upper() ) UpperCamelCase__ :Optional[int] = """""" for i in range(0 , len(lowerCamelCase__ ) - self.break_key + 1 , self.break_key ): UpperCamelCase__ :Optional[Any] = text[i : i + self.break_key] UpperCamelCase__ :Any = [self.replace_letters(lowerCamelCase__ ) for char in batch] UpperCamelCase__ :Any = numpy.array([vec] ).T UpperCamelCase__ :Optional[int] = self.modulus(self.encrypt_key.dot(lowerCamelCase__ ) ).T.tolist()[ 0 ] UpperCamelCase__ :Dict = """""".join( self.replace_digits(lowerCamelCase__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __a ( self :Optional[int] ): UpperCamelCase__ :int = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCamelCase__ :int = det % len(self.key_string ) UpperCamelCase__ :List[Any] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: UpperCamelCase__ :Optional[Any] = i break UpperCamelCase__ :Optional[int] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowerCamelCase__ ) ) def __a ( self :Tuple , lowerCamelCase__ :str ): UpperCamelCase__ :List[str] = self.make_decrypt_key() UpperCamelCase__ :Dict = self.process_text(text.upper() ) UpperCamelCase__ :Any = """""" for i in range(0 , len(lowerCamelCase__ ) - self.break_key + 1 , self.break_key ): UpperCamelCase__ :List[str] = text[i : i + self.break_key] UpperCamelCase__ :Dict = [self.replace_letters(lowerCamelCase__ ) for char in batch] UpperCamelCase__ :List[str] = numpy.array([vec] ).T UpperCamelCase__ :Optional[Any] = self.modulus(decrypt_key.dot(lowerCamelCase__ ) ).T.tolist()[0] UpperCamelCase__ :str = """""".join( self.replace_digits(lowerCamelCase__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def A ( ) -> None: UpperCamelCase__ :str = int(input("""Enter the order of the encryption key: """ ) ) UpperCamelCase__ :List[Any] = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(lowercase__ ): UpperCamelCase__ :Any = [int(lowercase__ ) for x in input().split()] hill_matrix.append(lowercase__ ) UpperCamelCase__ :Dict = HillCipher(numpy.array(lowercase__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) UpperCamelCase__ :Optional[int] = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": UpperCamelCase__ :List[str] = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(lowercase__ ) ) elif option == "2": UpperCamelCase__ :Any = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def A ( lowercase__ : Optional[Any] ) -> Any: UpperCamelCase__ :List[Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def A ( lowercase__ : List[Any] ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ :List[str] = emb.weight.shape UpperCamelCase__ :Tuple = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) UpperCamelCase__ :Optional[Any] = emb.weight.data return lin_layer def A ( lowercase__ : Optional[int] , lowercase__ : List[str]=None ) -> str: UpperCamelCase__ :int = {} for old_key in state_dict.keys(): UpperCamelCase__ :Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCamelCase__ :Optional[int] = key.replace("""moe_layer.experts.0""" , f"""ffn.experts.expert_{expert_idx}""" ) else: UpperCamelCase__ :Tuple = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: UpperCamelCase__ :Optional[Any] = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: UpperCamelCase__ :List[Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: UpperCamelCase__ :List[str] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: UpperCamelCase__ :Union[str, Any] = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: UpperCamelCase__ :Optional[int] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: UpperCamelCase__ :Dict = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) UpperCamelCase__ :Tuple = state_dict[old_key] return new_dict def A ( lowercase__ : Any , lowercase__ : int , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : str = WEIGHTS_NAME ) -> Dict: UpperCamelCase__ :Dict = [] UpperCamelCase__ :Optional[Any] = 0 os.makedirs(lowercase__ , exist_ok=lowercase__ ) for expert in range(lowercase__ ): UpperCamelCase__ :Optional[int] = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(lowercase__ ): UpperCamelCase__ :Union[str, Any] = torch.load(lowercase__ )["""model"""] remove_ignore_keys_(lowercase__ ) UpperCamelCase__ :Union[str, Any] = rename_fairseq_keys(lowercase__ , lowercase__ ) UpperCamelCase__ :Optional[Any] = os.path.join( lowercase__ , weights_name.replace(""".bin""" , f"""-{len(lowercase__ )+1:05d}-of-???.bin""" ) ) torch.save(lowercase__ , lowercase__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(lowercase__ )[0]].dtype ) # Add the last block UpperCamelCase__ :Optional[int] = os.path.join(lowercase__ , weights_name.replace(""".bin""" , f"""-{len(lowercase__ )+1:05d}-of-???.bin""" ) ) UpperCamelCase__ :Union[str, Any] = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(lowercase__ ) UpperCamelCase__ :int = rename_fairseq_keys(lowercase__ , lowercase__ ) UpperCamelCase__ :List[Any] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(lowercase__ ) == 1: UpperCamelCase__ :Dict = os.path.join(lowercase__ , lowercase__ ) torch.save(lowercase__ , lowercase__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(lowercase__ , lowercase__ ) # Otherwise, let's build the index UpperCamelCase__ :Union[str, Any] = {} for idx, shard in enumerate(lowercase__ ): UpperCamelCase__ :Union[str, Any] = weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-{len(lowercase__ ):05d}.bin""" ) UpperCamelCase__ :str = os.path.join(lowercase__ , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowercase__ , os.path.join(lowercase__ , lowercase__ ) ) for key in shard: UpperCamelCase__ :Any = shard_file # Add the metadata UpperCamelCase__ :List[Any] = {"""total_size""": total_size} UpperCamelCase__ :str = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(lowercase__ , lowercase__ ) , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase__ :List[Any] = json.dumps(lowercase__ , indent=2 , sort_keys=lowercase__ ) + """\n""" f.write(lowercase__ ) return metadata, index if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) UpperCamelCase = parser.parse_args() UpperCamelCase , UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
45
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
1
from scipy.stats import spearmanr import datasets UpperCamelCase = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" UpperCamelCase = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" UpperCamelCase = r"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): """simple docstring""" def __a ( self :List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def __a ( self :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=False ): UpperCamelCase__ :Any = spearmanr(lowerCamelCase__ , lowerCamelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "vocab.txt"} UpperCamelCase = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } UpperCamelCase = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } UpperCamelCase = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Any = VOCAB_FILES_NAMES _snake_case : Any = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[Any] = PRETRAINED_INIT_CONFIGURATION _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ConvBertTokenizer def __init__( self :int , lowerCamelCase__ :Dict=None , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Optional[int]="[UNK]" , lowerCamelCase__ :Optional[Any]="[SEP]" , lowerCamelCase__ :List[Any]="[PAD]" , lowerCamelCase__ :List[str]="[CLS]" , lowerCamelCase__ :Optional[Any]="[MASK]" , lowerCamelCase__ :Any=True , lowerCamelCase__ :Tuple=None , **lowerCamelCase__ :Optional[int] , ): super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ :List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars ): UpperCamelCase__ :List[str] = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) ) UpperCamelCase__ :Optional[Any] = do_lower_case UpperCamelCase__ :List[str] = strip_accents UpperCamelCase__ :Optional[Any] = tokenize_chinese_chars UpperCamelCase__ :Optional[Any] = normalizer_class(**lowerCamelCase__ ) UpperCamelCase__ :Tuple = do_lower_case def __a ( self :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict=None ): UpperCamelCase__ :Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self :Dict , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): UpperCamelCase__ :Optional[int] = [self.sep_token_id] UpperCamelCase__ :Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[str] = None ): UpperCamelCase__ :Optional[int] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings UpperCamelCase = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(lowercase ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Union[str, Any] = """rag""" _snake_case : Optional[Any] = True def __init__( self :List[Any] , lowerCamelCase__ :Tuple=None , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Tuple=None , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , lowerCamelCase__ :Optional[Any]=None , lowerCamelCase__ :Optional[int]=None , lowerCamelCase__ :str=" / " , lowerCamelCase__ :List[Any]=" // " , lowerCamelCase__ :Tuple=5 , lowerCamelCase__ :List[str]=3_00 , lowerCamelCase__ :Any=7_68 , lowerCamelCase__ :Any=8 , lowerCamelCase__ :Optional[Any]="wiki_dpr" , lowerCamelCase__ :int="train" , lowerCamelCase__ :Optional[int]="compressed" , lowerCamelCase__ :Any=None , lowerCamelCase__ :Optional[Any]=None , lowerCamelCase__ :Union[str, Any]=False , lowerCamelCase__ :Optional[int]=False , lowerCamelCase__ :str=0.0 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=False , lowerCamelCase__ :Optional[int]=False , lowerCamelCase__ :str=False , lowerCamelCase__ :Tuple=True , lowerCamelCase__ :Dict=None , **lowerCamelCase__ :Optional[int] , ): super().__init__( bos_token_id=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , forced_eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , prefix=lowerCamelCase__ , vocab_size=lowerCamelCase__ , **lowerCamelCase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCamelCase__ :Dict = kwargs.pop("""question_encoder""" ) UpperCamelCase__ :int = question_encoder_config.pop("""model_type""" ) UpperCamelCase__ :str = kwargs.pop("""generator""" ) UpperCamelCase__ :List[Any] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig UpperCamelCase__ :List[Any] = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :Any = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = reduce_loss UpperCamelCase__ :Optional[int] = label_smoothing UpperCamelCase__ :Tuple = exclude_bos_score UpperCamelCase__ :Tuple = do_marginalize UpperCamelCase__ :Tuple = title_sep UpperCamelCase__ :Optional[Any] = doc_sep UpperCamelCase__ :Optional[int] = n_docs UpperCamelCase__ :List[str] = max_combined_length UpperCamelCase__ :Dict = dataset UpperCamelCase__ :Any = dataset_split UpperCamelCase__ :List[str] = index_name UpperCamelCase__ :Optional[Any] = retrieval_vector_size UpperCamelCase__ :Dict = retrieval_batch_size UpperCamelCase__ :Union[str, Any] = passages_path UpperCamelCase__ :Dict = index_path UpperCamelCase__ :int = use_dummy_dataset UpperCamelCase__ :Optional[Any] = output_retrieved UpperCamelCase__ :Any = do_deduplication UpperCamelCase__ :Tuple = use_cache if self.forced_eos_token_id is None: UpperCamelCase__ :List[Any] = getattr(self.generator , """forced_eos_token_id""" , lowerCamelCase__ ) @classmethod def __a ( cls :Optional[int] , lowerCamelCase__ :PretrainedConfig , lowerCamelCase__ :PretrainedConfig , **lowerCamelCase__ :List[str] ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Any = copy.deepcopy(self.__dict__ ) UpperCamelCase__ :Any = self.question_encoder.to_dict() UpperCamelCase__ :int = self.generator.to_dict() UpperCamelCase__ :str = self.__class__.model_type return output
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1
from math import factorial def A ( lowercase__ : int , lowercase__ : int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(lowercase__ ) // (factorial(lowercase__ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( "If a class of 40 students must be arranged into groups of", f'''4 for group projects, there are {combinations(40, 4)} ways''', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f'''are {combinations(10, 3)} ways that first, second and''', "third place can be awarded.", )
45
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def A ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Any , lowercase__ : List[str] ) -> str: # Initialise PyTorch model UpperCamelCase__ :Tuple = FunnelConfig.from_json_file(lowercase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase__ :int = FunnelBaseModel(lowercase__ ) if base_model else FunnelModel(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
45
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Union[str, Any] = """efficientformer""" def __init__( self :Dict , lowerCamelCase__ :List[int] = [3, 2, 6, 4] , lowerCamelCase__ :List[int] = [48, 96, 2_24, 4_48] , lowerCamelCase__ :List[bool] = [True, True, True, True] , lowerCamelCase__ :int = 4_48 , lowerCamelCase__ :int = 32 , lowerCamelCase__ :int = 4 , lowerCamelCase__ :int = 7 , lowerCamelCase__ :int = 5 , lowerCamelCase__ :int = 8 , lowerCamelCase__ :int = 4 , lowerCamelCase__ :float = 0.0 , lowerCamelCase__ :int = 16 , lowerCamelCase__ :int = 3 , lowerCamelCase__ :int = 3 , lowerCamelCase__ :int = 3 , lowerCamelCase__ :int = 2 , lowerCamelCase__ :int = 1 , lowerCamelCase__ :float = 0.0 , lowerCamelCase__ :int = 1 , lowerCamelCase__ :bool = True , lowerCamelCase__ :bool = True , lowerCamelCase__ :float = 1e-5 , lowerCamelCase__ :str = "gelu" , lowerCamelCase__ :float = 0.02 , lowerCamelCase__ :float = 1e-12 , lowerCamelCase__ :int = 2_24 , lowerCamelCase__ :float = 1e-05 , **lowerCamelCase__ :Optional[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :Dict = hidden_sizes UpperCamelCase__ :str = num_hidden_layers UpperCamelCase__ :Any = num_attention_heads UpperCamelCase__ :Dict = initializer_range UpperCamelCase__ :Optional[int] = layer_norm_eps UpperCamelCase__ :List[Any] = patch_size UpperCamelCase__ :Optional[int] = num_channels UpperCamelCase__ :Tuple = depths UpperCamelCase__ :Optional[Any] = mlp_expansion_ratio UpperCamelCase__ :Dict = downsamples UpperCamelCase__ :int = dim UpperCamelCase__ :Dict = key_dim UpperCamelCase__ :Optional[Any] = attention_ratio UpperCamelCase__ :str = resolution UpperCamelCase__ :str = pool_size UpperCamelCase__ :str = downsample_patch_size UpperCamelCase__ :Optional[Any] = downsample_stride UpperCamelCase__ :Tuple = downsample_pad UpperCamelCase__ :List[str] = drop_path_rate UpperCamelCase__ :List[Any] = num_metaad_blocks UpperCamelCase__ :Dict = distillation UpperCamelCase__ :Dict = use_layer_scale UpperCamelCase__ :str = layer_scale_init_value UpperCamelCase__ :Union[str, Any] = image_size UpperCamelCase__ :Tuple = batch_norm_eps
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = GPTSwaTokenizer _snake_case : Dict = False _snake_case : str = True _snake_case : int = False def __a ( self :Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ :int = GPTSwaTokenizer(lowerCamelCase__ , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self :Dict , lowerCamelCase__ :Tuple ): UpperCamelCase__ :List[Any] = """This is a test""" UpperCamelCase__ :Optional[Any] = """This is a test""" return input_text, output_text def __a ( self :Optional[Any] ): UpperCamelCase__ :int = """<s>""" UpperCamelCase__ :Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowerCamelCase__ ) , 20_00 ) def __a ( self :List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def __a ( self :Any ): UpperCamelCase__ :Union[str, Any] = GPTSwaTokenizer(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) UpperCamelCase__ :Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( lowerCamelCase__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on UpperCamelCase__ :Tuple = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) UpperCamelCase__ :Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) # fmt: off self.assertListEqual( lowerCamelCase__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def __a ( self :Optional[Any] ): UpperCamelCase__ :Dict = GPTSwaTokenizer(lowerCamelCase__ ) UpperCamelCase__ :List[str] = ["""This is a test""", """I was born in 92000, and this is falsé."""] UpperCamelCase__ :Union[str, Any] = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertListEqual(tokenizer.encode_fast(lowerCamelCase__ ) , lowerCamelCase__ ) # Test that decode_fast returns the input text for text, token_ids in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(tokenizer.decode_fast(lowerCamelCase__ ) , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): UpperCamelCase__ :Tuple = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off UpperCamelCase__ :str = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=lowerCamelCase__ , )
45
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[Any] = """Wav2Vec2FeatureExtractor""" _snake_case : Optional[int] = """AutoTokenizer""" def __init__( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): super().__init__(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = self.feature_extractor UpperCamelCase__ :Optional[int] = False @classmethod def __a ( cls :Tuple , lowerCamelCase__ :Any , **lowerCamelCase__ :str ): try: return super().from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , lowerCamelCase__ , ) UpperCamelCase__ :List[str] = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :Dict = WavaVecaCTCTokenizer.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) return cls(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) def __call__( self :Tuple , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Optional[int] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) UpperCamelCase__ :Optional[Any] = kwargs.pop("""raw_speech""" ) else: UpperCamelCase__ :int = kwargs.pop("""audio""" , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = kwargs.pop("""sampling_rate""" , lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = kwargs.pop("""text""" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: UpperCamelCase__ :Tuple = args[0] UpperCamelCase__ :Optional[int] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: UpperCamelCase__ :List[Any] = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: UpperCamelCase__ :List[Any] = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: UpperCamelCase__ :int = encodings["""input_ids"""] return inputs def __a ( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Optional[int] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :Tuple = kwargs.pop("""input_features""" , lowerCamelCase__ ) UpperCamelCase__ :str = kwargs.pop("""labels""" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: UpperCamelCase__ :Dict = args[0] UpperCamelCase__ :int = args[1:] if input_features is not None: UpperCamelCase__ :Dict = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if labels is not None: UpperCamelCase__ :int = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: UpperCamelCase__ :List[Any] = labels["""input_ids"""] return input_features def __a ( self :List[Any] , *lowerCamelCase__ :Tuple , **lowerCamelCase__ :List[Any] ): return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :Tuple , *lowerCamelCase__ :str , **lowerCamelCase__ :List[Any] ): return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @contextmanager def __a ( self :Optional[Any] ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) UpperCamelCase__ :Optional[int] = True UpperCamelCase__ :Dict = self.tokenizer yield UpperCamelCase__ :int = self.feature_extractor UpperCamelCase__ :Union[str, Any] = False
45
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
1
def A ( ) -> Optional[Any]: UpperCamelCase__ :int = 0 for i in range(1 , 1001 ): total += i**i return str(lowercase__ )[-10:] if __name__ == "__main__": print(solution())
45
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
1
import math import unittest def A ( lowercase__ : int ) -> bool: assert isinstance(lowercase__ , lowercase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Tuple ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __a ( self :Any ): with self.assertRaises(lowerCamelCase__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
45
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
1
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def A ( lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : Optional[Any] ) -> Optional[Any]: if isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ :Tuple = np.full((len(lowercase__ ), sequence_length, 2) , lowercase__ ) else: UpperCamelCase__ :List[str] = np.full((len(lowercase__ ), sequence_length) , lowercase__ ) for i, tensor in enumerate(lowercase__ ): if padding_side == "right": if isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ :List[Any] = tensor[:sequence_length] else: UpperCamelCase__ :Dict = tensor[:sequence_length] else: if isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ :Optional[int] = tensor[:sequence_length] else: UpperCamelCase__ :Optional[int] = tensor[:sequence_length] return out_tensor.tolist() def A ( lowercase__ : Dict ) -> Optional[Any]: UpperCamelCase__ :List[Any] = ord(lowercase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True UpperCamelCase__ :str = unicodedata.category(lowercase__ ) if cat.startswith("""P""" ): return True return False @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : PreTrainedTokenizerBase _snake_case : Union[bool, str, PaddingStrategy] = True _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : int = -100 _snake_case : str = "pt" def __a ( self :Any , lowerCamelCase__ :int ): import torch UpperCamelCase__ :str = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase__ :str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCamelCase__ :Any = self.tokenizer.pad( lowerCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch UpperCamelCase__ :List[Any] = torch.tensor(batch["""entity_ids"""] ).shape[1] UpperCamelCase__ :Optional[int] = self.tokenizer.padding_side if padding_side == "right": UpperCamelCase__ :Optional[Any] = [ list(lowerCamelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase__ )) for label in labels ] else: UpperCamelCase__ :Union[str, Any] = [ [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase__ )) + list(lowerCamelCase__ ) for label in labels ] UpperCamelCase__ :Optional[Any] = [feature["""ner_tags"""] for feature in features] UpperCamelCase__ :Optional[int] = padding_tensor(lowerCamelCase__ , -1 , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [feature["""original_entity_spans"""] for feature in features] UpperCamelCase__ :Tuple = padding_tensor(lowerCamelCase__ , (-1, -1) , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = {k: torch.tensor(lowerCamelCase__ , dtype=torch.intaa ) for k, v in batch.items()} return batch
45
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def A ( lowercase__ : int , lowercase__ : Union[str, Any]=False ) -> Dict: try: UpperCamelCase__ :str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase__ :Dict = default else: # KEY is set, convert it to True or False. try: UpperCamelCase__ :Any = strtobool(lowercase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value UpperCamelCase = parse_flag_from_env("RUN_SLOW", default=False) UpperCamelCase = parse_flag_from_env("RUN_REMOTE", default=False) UpperCamelCase = parse_flag_from_env("RUN_LOCAL", default=True) UpperCamelCase = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression UpperCamelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") UpperCamelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") UpperCamelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio UpperCamelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam UpperCamelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility UpperCamelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows UpperCamelCase = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def A ( lowercase__ : Any ) -> List[Any]: try: import faiss # noqa except ImportError: UpperCamelCase__ :Optional[Any] = unittest.skip("""test requires faiss""" )(lowercase__ ) return test_case def A ( lowercase__ : List[str] ) -> List[str]: try: import regex # noqa except ImportError: UpperCamelCase__ :List[str] = unittest.skip("""test requires regex""" )(lowercase__ ) return test_case def A ( lowercase__ : int ) -> List[str]: try: import elasticsearch # noqa except ImportError: UpperCamelCase__ :Tuple = unittest.skip("""test requires elasticsearch""" )(lowercase__ ) return test_case def A ( lowercase__ : Dict ) -> str: try: import sqlalchemy # noqa except ImportError: UpperCamelCase__ :str = unittest.skip("""test requires sqlalchemy""" )(lowercase__ ) return test_case def A ( lowercase__ : List[str] ) -> List[str]: if not config.TORCH_AVAILABLE: UpperCamelCase__ :Tuple = unittest.skip("""test requires PyTorch""" )(lowercase__ ) return test_case def A ( lowercase__ : Dict ) -> Union[str, Any]: if not config.TF_AVAILABLE: UpperCamelCase__ :List[str] = unittest.skip("""test requires TensorFlow""" )(lowercase__ ) return test_case def A ( lowercase__ : Tuple ) -> Optional[int]: if not config.JAX_AVAILABLE: UpperCamelCase__ :str = unittest.skip("""test requires JAX""" )(lowercase__ ) return test_case def A ( lowercase__ : List[Any] ) -> Optional[Any]: if not config.PIL_AVAILABLE: UpperCamelCase__ :Optional[int] = unittest.skip("""test requires Pillow""" )(lowercase__ ) return test_case def A ( lowercase__ : Any ) -> Any: try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(lowercase__ ) else: return test_case def A ( lowercase__ : Union[str, Any] ) -> Any: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(lowercase__ ) else: return test_case def A ( lowercase__ : Optional[Any] ) -> Union[str, Any]: try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(lowercase__ ) else: return test_case def A ( lowercase__ : Optional[Any] ) -> str: def _require_spacy_model(lowercase__ : Tuple ): try: import spacy # noqa F401 spacy.load(lowercase__ ) except ImportError: return unittest.skip("""test requires spacy""" )(lowercase__ ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(lowercase__ ) )(lowercase__ ) else: return test_case return _require_spacy_model def A ( lowercase__ : int ) -> List[str]: try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(lowercase__ ) else: return test_case def A ( lowercase__ : Dict ) -> List[str]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(lowercase__ ) else: return test_case def A ( lowercase__ : List[str] ) -> Dict: if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase__ :Optional[int] = unittest.skip("""test is slow""" )(lowercase__ ) return test_case def A ( lowercase__ : Optional[Any] ) -> int: if not _run_local_tests or _run_local_tests == 0: UpperCamelCase__ :Dict = unittest.skip("""test is local""" )(lowercase__ ) return test_case def A ( lowercase__ : Optional[Any] ) -> List[Any]: if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase__ :str = unittest.skip("""test is packaged""" )(lowercase__ ) return test_case def A ( lowercase__ : int ) -> List[Any]: if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase__ :List[Any] = unittest.skip("""test requires remote""" )(lowercase__ ) return test_case def A ( *lowercase__ : List[Any] ) -> str: def decorate(cls : Optional[Any] ): for name, fn in cls.__dict__.items(): if callable(lowercase__ ) and name.startswith("""test""" ): for decorator in decorators: UpperCamelCase__ :Any = decorator(lowercase__ ) setattr(cls , lowercase__ , lowercase__ ) return cls return decorate class lowerCAmelCase_ ( lowercase ): """simple docstring""" pass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Tuple = 0 _snake_case : Any = 1 _snake_case : Union[str, Any] = 2 @contextmanager def A ( lowercase__ : Dict=OfflineSimulationMode.CONNECTION_FAILS , lowercase__ : Tuple=1E-16 ) -> Union[str, Any]: UpperCamelCase__ :List[str] = requests.Session().request def timeout_request(lowercase__ : str , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , **lowercase__ : int ): # Change the url to an invalid url so that the connection hangs UpperCamelCase__ :Dict = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) UpperCamelCase__ :List[str] = timeout try: return online_request(lowercase__ , lowercase__ , **lowercase__ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase__ :Optional[int] = url UpperCamelCase__ :Union[str, Any] = e.args[0] UpperCamelCase__ :List[Any] = (max_retry_error.args[0].replace("""10.255.255.1""" , f"""OfflineMock[{url}]""" ),) UpperCamelCase__ :Optional[Any] = (max_retry_error,) raise def raise_connection_error(lowercase__ : Union[str, Any] , lowercase__ : Tuple , **lowercase__ : Any ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=lowercase__ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , lowercase__ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , lowercase__ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase__ ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def A ( *lowercase__ : Tuple , **lowercase__ : List[Any] ) -> Optional[int]: UpperCamelCase__ :Any = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowercase__ , **lowercase__ ) as tmp_dir: try: os.chdir(lowercase__ ) yield finally: os.chdir(lowercase__ ) @contextmanager def A ( ) -> List[Any]: import gc gc.collect() UpperCamelCase__ :Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def A ( ) -> Optional[int]: import gc gc.collect() UpperCamelCase__ :int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def A ( lowercase__ : List[str] , lowercase__ : List[str] ) -> str: return deepcopy(lowercase__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowercase__ ).integers(0 , 100 , 10 ).tolist() def A ( lowercase__ : str ) -> Union[str, Any]: import decorator from requests.exceptions import HTTPError def _wrapper(lowercase__ : int , *lowercase__ : str , **lowercase__ : Optional[int] ): try: return func(*lowercase__ , **lowercase__ ) except HTTPError as err: if str(lowercase__ ).startswith("""500""" ) or str(lowercase__ ).startswith("""502""" ): pytest.xfail(str(lowercase__ ) ) raise err return decorator.decorator(_wrapper , lowercase__ ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , lowerCamelCase__ :Union[str, Any] ): UpperCamelCase__ :Union[str, Any] = returncode UpperCamelCase__ :Tuple = stdout UpperCamelCase__ :List[Any] = stderr async def A ( lowercase__ : Union[str, Any] , lowercase__ : List[Any] ) -> Dict: while True: UpperCamelCase__ :str = await stream.readline() if line: callback(lowercase__ ) else: break async def A ( lowercase__ : Optional[Any] , lowercase__ : Tuple=None , lowercase__ : Union[str, Any]=None , lowercase__ : Dict=None , lowercase__ : Optional[Any]=False , lowercase__ : List[Any]=False ) -> _RunOutput: if echo: print("""\nRunning: """ , """ """.join(lowercase__ ) ) UpperCamelCase__ :int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowercase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowercase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase__ :Dict = [] UpperCamelCase__ :int = [] def tee(lowercase__ : int , lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Tuple="" ): UpperCamelCase__ :int = line.decode("""utf-8""" ).rstrip() sink.append(lowercase__ ) if not quiet: print(lowercase__ , lowercase__ , file=lowercase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowercase__ : tee(lowercase__ , lowercase__ , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda lowercase__ : tee(lowercase__ , lowercase__ , sys.stderr , label="""stderr:""" ) ), ] , timeout=lowercase__ , ) return _RunOutput(await p.wait() , lowercase__ , lowercase__ ) def A ( lowercase__ : Tuple , lowercase__ : Optional[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : List[str]=180 , lowercase__ : Any=False , lowercase__ : Optional[Any]=True ) -> _RunOutput: UpperCamelCase__ :Optional[Any] = asyncio.get_event_loop() UpperCamelCase__ :Optional[int] = loop.run_until_complete( _stream_subprocess(lowercase__ , env=lowercase__ , stdin=lowercase__ , timeout=lowercase__ , quiet=lowercase__ , echo=lowercase__ ) ) UpperCamelCase__ :Tuple = """ """.join(lowercase__ ) if result.returncode > 0: UpperCamelCase__ :str = """\n""".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def A ( ) -> Optional[int]: UpperCamelCase__ :str = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) UpperCamelCase__ :Tuple = re.sub(r"""^gw""" , """""" , lowercase__ , 0 , re.M ) return int(lowercase__ ) def A ( ) -> str: UpperCamelCase__ :Optional[Any] = 2_9500 UpperCamelCase__ :List[str] = pytest_xdist_worker_id() return port + uniq_delta
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def A ( lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : int ) -> List[Any]: UpperCamelCase__ :Tuple = os.path.abspath(lowercase__ ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model UpperCamelCase__ :Any = tf.train.list_variables(lowercase__ ) UpperCamelCase__ :Optional[Any] = [] UpperCamelCase__ :List[str] = [] UpperCamelCase__ :Tuple = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") UpperCamelCase__ :Tuple = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' UpperCamelCase__ :str = name[1:] # figure out how many levels deep the name is UpperCamelCase__ :Union[str, Any] = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(lowercase__ ) # read data UpperCamelCase__ :List[str] = tf.train.load_variable(lowercase__ , lowercase__ ) names.append("""/""".join(lowercase__ ) ) arrays.append(lowercase__ ) logger.info(f"""Read a total of {len(lowercase__ ):,} layers""" ) # Sanity check if len(set(lowercase__ ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(lowercase__ ) )})""" ) UpperCamelCase__ :Dict = list(set(lowercase__ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(lowercase__ , lowercase__ ): UpperCamelCase__ :str = full_name.split("""/""" ) UpperCamelCase__ :Union[str, Any] = model UpperCamelCase__ :Optional[Any] = [] for i, m_name in enumerate(lowercase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): UpperCamelCase__ :Optional[Any] = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) UpperCamelCase__ :Optional[Any] = getattr(lowercase__ , """embeddings""" ) UpperCamelCase__ :List[str] = getattr(lowercase__ , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) UpperCamelCase__ :Dict = getattr(lowercase__ , """encoder""" ) UpperCamelCase__ :Optional[Any] = getattr(lowercase__ , """layer""" ) UpperCamelCase__ :List[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) UpperCamelCase__ :Optional[Any] = getattr(lowercase__ , """pooler""" ) UpperCamelCase__ :Optional[Any] = getattr(lowercase__ , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) UpperCamelCase__ :str = getattr(lowercase__ , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) UpperCamelCase__ :int = getattr(lowercase__ , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) UpperCamelCase__ :Dict = getattr(lowercase__ , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) UpperCamelCase__ :int = getattr(lowercase__ , """token_type_embeddings""" ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append("""weight""" ) UpperCamelCase__ :Union[str, Any] = getattr(lowercase__ , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) UpperCamelCase__ :Optional[Any] = getattr(lowercase__ , """attention""" ) UpperCamelCase__ :int = getattr(lowercase__ , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) UpperCamelCase__ :Optional[Any] = getattr(lowercase__ , """attention""" ) UpperCamelCase__ :List[Any] = getattr(lowercase__ , """output""" ) UpperCamelCase__ :List[str] = getattr(lowercase__ , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) UpperCamelCase__ :Dict = getattr(lowercase__ , """attention""" ) UpperCamelCase__ :List[Any] = getattr(lowercase__ , """output""" ) UpperCamelCase__ :Optional[Any] = getattr(lowercase__ , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) UpperCamelCase__ :Tuple = getattr(lowercase__ , """output""" ) UpperCamelCase__ :List[Any] = getattr(lowercase__ , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) UpperCamelCase__ :List[str] = getattr(lowercase__ , """output""" ) UpperCamelCase__ :Optional[int] = getattr(lowercase__ , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) UpperCamelCase__ :List[str] = getattr(lowercase__ , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) UpperCamelCase__ :int = getattr(lowercase__ , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) UpperCamelCase__ :Optional[int] = getattr(lowercase__ , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) UpperCamelCase__ :Optional[int] = getattr(lowercase__ , """intermediate""" ) UpperCamelCase__ :Optional[int] = getattr(lowercase__ , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) UpperCamelCase__ :int = getattr(lowercase__ , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) UpperCamelCase__ :Any = getattr(lowercase__ , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) UpperCamelCase__ :Optional[Any] = getattr(lowercase__ , """weight""" ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary UpperCamelCase__ :int = """.""".join(lowercase__ ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , lowercase__ ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" , lowercase__ ): UpperCamelCase__ :Tuple = array.reshape(pointer.data.shape ) if "kernel" in full_name: UpperCamelCase__ :Union[str, Any] = array.transpose() if pointer.shape == array.shape: UpperCamelCase__ :Tuple = torch.from_numpy(lowercase__ ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def A ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Optional[int] ) -> Optional[Any]: # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) UpperCamelCase__ :Dict = BertConfig.from_json_file(lowercase__ ) UpperCamelCase__ :Dict = BertModel(lowercase__ ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) UpperCamelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
45
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( lowercase__ : Optional[int] , lowercase__ : Any ) -> Any: assert isinstance(lowercase__ , lowercase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A ( lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: UpperCamelCase__ :List[str] = tmp_path / """cache""" UpperCamelCase__ :Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ :int = JsonDatasetReader(lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ ).read() _check_json_dataset(lowercase__ , lowercase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def A ( lowercase__ : str , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] ) -> Tuple: UpperCamelCase__ :Tuple = tmp_path / """cache""" UpperCamelCase__ :Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase__ :Union[str, Any] = features.copy() if features else default_expected_features UpperCamelCase__ :Union[str, Any] = ( Features({feature: Value(lowercase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Any = JsonDatasetReader(lowercase__ , features=lowercase__ , cache_dir=lowercase__ ).read() _check_json_dataset(lowercase__ , lowercase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] ) -> List[str]: UpperCamelCase__ :Union[str, Any] = tmp_path / """cache""" UpperCamelCase__ :List[str] = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} UpperCamelCase__ :Optional[int] = features.copy() if features else default_expected_features UpperCamelCase__ :Dict = ( Features({feature: Value(lowercase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :str = JsonDatasetReader(lowercase__ , features=lowercase__ , cache_dir=lowercase__ ).read() assert isinstance(lowercase__ , lowercase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A ( lowercase__ : Optional[Any] , lowercase__ : int ) -> Dict: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCamelCase__ :int = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} UpperCamelCase__ :Tuple = features.copy() UpperCamelCase__ :Union[str, Any] = ( Features({feature: Value(lowercase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Any = tmp_path / """cache""" UpperCamelCase__ :Any = JsonDatasetReader(lowercase__ , features=lowercase__ , cache_dir=lowercase__ ).read() assert isinstance(lowercase__ , lowercase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A ( lowercase__ : str , lowercase__ : Any , lowercase__ : Optional[Any] ) -> Any: UpperCamelCase__ :Tuple = tmp_path / """cache""" UpperCamelCase__ :Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase__ :Any = JsonDatasetReader(lowercase__ , cache_dir=lowercase__ , split=lowercase__ ).read() _check_json_dataset(lowercase__ , lowercase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def A ( lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> Tuple: if issubclass(lowercase__ , lowercase__ ): UpperCamelCase__ :Any = jsonl_path elif issubclass(lowercase__ , lowercase__ ): UpperCamelCase__ :List[str] = [jsonl_path] UpperCamelCase__ :Optional[int] = tmp_path / """cache""" UpperCamelCase__ :str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase__ :List[Any] = JsonDatasetReader(lowercase__ , cache_dir=lowercase__ ).read() _check_json_dataset(lowercase__ , lowercase__ ) def A ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Tuple=("train",) ) -> Optional[Any]: assert isinstance(lowercase__ , lowercase__ ) for split in splits: UpperCamelCase__ :Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> Optional[Any]: UpperCamelCase__ :int = tmp_path / """cache""" UpperCamelCase__ :List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ :List[Any] = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=lowercase__ , keep_in_memory=lowercase__ ).read() _check_json_datasetdict(lowercase__ , lowercase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def A ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : List[Any] ) -> List[Any]: UpperCamelCase__ :int = tmp_path / """cache""" UpperCamelCase__ :Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase__ :str = features.copy() if features else default_expected_features UpperCamelCase__ :Optional[int] = ( Features({feature: Value(lowercase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :List[Any] = JsonDatasetReader({"""train""": jsonl_path} , features=lowercase__ , cache_dir=lowercase__ ).read() _check_json_datasetdict(lowercase__ , lowercase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A ( lowercase__ : Tuple , lowercase__ : str , lowercase__ : int ) -> List[Any]: if split: UpperCamelCase__ :Dict = {split: jsonl_path} else: UpperCamelCase__ :Tuple = """train""" UpperCamelCase__ :Any = {"""train""": jsonl_path, """test""": jsonl_path} UpperCamelCase__ :Union[str, Any] = tmp_path / """cache""" UpperCamelCase__ :Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase__ :int = JsonDatasetReader(lowercase__ , cache_dir=lowercase__ ).read() _check_json_datasetdict(lowercase__ , lowercase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( lowercase__ : List[str] ) -> List[str]: return json.load(lowercase__ ) def A ( lowercase__ : Optional[Any] ) -> Any: return [json.loads(lowercase__ ) for line in buffer] class lowerCAmelCase_ : """simple docstring""" @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def __a ( self :str , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCamelCase__ , lowerCamelCase__ , lines=lowerCamelCase__ ).write() buffer.seek(0 ) UpperCamelCase__ :str = load_json_function(lowerCamelCase__ ) assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert isinstance(exported_content[0] , lowerCamelCase__ ) assert len(lowerCamelCase__ ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def __a ( self :Any , lowerCamelCase__ :Any , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCamelCase__ , lowerCamelCase__ , lines=lowerCamelCase__ , orient=lowerCamelCase__ ).write() buffer.seek(0 ) UpperCamelCase__ :Optional[int] = load_json(lowerCamelCase__ ) assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCamelCase__ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowerCamelCase__ ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def __a ( self :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCamelCase__ , lowerCamelCase__ , lines=lowerCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ :Union[str, Any] = load_json_function(lowerCamelCase__ ) assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert isinstance(exported_content[0] , lowerCamelCase__ ) assert len(lowerCamelCase__ ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def __a ( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :str , lowerCamelCase__ :Dict , lowerCamelCase__ :Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCamelCase__ , lowerCamelCase__ , lines=lowerCamelCase__ , orient=lowerCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ :Optional[Any] = load_json(lowerCamelCase__ ) assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCamelCase__ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowerCamelCase__ ) == 10 def __a ( self :Tuple , lowerCamelCase__ :List[Any] ): with pytest.raises(lowerCamelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCamelCase__ , lowerCamelCase__ , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Optional[Any] = tmp_path_factory.mktemp("""data""" ) / f"""test.json.{extension}""" UpperCamelCase__ :Optional[int] = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(lowerCamelCase__ , lowerCamelCase__ , compression=lowerCamelCase__ ).write() with fsspec.open(lowerCamelCase__ , """rb""" , compression="""infer""" ) as f: UpperCamelCase__ :Union[str, Any] = f.read() with fsspec.open(lowerCamelCase__ , """rb""" , compression="""infer""" ) as f: UpperCamelCase__ :int = f.read() assert exported_content == original_content
45
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = "pytorch_model.bin" @dataclasses.dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) _snake_case : Optional[str] = dataclasses.field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) _snake_case : str = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) _snake_case : Optional[str] = dataclasses.field( default=lowercase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) _snake_case : Optional[str] = dataclasses.field( default=lowercase , metadata={"""help""": """The name of the task to train on."""} , ) _snake_case : Optional[List[str]] = dataclasses.field( default=lowercase , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) _snake_case : Optional[str] = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) _snake_case : Optional[str] = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) _snake_case : Optional[int] = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) _snake_case : Optional[bool] = dataclasses.field( default=lowercase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) _snake_case : Optional[bool] = dataclasses.field( default=lowercase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) _snake_case : Optional[bool] = dataclasses.field( default=lowercase , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) _snake_case : Optional[int] = dataclasses.field( default=100 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) _snake_case : Optional[int] = dataclasses.field( default=lowercase , metadata={"""help""": """Random seed for initialization."""} , ) def A ( lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] ) -> List[str]: UpperCamelCase__ :Union[str, Any] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCamelCase__ :List[str] = dataset.filter(lambda lowercase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCamelCase__ :Any = int(eval_result * len(lowercase__ ) ) print(lowercase__ ) UpperCamelCase__ :Optional[Any] = dataset.sort("""probability""" , reverse=lowercase__ ) UpperCamelCase__ :Optional[Any] = dataset.select(range(lowercase__ ) ) UpperCamelCase__ :int = dataset.remove_columns(["""label""", """probability"""] ) UpperCamelCase__ :str = dataset.rename_column("""prediction""" , """label""" ) UpperCamelCase__ :Optional[Any] = dataset.map(lambda lowercase__ : {"label": idalabel[example["label"]]} ) UpperCamelCase__ :Dict = dataset.shuffle(seed=args.seed ) UpperCamelCase__ :int = os.path.join(lowercase__ , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(lowercase__ , index=lowercase__ ) else: dataset.to_json(lowercase__ ) def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : Dict , **lowercase__ : Dict ) -> Tuple: UpperCamelCase__ :int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCamelCase__ :List[str] = STModelArguments(model_name_or_path=lowercase__ ) UpperCamelCase__ :str = STDataArguments(train_file=lowercase__ , infer_file=lowercase__ ) UpperCamelCase__ :List[Any] = STTrainingArguments(output_dir=lowercase__ ) UpperCamelCase__ :List[Any] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase__ ).items(): setattr(lowercase__ , lowercase__ , lowercase__ ) for key, value in kwargs.items(): if hasattr(lowercase__ , lowercase__ ): setattr(lowercase__ , lowercase__ , lowercase__ ) # Sanity checks UpperCamelCase__ :Tuple = {} UpperCamelCase__ :Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCamelCase__ :Optional[Any] = args.train_file UpperCamelCase__ :Optional[int] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCamelCase__ :Optional[Any] = args.eval_file for key in data_files: UpperCamelCase__ :Dict = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: UpperCamelCase__ :Any = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) UpperCamelCase__ :Optional[int] = f"""{args.output_dir}/self-train_iter-{{}}""".format UpperCamelCase__ :str = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowercase__ ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) accelerator.wait_for_everyone() UpperCamelCase__ :Union[str, Any] = None UpperCamelCase__ :str = None UpperCamelCase__ :List[str] = 0 UpperCamelCase__ :Optional[int] = False # Show the progress bar UpperCamelCase__ :Optional[int] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCamelCase__ :int = data_dir_format(lowercase__ ) assert os.path.exists(lowercase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCamelCase__ :Tuple = os.path.join(lowercase__ , """stage-1""" ) UpperCamelCase__ :Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase__ , lowercase__ ): arguments_dict.update({key: value} ) UpperCamelCase__ :Union[str, Any] = os.path.join(lowercase__ , """best-checkpoint""" , lowercase__ ) if os.path.exists(lowercase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , lowercase__ , lowercase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , lowercase__ ) finetune(**lowercase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowercase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , lowercase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCamelCase__ :List[Any] = os.path.join(lowercase__ , """best-checkpoint""" ) UpperCamelCase__ :List[Any] = os.path.join(lowercase__ , """stage-2""" ) # Update arguments_dict UpperCamelCase__ :List[Any] = model_path UpperCamelCase__ :Any = data_files["""train"""] UpperCamelCase__ :Optional[int] = current_output_dir UpperCamelCase__ :str = os.path.join(lowercase__ , """best-checkpoint""" , lowercase__ ) if os.path.exists(lowercase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , lowercase__ , lowercase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , lowercase__ ) finetune(**lowercase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowercase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , lowercase__ ) UpperCamelCase__ :Tuple = iteration UpperCamelCase__ :List[Any] = data_dir_format(iteration + 1 ) UpperCamelCase__ :Optional[Any] = AutoConfig.from_pretrained(os.path.join(lowercase__ , """best-checkpoint""" ) ) UpperCamelCase__ :List[str] = config.idalabel UpperCamelCase__ :Union[str, Any] = os.path.join(lowercase__ , """eval_results_best-checkpoint.json""" ) UpperCamelCase__ :Dict = os.path.join(lowercase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(lowercase__ ) with open(lowercase__ , """r""" ) as f: UpperCamelCase__ :List[Any] = float(json.load(lowercase__ )[args.eval_metric] ) UpperCamelCase__ :Any = os.path.join(lowercase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(lowercase__ ) # Loading the dataset from local csv or json files. UpperCamelCase__ :Any = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] UpperCamelCase__ :Optional[int] = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(lowercase__ , exist_ok=lowercase__ ) shutil.copy(lowercase__ , os.path.join(lowercase__ , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(lowercase__ ): shutil.copy(lowercase__ , os.path.join(lowercase__ , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.wait_for_everyone() UpperCamelCase__ :List[str] = os.path.join(lowercase__ , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCamelCase__ :List[Any] = eval_result if best_iteration is None: UpperCamelCase__ :Union[str, Any] = new_iteration UpperCamelCase__ :List[str] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCamelCase__ :Optional[Any] = new_iteration UpperCamelCase__ :Optional[int] = new_eval_result UpperCamelCase__ :Optional[int] = 0 else: if new_eval_result == best_eval_result: UpperCamelCase__ :str = new_iteration UpperCamelCase__ :Dict = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCamelCase__ :Optional[int] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , lowercase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase__ , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(lowercase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase__ , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(lowercase__ , """eval_results_best-iteration.json""" ) , )
45
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( lowercase__ : np.ndarray ) -> np.ndarray: return input_array.reshape((input_array.size, 1) ) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int ) -> np.ndarray: UpperCamelCase__ :Union[str, Any] = np.nan for i in range(lowercase__ ): UpperCamelCase__ :Optional[Any] = features[:, labels == i] UpperCamelCase__ :Any = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ :Tuple = data - column_reshape(lowercase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowercase__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ :str = np.dot(lowercase__ , centered_data.T ) return covariance_sum / features.shape[1] def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int ) -> np.ndarray: UpperCamelCase__ :List[Any] = features.mean(1 ) UpperCamelCase__ :List[Any] = np.nan for i in range(lowercase__ ): UpperCamelCase__ :int = features[:, labels == i] UpperCamelCase__ :Optional[int] = data.shape[1] UpperCamelCase__ :Union[str, Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowercase__ ) - column_reshape(lowercase__ ) , (column_reshape(lowercase__ ) - column_reshape(lowercase__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ :Optional[int] = device_data * np.dot( column_reshape(lowercase__ ) - column_reshape(lowercase__ ) , (column_reshape(lowercase__ ) - column_reshape(lowercase__ )).T , ) return covariance_sum / features.shape[1] def A ( lowercase__ : np.ndarray , lowercase__ : int ) -> np.ndarray: # Check if the features have been loaded if features.any(): UpperCamelCase__ :List[str] = features.mean(1 ) # Center the dataset UpperCamelCase__ :List[Any] = features - np.reshape(lowercase__ , (data_mean.size, 1) ) UpperCamelCase__ :List[str] = np.dot(lowercase__ , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ :Any = np.linalg.eigh(lowercase__ ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ :int = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ :Union[str, Any] = np.dot(filtered_eigenvectors.T , lowercase__ ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=lowercase__ ) logging.error("""Dataset empty""" ) raise AssertionError def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : int ) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ :int = eigh( covariance_between_classes(lowercase__ , lowercase__ , lowercase__ ) , covariance_within_classes(lowercase__ , lowercase__ , lowercase__ ) , ) UpperCamelCase__ :Optional[Any] = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = np.linalg.svd(lowercase__ ) UpperCamelCase__ :str = svd_matrix[:, 0:dimensions] UpperCamelCase__ :Optional[Any] = np.dot(filtered_svd_matrix.T , lowercase__ ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=lowercase__ ) logging.error("""Dataset empty""" ) raise AssertionError def A ( ) -> None: # Create dummy dataset with 2 classes and 3 features UpperCamelCase__ :List[str] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ :int = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :Optional[int] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowercase__ ) as error_info: UpperCamelCase__ :str = linear_discriminant_analysis( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if isinstance(lowercase__ , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def A ( ) -> None: UpperCamelCase__ :Union[str, Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :Union[str, Any] = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowercase__ ) as error_info: UpperCamelCase__ :Optional[int] = principal_component_analysis(lowercase__ , lowercase__ ) if not np.allclose(lowercase__ , lowercase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
45
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Dict = """""" _snake_case : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _snake_case : str = None # compression type in fsspec. ex: "gzip" _snake_case : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self :Optional[Any] , lowerCamelCase__ :str = "" , lowerCamelCase__ :Optional[str] = None , lowerCamelCase__ :Optional[dict] = None , **lowerCamelCase__ :Dict ): super().__init__(self , **lowerCamelCase__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCamelCase__ :Optional[int] = fsspec.open( lowerCamelCase__ , mode="""rb""" , protocol=lowerCamelCase__ , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCamelCase__ :str = os.path.basename(self.file.path.split("""::""" )[0] ) UpperCamelCase__ :List[Any] = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) UpperCamelCase__ :Any = None @classmethod def __a ( cls :Any , lowerCamelCase__ :Union[str, Any] ): # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCamelCase__ ).lstrip("""/""" ) def __a ( self :List[Any] ): if self.dir_cache is None: UpperCamelCase__ :List[str] = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} UpperCamelCase__ :Tuple = {f["""name"""]: f} def __a ( self :List[Any] , lowerCamelCase__ :str ): return self.file.open().read() def __a ( self :str , lowerCamelCase__ :str , lowerCamelCase__ :str = "rb" , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :Any=True , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Any = self._strip_protocol(lowerCamelCase__ ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : str = """bz2""" _snake_case : Union[str, Any] = """bz2""" _snake_case : Tuple = """.bz2""" class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : int = """gzip""" _snake_case : Tuple = """gzip""" _snake_case : Optional[int] = """.gz""" class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Union[str, Any] = """lz4""" _snake_case : str = """lz4""" _snake_case : Tuple = """.lz4""" class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = """xz""" _snake_case : Union[str, Any] = """xz""" _snake_case : Optional[Any] = """.xz""" class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Tuple = """zstd""" _snake_case : Optional[int] = """zstd""" _snake_case : Dict = """.zst""" def __init__( self :Optional[int] , lowerCamelCase__ :str , lowerCamelCase__ :str = "rb" , lowerCamelCase__ :Optional[str] = None , lowerCamelCase__ :Optional[dict] = None , lowerCamelCase__ :int = DEFAULT_BLOCK_SIZE , **lowerCamelCase__ :Dict , ): super().__init__( fo=lowerCamelCase__ , mode=lowerCamelCase__ , target_protocol=lowerCamelCase__ , target_options=lowerCamelCase__ , block_size=lowerCamelCase__ , **lowerCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCamelCase__ :int = self.file.__enter__ class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Union[str, Any] ): UpperCamelCase__ :int = file_ def __enter__( self :str ): self._file.__enter__() return self def __exit__( self :int , *lowerCamelCase__ :int , **lowerCamelCase__ :Dict ): self._file.__exit__(*lowerCamelCase__ , **lowerCamelCase__ ) def __iter__( self :Union[str, Any] ): return iter(self._file ) def __a ( self :Union[str, Any] ): return next(self._file ) def __getattr__( self :str , lowerCamelCase__ :Any ): return getattr(self._file , lowerCamelCase__ ) def fixed_enter(*lowerCamelCase__ :Optional[Any] , **lowerCamelCase__ :int ): return WrappedFile(_enter(*lowerCamelCase__ , **lowerCamelCase__ ) ) UpperCamelCase__ :List[Any] = fixed_enter
45
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
1
from __future__ import annotations from typing import Any class lowerCAmelCase_ : """simple docstring""" def __init__( self :Tuple , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :float = 0 ): UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = row, column UpperCamelCase__ :Optional[Any] = [[default_value for c in range(lowerCamelCase__ )] for r in range(lowerCamelCase__ )] def __str__( self :Union[str, Any] ): UpperCamelCase__ :Optional[Any] = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier UpperCamelCase__ :str = 0 for row_vector in self.array: for obj in row_vector: UpperCamelCase__ :int = max(lowerCamelCase__ , len(str(lowerCamelCase__ ) ) ) UpperCamelCase__ :str = f"""%{max_element_length}s""" # Make string and return def single_line(lowerCamelCase__ :list[float] ) -> str: nonlocal string_format_identifier UpperCamelCase__ :Optional[int] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowerCamelCase__ ) for row_vector in self.array ) return s def __repr__( self :Optional[Any] ): return str(self ) def __a ( self :str , lowerCamelCase__ :tuple[int, int] ): if not (isinstance(lowerCamelCase__ , (list, tuple) ) and len(lowerCamelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self :Optional[int] , lowerCamelCase__ :tuple[int, int] ): assert self.validate_indicies(lowerCamelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self :int , lowerCamelCase__ :tuple[int, int] , lowerCamelCase__ :float ): assert self.validate_indicies(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = value def __add__( self :int , lowerCamelCase__ :Matrix ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert self.row == another.row and self.column == another.column # Add UpperCamelCase__ :Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase__ :Dict = self[r, c] + another[r, c] return result def __neg__( self :Dict ): UpperCamelCase__ :str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase__ :Tuple = -self[r, c] return result def __sub__( self :Optional[int] , lowerCamelCase__ :Matrix ): return self + (-another) def __mul__( self :Union[str, Any] , lowerCamelCase__ :int | float | Matrix ): if isinstance(lowerCamelCase__ , (int, float) ): # Scalar multiplication UpperCamelCase__ :Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase__ :Optional[int] = self[r, c] * another return result elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): # Matrix multiplication assert self.column == another.row UpperCamelCase__ :Optional[Any] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCamelCase__ :List[str] = f"""Unsupported type given for another ({type(lowerCamelCase__ )})""" raise TypeError(lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Optional[int] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase__ :Tuple = self[r, c] return result def __a ( self :Tuple , lowerCamelCase__ :Matrix , lowerCamelCase__ :Matrix ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCamelCase__ :Optional[int] = v.transpose() UpperCamelCase__ :Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ) -> None: # a^(-1) UpperCamelCase__ :List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCamelCase__ :Optional[Any] = 1 print(f"""a^(-1) is {ainv}""" ) # u, v UpperCamelCase__ :List[Any] = Matrix(3 , 1 , 0 ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = 1, 2, -3 UpperCamelCase__ :Tuple = Matrix(3 , 1 , 0 ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(lowercase__ , lowercase__ )}""" ) def A ( ) -> None: import doctest doctest.testmod() testa()
45
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
1
def A ( lowercase__ : List[Any] , lowercase__ : str ) -> List[str]: UpperCamelCase__ :int = 0 UpperCamelCase__ :Any = len(lowercase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase__ :Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None UpperCamelCase__ :List[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCamelCase__ :List[Any] = left UpperCamelCase__ :Tuple = point elif point > right: UpperCamelCase__ :str = right UpperCamelCase__ :Tuple = point else: if item < current_item: UpperCamelCase__ :Dict = point - 1 else: UpperCamelCase__ :List[Any] = point + 1 return None def A ( lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Optional[int] ) -> str: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase__ :Tuple = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) elif point > right: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase__ , lowercase__ , lowercase__ , point - 1 ) else: return interpolation_search_by_recursion( lowercase__ , lowercase__ , point + 1 , lowercase__ ) def A ( lowercase__ : int ) -> str: if collection != sorted(lowercase__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys UpperCamelCase = 0 if debug == 1: UpperCamelCase = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") UpperCamelCase = 67 UpperCamelCase = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print("Not found")
45
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int]=13 , lowerCamelCase__ :str=32 , lowerCamelCase__ :Optional[Any]=3 , lowerCamelCase__ :Union[str, Any]=4 , lowerCamelCase__ :str=[10, 20, 30, 40] , lowerCamelCase__ :Any=[2, 2, 3, 2] , lowerCamelCase__ :List[str]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Tuple=37 , lowerCamelCase__ :int="gelu" , lowerCamelCase__ :Optional[Any]=10 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :int=["stage2", "stage3", "stage4"] , lowerCamelCase__ :Optional[int]=[2, 3, 4] , lowerCamelCase__ :Optional[int]=None , ): UpperCamelCase__ :Union[str, Any] = parent UpperCamelCase__ :List[str] = batch_size UpperCamelCase__ :Dict = image_size UpperCamelCase__ :Tuple = num_channels UpperCamelCase__ :Tuple = num_stages UpperCamelCase__ :Optional[Any] = hidden_sizes UpperCamelCase__ :Optional[int] = depths UpperCamelCase__ :Dict = is_training UpperCamelCase__ :Union[str, Any] = use_labels UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :Optional[Any] = num_labels UpperCamelCase__ :Optional[Any] = initializer_range UpperCamelCase__ :Union[str, Any] = out_features UpperCamelCase__ :Any = out_indices UpperCamelCase__ :int = scope def __a ( self :Optional[Any] ): UpperCamelCase__ :Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ :Union[str, Any] = self.get_config() return config, pixel_values, labels def __a ( self :List[str] ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Union[str, Any] ): UpperCamelCase__ :List[Any] = ConvNextModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Union[str, Any] = ConvNextForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :List[str] = ConvNextBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase__ :List[Any] = None UpperCamelCase__ :Optional[Any] = ConvNextBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :int = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[int] = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = config_and_inputs UpperCamelCase__ :str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _snake_case : Dict = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) _snake_case : Any = True _snake_case : Dict = False _snake_case : Tuple = False _snake_case : str = False _snake_case : Any = False def __a ( self :str ): UpperCamelCase__ :List[str] = ConvNextModelTester(self ) UpperCamelCase__ :Any = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def __a ( self :int ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self :List[str] ): return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def __a ( self :Dict ): pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def __a ( self :List[str] ): pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def __a ( self :Dict ): pass def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Dict = model_class(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :Tuple = [*signature.parameters.keys()] UpperCamelCase__ :Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def __a ( self :int ): def check_hidden_states_output(lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict ): UpperCamelCase__ :List[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase__ :int = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase__ :Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ :Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :int = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :Optional[Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def __a ( self :Any ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :str = ConvNextModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> str: UpperCamelCase__ :Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[int] ): return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def __a ( self :Tuple ): UpperCamelCase__ :Tuple = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Dict = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase__ :int = model(**lowerCamelCase__ ) # verify the logits UpperCamelCase__ :Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase , lowercase ): """simple docstring""" _snake_case : List[Any] = (ConvNextBackbone,) if is_torch_available() else () _snake_case : Dict = ConvNextConfig _snake_case : Any = False def __a ( self :Dict ): UpperCamelCase__ :Union[str, Any] = ConvNextModelTester(self )
45
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCamelCase = logging.get_logger(__name__) def A ( lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : Optional[int] ) -> Optional[int]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def A ( lowercase__ : np.ndarray , lowercase__ : Optional[str] , lowercase__ : Optional[str] ) -> int: UpperCamelCase__ :Dict = to_pil_image(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ :Tuple = pil_image.size UpperCamelCase__ :Union[str, Any] = pytesseract.image_to_data(lowercase__ , lang=lowercase__ , output_type="""dict""" , config=lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates UpperCamelCase__ :Optional[int] = [idx for idx, word in enumerate(lowercase__ ) if not word.strip()] UpperCamelCase__ :List[Any] = [word for idx, word in enumerate(lowercase__ ) if idx not in irrelevant_indices] UpperCamelCase__ :List[str] = [coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] UpperCamelCase__ :str = [coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] UpperCamelCase__ :List[str] = [coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] UpperCamelCase__ :Tuple = [coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase__ :Optional[int] = [] for x, y, w, h in zip(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): UpperCamelCase__ :Tuple = [x, y, x + w, y + h] actual_boxes.append(lowercase__ ) # finally, normalize the bounding boxes UpperCamelCase__ :int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase__ , lowercase__ , lowercase__ ) ) assert len(lowercase__ ) == len(lowercase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[str] = ["""pixel_values"""] def __init__( self :Optional[Any] , lowerCamelCase__ :bool = True , lowerCamelCase__ :Dict[str, int] = None , lowerCamelCase__ :PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ :bool = True , lowerCamelCase__ :float = 1 / 2_55 , lowerCamelCase__ :bool = True , lowerCamelCase__ :Union[float, Iterable[float]] = None , lowerCamelCase__ :Union[float, Iterable[float]] = None , lowerCamelCase__ :bool = True , lowerCamelCase__ :Optional[str] = None , lowerCamelCase__ :Optional[str] = "" , **lowerCamelCase__ :int , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :str = size if size is not None else {"""height""": 2_24, """width""": 2_24} UpperCamelCase__ :Union[str, Any] = get_size_dict(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = do_resize UpperCamelCase__ :Optional[Any] = size UpperCamelCase__ :Any = resample UpperCamelCase__ :int = do_rescale UpperCamelCase__ :Optional[int] = rescale_value UpperCamelCase__ :Union[str, Any] = do_normalize UpperCamelCase__ :int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ :Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCamelCase__ :Optional[int] = apply_ocr UpperCamelCase__ :Tuple = ocr_lang UpperCamelCase__ :List[Any] = tesseract_config def __a ( self :Optional[int] , lowerCamelCase__ :np.ndarray , lowerCamelCase__ :Dict[str, int] , lowerCamelCase__ :PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCamelCase__ :Any = (size["""height"""], size["""width"""]) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :int , lowerCamelCase__ :np.ndarray , lowerCamelCase__ :Union[int, float] , lowerCamelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ :int , ): return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :Union[str, Any] , lowerCamelCase__ :np.ndarray , lowerCamelCase__ :Union[float, Iterable[float]] , lowerCamelCase__ :Union[float, Iterable[float]] , lowerCamelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ :Optional[int] , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :Optional[Any] , lowerCamelCase__ :ImageInput , lowerCamelCase__ :bool = None , lowerCamelCase__ :Dict[str, int] = None , lowerCamelCase__ :Tuple=None , lowerCamelCase__ :bool = None , lowerCamelCase__ :float = None , lowerCamelCase__ :bool = None , lowerCamelCase__ :Union[float, Iterable[float]] = None , lowerCamelCase__ :Union[float, Iterable[float]] = None , lowerCamelCase__ :bool = None , lowerCamelCase__ :Optional[str] = None , lowerCamelCase__ :Optional[str] = None , lowerCamelCase__ :Optional[Union[str, TensorType]] = None , lowerCamelCase__ :ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase__ :List[Any] , ): UpperCamelCase__ :str = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ :str = size if size is not None else self.size UpperCamelCase__ :Any = get_size_dict(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = resample if resample is not None else self.resample UpperCamelCase__ :Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ :Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ :str = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ :str = image_std if image_std is not None else self.image_std UpperCamelCase__ :List[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase__ :Union[str, Any] = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase__ :Any = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase__ :Dict = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. UpperCamelCase__ :List[str] = [to_numpy_array(lowerCamelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) UpperCamelCase__ :Tuple = [] UpperCamelCase__ :List[Any] = [] for image in images: UpperCamelCase__ , UpperCamelCase__ :List[Any] = apply_tesseract(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) words_batch.append(lowerCamelCase__ ) boxes_batch.append(lowerCamelCase__ ) if do_resize: UpperCamelCase__ :List[Any] = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_rescale: UpperCamelCase__ :Any = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: UpperCamelCase__ :str = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] UpperCamelCase__ :int = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] UpperCamelCase__ :int = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowerCamelCase__ ) if apply_ocr: UpperCamelCase__ :Optional[Any] = words_batch UpperCamelCase__ :Dict = boxes_batch return data
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[Any] = """vit_msn""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Optional[int]=7_68 , lowerCamelCase__ :List[str]=12 , lowerCamelCase__ :Optional[Any]=12 , lowerCamelCase__ :Tuple=30_72 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Any=0.0 , lowerCamelCase__ :List[str]=0.0 , lowerCamelCase__ :str=0.02 , lowerCamelCase__ :str=1e-06 , lowerCamelCase__ :Tuple=2_24 , lowerCamelCase__ :Any=16 , lowerCamelCase__ :int=3 , lowerCamelCase__ :List[str]=True , **lowerCamelCase__ :Union[str, Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :str = hidden_size UpperCamelCase__ :Optional[int] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :str = intermediate_size UpperCamelCase__ :Optional[int] = hidden_act UpperCamelCase__ :Any = hidden_dropout_prob UpperCamelCase__ :str = attention_probs_dropout_prob UpperCamelCase__ :Optional[Any] = initializer_range UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Any = image_size UpperCamelCase__ :Tuple = patch_size UpperCamelCase__ :Union[str, Any] = num_channels UpperCamelCase__ :Tuple = qkv_bias
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Dict , *lowerCamelCase__ :Tuple , **lowerCamelCase__ :Union[str, Any] ): warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def A ( lowercase__ : Optional[int] , lowercase__ : Tuple ) -> Optional[int]: UpperCamelCase__ :List[Any] = XCLIPTextConfig() # derive patch size from model name UpperCamelCase__ :Dict = model_name.find("""patch""" ) UpperCamelCase__ :Any = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) UpperCamelCase__ :Dict = XCLIPVisionConfig(patch_size=lowercase__ , num_frames=lowercase__ ) if "large" in model_name: UpperCamelCase__ :Dict = 768 UpperCamelCase__ :List[str] = 3072 UpperCamelCase__ :int = 12 UpperCamelCase__ :Tuple = 1024 UpperCamelCase__ :Union[str, Any] = 4096 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :Dict = 24 UpperCamelCase__ :Any = 768 UpperCamelCase__ :List[Any] = 3072 if model_name == "xclip-large-patch14-16-frames": UpperCamelCase__ :Optional[Any] = 336 UpperCamelCase__ :List[str] = XCLIPConfig.from_text_vision_configs(lowercase__ , lowercase__ ) if "large" in model_name: UpperCamelCase__ :List[str] = 768 return config def A ( lowercase__ : Dict ) -> Optional[int]: # text encoder if name == "token_embedding.weight": UpperCamelCase__ :str = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": UpperCamelCase__ :str = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: UpperCamelCase__ :List[Any] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: UpperCamelCase__ :Tuple = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: UpperCamelCase__ :Optional[int] = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: UpperCamelCase__ :Optional[Any] = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): UpperCamelCase__ :Union[str, Any] = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: UpperCamelCase__ :int = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: UpperCamelCase__ :Optional[Any] = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": UpperCamelCase__ :Union[str, Any] = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": UpperCamelCase__ :Any = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): UpperCamelCase__ :Optional[int] = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: UpperCamelCase__ :List[str] = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: UpperCamelCase__ :Optional[int] = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: UpperCamelCase__ :Any = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: UpperCamelCase__ :Union[str, Any] = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: UpperCamelCase__ :List[Any] = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: UpperCamelCase__ :List[Any] = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: UpperCamelCase__ :Union[str, Any] = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": UpperCamelCase__ :List[str] = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): UpperCamelCase__ :Optional[Any] = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): UpperCamelCase__ :Optional[Any] = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def A ( lowercase__ : Optional[int] , lowercase__ : Dict ) -> Dict: for key in orig_state_dict.copy().keys(): UpperCamelCase__ :int = orig_state_dict.pop(lowercase__ ) if "attn.in_proj" in key: UpperCamelCase__ :Any = key.split(""".""" ) if key.startswith("""visual""" ): UpperCamelCase__ :str = key_split[3] UpperCamelCase__ :str = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCamelCase__ :List[str] = val[ :dim, : ] UpperCamelCase__ :Any = val[ dim : dim * 2, : ] UpperCamelCase__ :Dict = val[ -dim:, : ] else: UpperCamelCase__ :Optional[Any] = val[ :dim ] UpperCamelCase__ :str = val[ dim : dim * 2 ] UpperCamelCase__ :List[Any] = val[ -dim: ] else: if "weight" in key: UpperCamelCase__ :List[Any] = val[ :dim, : ] UpperCamelCase__ :Optional[Any] = val[ dim : dim * 2, : ] UpperCamelCase__ :Union[str, Any] = val[ -dim:, : ] else: UpperCamelCase__ :int = val[:dim] UpperCamelCase__ :List[Any] = val[ dim : dim * 2 ] UpperCamelCase__ :Any = val[-dim:] elif key.startswith("""mit""" ): UpperCamelCase__ :Dict = key_split[2] UpperCamelCase__ :List[Any] = config.vision_config.mit_hidden_size if "weight" in key: UpperCamelCase__ :Dict = val[:dim, :] UpperCamelCase__ :Any = val[dim : dim * 2, :] UpperCamelCase__ :List[str] = val[-dim:, :] else: UpperCamelCase__ :Union[str, Any] = val[:dim] UpperCamelCase__ :List[str] = val[dim : dim * 2] UpperCamelCase__ :str = val[-dim:] else: UpperCamelCase__ :Dict = key_split[2] UpperCamelCase__ :Tuple = config.text_config.hidden_size if "weight" in key: UpperCamelCase__ :List[str] = val[:dim, :] UpperCamelCase__ :Optional[Any] = val[ dim : dim * 2, : ] UpperCamelCase__ :Dict = val[-dim:, :] else: UpperCamelCase__ :Tuple = val[:dim] UpperCamelCase__ :Tuple = val[ dim : dim * 2 ] UpperCamelCase__ :Dict = val[-dim:] else: UpperCamelCase__ :Dict = rename_key(lowercase__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCamelCase__ :Union[str, Any] = val.T UpperCamelCase__ :int = val return orig_state_dict def A ( lowercase__ : Dict ) -> Union[str, Any]: if num_frames == 8: UpperCamelCase__ :int = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: UpperCamelCase__ :int = """eating_spaghetti.npy""" elif num_frames == 32: UpperCamelCase__ :Any = """eating_spaghetti_32_frames.npy""" UpperCamelCase__ :List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=lowercase__ , repo_type="""dataset""" , ) UpperCamelCase__ :Optional[Any] = np.load(lowercase__ ) return list(lowercase__ ) def A ( lowercase__ : int , lowercase__ : Dict=None , lowercase__ : List[str]=False ) -> int: UpperCamelCase__ :Dict = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } UpperCamelCase__ :List[Any] = model_to_url[model_name] UpperCamelCase__ :Optional[int] = 8 if "16-frames" in model_name: UpperCamelCase__ :Union[str, Any] = 16 elif "shot" in model_name: UpperCamelCase__ :Any = 32 UpperCamelCase__ :Dict = get_xclip_config(lowercase__ , lowercase__ ) UpperCamelCase__ :List[Any] = XCLIPModel(lowercase__ ) model.eval() if "drive" in checkpoint_url: UpperCamelCase__ :int = """pytorch_model.bin""" gdown.cached_download(lowercase__ , lowercase__ , quiet=lowercase__ ) UpperCamelCase__ :str = torch.load(lowercase__ , map_location="""cpu""" )["""model"""] else: UpperCamelCase__ :Tuple = torch.hub.load_state_dict_from_url(lowercase__ )["""model"""] UpperCamelCase__ :Optional[int] = convert_state_dict(lowercase__ , lowercase__ ) UpperCamelCase__ :Tuple = XCLIPModel(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ :str = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCamelCase__ :Dict = 336 if model_name == """xclip-large-patch14-16-frames""" else 224 UpperCamelCase__ :Union[str, Any] = VideoMAEImageProcessor(size=lowercase__ ) UpperCamelCase__ :Any = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) UpperCamelCase__ :Any = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) UpperCamelCase__ :Optional[Any] = XCLIPProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) UpperCamelCase__ :Union[str, Any] = prepare_video(lowercase__ ) UpperCamelCase__ :List[Any] = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=lowercase__ , return_tensors="""pt""" , padding=lowercase__ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): UpperCamelCase__ :str = model(**lowercase__ ) # Verify outputs UpperCamelCase__ :Dict = outputs.logits_per_video UpperCamelCase__ :Dict = logits_per_video.softmax(dim=1 ) print("""Probs:""" , lowercase__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCamelCase__ :Optional[Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCamelCase__ :Optional[int] = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]] ) elif model_name == "xclip-base-patch16": UpperCamelCase__ :Dict = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCamelCase__ :str = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]] ) elif model_name == "xclip-large-patch14": UpperCamelCase__ :Dict = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCamelCase__ :str = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCamelCase__ :List[str] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCamelCase__ :int = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCamelCase__ :str = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCamelCase__ :Any = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCamelCase__ :List[Any] = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCamelCase__ :Dict = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCamelCase__ :Any = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCamelCase__ :Optional[int] = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCamelCase__ :List[str] = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCamelCase__ :Dict = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCamelCase__ :int = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCamelCase__ :Optional[Any] = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(lowercase__ , organization="""nielsr""" ) processor.push_to_hub(lowercase__ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(lowercase__ , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
45
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
1
from datetime import datetime import requests def A ( lowercase__ : str ) -> bytes: UpperCamelCase__ :Any = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" UpperCamelCase__ :Optional[int] = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowercase__ ).content if __name__ == "__main__": UpperCamelCase = input("Enter Video/IGTV url: ").strip() UpperCamelCase = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
45
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( lowercase__ : str , lowercase__ : complex , lowercase__ : str = "x" , lowercase__ : float = 10**-10 , lowercase__ : int = 1 , ) -> complex: UpperCamelCase__ :Optional[int] = symbols(lowercase__ ) UpperCamelCase__ :Dict = lambdify(lowercase__ , lowercase__ ) UpperCamelCase__ :Any = lambdify(lowercase__ , diff(lowercase__ , lowercase__ ) ) UpperCamelCase__ :List[str] = starting_point while True: if diff_function(lowercase__ ) != 0: UpperCamelCase__ :List[Any] = prev_guess - multiplicity * func(lowercase__ ) / diff_function( lowercase__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase__ :Optional[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}''') # Find value of e print( "The root of log(y) - 1 = 0 is ", f'''{newton_raphson('log(y) - 1', 2, variable='y')}''', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f'''{newton_raphson('exp(x) - 1', 10, precision=0.005)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
45
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Tuple = ["""input_features""", """attention_mask"""] def __init__( self :int , lowerCamelCase__ :Optional[int]=80 , lowerCamelCase__ :Any=1_60_00 , lowerCamelCase__ :Union[str, Any]=80 , lowerCamelCase__ :List[Any]=0.0 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :str=True , **lowerCamelCase__ :str , ): super().__init__(feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = num_mel_bins UpperCamelCase__ :Dict = do_ceptral_normalize UpperCamelCase__ :Optional[Any] = normalize_means UpperCamelCase__ :Optional[int] = normalize_vars UpperCamelCase__ :List[Any] = True def __a ( self :Any , lowerCamelCase__ :np.ndarray , ): UpperCamelCase__ :Union[str, Any] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers UpperCamelCase__ :str = torch.from_numpy(lowerCamelCase__ ).unsqueeze(0 ) UpperCamelCase__ :Tuple = ta_kaldi.fbank(lowerCamelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __a ( lowerCamelCase__ :np.ndarray , lowerCamelCase__ :int , lowerCamelCase__ :Optional[bool] = True , lowerCamelCase__ :Optional[bool] = True , lowerCamelCase__ :float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: UpperCamelCase__ :Any = x[:input_length].mean(axis=0 ) UpperCamelCase__ :int = np.subtract(lowerCamelCase__ , lowerCamelCase__ ) if normalize_vars: UpperCamelCase__ :str = x[:input_length].std(axis=0 ) UpperCamelCase__ :str = np.divide(lowerCamelCase__ , lowerCamelCase__ ) if input_length < x.shape[0]: UpperCamelCase__ :List[str] = padding_value # make sure array is in float32 UpperCamelCase__ :Optional[int] = x.astype(np.floataa ) return x def __a ( self :Optional[Any] , lowerCamelCase__ :List[np.ndarray] , lowerCamelCase__ :Optional[np.ndarray] = None ): UpperCamelCase__ :List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCamelCase__ , lowerCamelCase__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCamelCase__ , lowerCamelCase__ ) ] def __call__( self :List[Any] , lowerCamelCase__ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase__ :Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ :Optional[int] = None , lowerCamelCase__ :bool = False , lowerCamelCase__ :Optional[int] = None , lowerCamelCase__ :Optional[Union[str, TensorType]] = None , lowerCamelCase__ :Optional[int] = None , lowerCamelCase__ :Optional[bool] = None , **lowerCamelCase__ :Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCamelCase__ :Union[str, Any] = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase__ :Union[str, Any] = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase__ :List[str] = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): UpperCamelCase__ :str = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase__ :Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase__ :List[Any] = [raw_speech] # extract fbank features UpperCamelCase__ :Dict = [self._extract_fbank_features(lowerCamelCase__ ) for waveform in raw_speech] # convert into correct format for padding UpperCamelCase__ :Optional[Any] = BatchFeature({"""input_features""": features} ) UpperCamelCase__ :List[Any] = self.pad( lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) # make sure list is in array format UpperCamelCase__ :List[str] = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , lowerCamelCase__ ): UpperCamelCase__ :int = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_features] UpperCamelCase__ :Dict = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: UpperCamelCase__ :List[str] = [np.asarray(lowerCamelCase__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: UpperCamelCase__ :int = ( np.array(lowerCamelCase__ , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase__ , max_length=lowerCamelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCamelCase__ :int = self.normalize( padded_inputs["""input_features"""] , attention_mask=lowerCamelCase__ ) if return_tensors is not None: UpperCamelCase__ :List[str] = padded_inputs.convert_to_tensors(lowerCamelCase__ ) return padded_inputs
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
from __future__ import annotations def A ( lowercase__ : list[int] , lowercase__ : int ) -> list[int]: UpperCamelCase__ :Tuple = 0 UpperCamelCase__ :Any = len(lowercase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase__ :Union[str, Any] = i + 1 else: UpperCamelCase__ :Optional[int] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
45
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
1
from __future__ import annotations from collections.abc import Callable def A ( lowercase__ : Callable[[int | float], int | float] , lowercase__ : int | float , lowercase__ : int | float , lowercase__ : int = 100 , ) -> float: UpperCamelCase__ :List[Any] = x_start UpperCamelCase__ :Any = fnc(lowercase__ ) UpperCamelCase__ :Optional[Any] = 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area UpperCamelCase__ :Dict = (x_end - x_start) / steps + xa UpperCamelCase__ :Dict = fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step UpperCamelCase__ :Optional[Any] = xa UpperCamelCase__ :Optional[Any] = fxa return area if __name__ == "__main__": def A ( lowercase__ : Dict ) -> List[Any]: return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") UpperCamelCase = 10 while i <= 100_000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
45
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def A ( lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path UpperCamelCase__ :str = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type="""dataset""" , revision=lowercase__ )
45
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
1
import os def A ( lowercase__ : str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) as input_file: UpperCamelCase__ :Any = [ [int(lowercase__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] UpperCamelCase__ :int = len(lowercase__ ) UpperCamelCase__ :Union[str, Any] = len(matrix[0] ) UpperCamelCase__ :Optional[int] = [[-1 for _ in range(lowercase__ )] for _ in range(lowercase__ )] for i in range(lowercase__ ): UpperCamelCase__ :List[Any] = matrix[i][0] for j in range(1 , lowercase__ ): for i in range(lowercase__ ): UpperCamelCase__ :List[Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowercase__ ): UpperCamelCase__ :Optional[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): UpperCamelCase__ :Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
45
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
1
from string import ascii_uppercase UpperCamelCase = {str(ord(c) - 55): c for c in ascii_uppercase} def A ( lowercase__ : int , lowercase__ : int ) -> str: if isinstance(lowercase__ , lowercase__ ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(lowercase__ , lowercase__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(lowercase__ , lowercase__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) UpperCamelCase__ :Optional[int] = """""" UpperCamelCase__ :Union[str, Any] = 0 UpperCamelCase__ :Dict = 0 while div != 1: UpperCamelCase__ , UpperCamelCase__ :Tuple = divmod(lowercase__ , lowercase__ ) if base >= 11 and 9 < mod < 36: UpperCamelCase__ :Tuple = ALPHABET_VALUES[str(lowercase__ )] else: UpperCamelCase__ :Dict = str(lowercase__ ) new_value += actual_value UpperCamelCase__ :Union[str, Any] = num // base UpperCamelCase__ :Optional[int] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(lowercase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Any = UnCLIPImageVariationPipeline _snake_case : int = IMAGE_VARIATION_PARAMS - {"""height""", """width""", """guidance_scale"""} _snake_case : Optional[int] = IMAGE_VARIATION_BATCH_PARAMS _snake_case : List[Any] = [ """generator""", """return_dict""", """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] _snake_case : Optional[Any] = False @property def __a ( self :Optional[int] ): return 32 @property def __a ( self :Tuple ): return 32 @property def __a ( self :Tuple ): return self.time_input_dim @property def __a ( self :Any ): return self.time_input_dim * 4 @property def __a ( self :Any ): return 1_00 @property def __a ( self :str ): UpperCamelCase__ :Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __a ( self :List[Any] ): torch.manual_seed(0 ) UpperCamelCase__ :List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(lowerCamelCase__ ) @property def __a ( self :Tuple ): torch.manual_seed(0 ) UpperCamelCase__ :List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowerCamelCase__ ) @property def __a ( self :int ): torch.manual_seed(0 ) UpperCamelCase__ :List[str] = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } UpperCamelCase__ :Optional[int] = UnCLIPTextProjModel(**lowerCamelCase__ ) return model @property def __a ( self :Any ): torch.manual_seed(0 ) UpperCamelCase__ :Optional[Any] = { """sample_size""": 32, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } UpperCamelCase__ :str = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def __a ( self :List[str] ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __a ( self :Optional[Any] ): torch.manual_seed(0 ) UpperCamelCase__ :Union[str, Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __a ( self :Union[str, Any] ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) UpperCamelCase__ :List[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __a ( self :Any ): UpperCamelCase__ :List[str] = self.dummy_decoder UpperCamelCase__ :List[Any] = self.dummy_text_proj UpperCamelCase__ :str = self.dummy_text_encoder UpperCamelCase__ :Any = self.dummy_tokenizer UpperCamelCase__ :str = self.dummy_super_res_first UpperCamelCase__ :Union[str, Any] = self.dummy_super_res_last UpperCamelCase__ :List[Any] = UnCLIPScheduler( variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=10_00 , ) UpperCamelCase__ :Any = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=10_00 , ) UpperCamelCase__ :Tuple = CLIPImageProcessor(crop_size=32 , size=32 ) UpperCamelCase__ :int = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __a ( self :str , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any]=0 , lowerCamelCase__ :Tuple=True ): UpperCamelCase__ :Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith("""mps""" ): UpperCamelCase__ :List[Any] = torch.manual_seed(lowerCamelCase__ ) else: UpperCamelCase__ :List[Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) if pil_image: UpperCamelCase__ :Dict = input_image * 0.5 + 0.5 UpperCamelCase__ :str = input_image.clamp(0 , 1 ) UpperCamelCase__ :Any = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ :int = DiffusionPipeline.numpy_to_pil(lowerCamelCase__ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __a ( self :int ): UpperCamelCase__ :List[str] = """cpu""" UpperCamelCase__ :Tuple = self.get_dummy_components() UpperCamelCase__ :List[str] = self.pipeline_class(**lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Tuple = self.get_dummy_inputs(lowerCamelCase__ , pil_image=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = pipe(**lowerCamelCase__ ) UpperCamelCase__ :List[Any] = output.images UpperCamelCase__ :int = self.get_dummy_inputs(lowerCamelCase__ , pil_image=lowerCamelCase__ ) UpperCamelCase__ :List[str] = pipe( **lowerCamelCase__ , return_dict=lowerCamelCase__ , )[0] UpperCamelCase__ :int = image[0, -3:, -3:, -1] UpperCamelCase__ :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ :Optional[int] = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = """cpu""" UpperCamelCase__ :Dict = self.get_dummy_components() UpperCamelCase__ :Tuple = self.pipeline_class(**lowerCamelCase__ ) UpperCamelCase__ :str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = self.get_dummy_inputs(lowerCamelCase__ , pil_image=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = pipe(**lowerCamelCase__ ) UpperCamelCase__ :Dict = output.images UpperCamelCase__ :Optional[int] = self.get_dummy_inputs(lowerCamelCase__ , pil_image=lowerCamelCase__ ) UpperCamelCase__ :Tuple = pipe( **lowerCamelCase__ , return_dict=lowerCamelCase__ , )[0] UpperCamelCase__ :List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ :Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self :Optional[Any] ): UpperCamelCase__ :Union[str, Any] = """cpu""" UpperCamelCase__ :Optional[Any] = self.get_dummy_components() UpperCamelCase__ :Union[str, Any] = self.pipeline_class(**lowerCamelCase__ ) UpperCamelCase__ :int = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :List[str] = self.get_dummy_inputs(lowerCamelCase__ , pil_image=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] UpperCamelCase__ :Dict = pipe(**lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = output.images UpperCamelCase__ :Optional[int] = self.get_dummy_inputs(lowerCamelCase__ , pil_image=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] UpperCamelCase__ :Dict = pipe( **lowerCamelCase__ , return_dict=lowerCamelCase__ , )[0] UpperCamelCase__ :Dict = image[0, -3:, -3:, -1] UpperCamelCase__ :Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) UpperCamelCase__ :List[Any] = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self :Dict ): UpperCamelCase__ :List[Any] = torch.device("""cpu""" ) class lowerCAmelCase_ : """simple docstring""" _snake_case : int = 1 UpperCamelCase__ :Union[str, Any] = self.get_dummy_components() UpperCamelCase__ :List[str] = self.pipeline_class(**lowerCamelCase__ ) UpperCamelCase__ :Dict = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :int = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) UpperCamelCase__ :List[Any] = pipe.decoder.dtype UpperCamelCase__ :str = 1 UpperCamelCase__ :List[str] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) UpperCamelCase__ :int = pipe.prepare_latents( lowerCamelCase__ , dtype=lowerCamelCase__ , device=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , scheduler=DummyScheduler() ) UpperCamelCase__ :int = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) UpperCamelCase__ :Optional[int] = pipe.prepare_latents( lowerCamelCase__ , dtype=lowerCamelCase__ , device=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , scheduler=DummyScheduler() ) UpperCamelCase__ :Any = self.get_dummy_inputs(lowerCamelCase__ , pil_image=lowerCamelCase__ ) UpperCamelCase__ :int = pipe( **lowerCamelCase__ , decoder_latents=lowerCamelCase__ , super_res_latents=lowerCamelCase__ ).images UpperCamelCase__ :int = self.get_dummy_inputs(lowerCamelCase__ , pil_image=lowerCamelCase__ ) # Don't pass image, instead pass embedding UpperCamelCase__ :List[Any] = pipeline_inputs.pop("""image""" ) UpperCamelCase__ :str = pipe.image_encoder(lowerCamelCase__ ).image_embeds UpperCamelCase__ :List[Any] = pipe( **lowerCamelCase__ , decoder_latents=lowerCamelCase__ , super_res_latents=lowerCamelCase__ , image_embeddings=lowerCamelCase__ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor UpperCamelCase__ :Union[str, Any] = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=lowerCamelCase__ , expected_max_diff=lowerCamelCase__ ) @skip_mps def __a ( self :Union[str, Any] ): UpperCamelCase__ :Tuple = torch_device == """cpu""" UpperCamelCase__ :Optional[int] = True UpperCamelCase__ :Union[str, Any] = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=lowerCamelCase__ , relax_max_difference=lowerCamelCase__ , additional_params_copy_to_batched_inputs=lowerCamelCase__ , ) def __a ( self :List[str] ): UpperCamelCase__ :Any = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes UpperCamelCase__ :List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowerCamelCase__ , additional_params_copy_to_batched_inputs=lowerCamelCase__ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowerCamelCase__ ) @skip_mps def __a ( self :List[str] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def __a ( self :Dict ): return super().test_save_load_local() @skip_mps def __a ( self :Tuple ): return super().test_save_load_optional_components() @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :Tuple ): UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" ) UpperCamelCase__ :List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" ) UpperCamelCase__ :int = UnCLIPImageVariationPipeline.from_pretrained( """kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa ) UpperCamelCase__ :Optional[int] = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCamelCase__ :List[str] = pipeline( lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""np""" , ) UpperCamelCase__ :Union[str, Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ , 15 )
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def A ( lowercase__ : Accelerator , lowercase__ : int = 16 ) -> Dict: UpperCamelCase__ :Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase__ :Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : str ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Dict = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase__ :Union[str, Any] = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase__ :List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase__ :int = 16 elif accelerator.mixed_precision != "no": UpperCamelCase__ :List[Any] = 8 else: UpperCamelCase__ :Any = None return tokenizer.pad( lowercase__ , padding="""longest""" , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase__ :Tuple = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) UpperCamelCase__ :List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def A ( lowercase__ : str , lowercase__ : Optional[int] ) -> Tuple: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase__ ) == "1": UpperCamelCase__ :List[str] = 2 # Initialize accelerator UpperCamelCase__ :Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Tuple = config["""lr"""] UpperCamelCase__ :List[str] = int(config["""num_epochs"""] ) UpperCamelCase__ :List[str] = int(config["""seed"""] ) UpperCamelCase__ :List[str] = int(config["""batch_size"""] ) UpperCamelCase__ :Any = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase__ ) def inner_training_loop(lowercase__ : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase__ :List[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase__ :Any = AdamW(params=model.parameters() , lr=lowercase__ ) UpperCamelCase__ , UpperCamelCase__ :Tuple = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate scheduler UpperCamelCase__ :List[str] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=100 , num_training_steps=(len(lowercase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase__ :Dict = model(**lowercase__ ) UpperCamelCase__ :Optional[int] = outputs.loss accelerator.backward(lowercase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :List[Any] = model(**lowercase__ ) UpperCamelCase__ :Optional[int] = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) UpperCamelCase__ :Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def A ( ) -> List[Any]: UpperCamelCase__ :str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase__ , default=lowercase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase__ :Any = parser.parse_args() UpperCamelCase__ :List[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
45
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
1
from __future__ import annotations import time import numpy as np UpperCamelCase = [8, 5, 9, 7] UpperCamelCase = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCamelCase = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCAmelCase_ : """simple docstring""" def __init__( self :Any , lowerCamelCase__ :list[int] , lowerCamelCase__ :list[list[int]] , lowerCamelCase__ :list[list[int]] , ): UpperCamelCase__ :Optional[Any] = claim_vector UpperCamelCase__ :str = allocated_resources_table UpperCamelCase__ :Optional[Any] = maximum_claim_table def __a ( self :str ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __a ( self :Union[str, Any] ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __a ( self :List[Any] ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowerCamelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __a ( self :int ): return {self.__need().index(lowerCamelCase__ ): i for i in self.__need()} def __a ( self :Any , **lowerCamelCase__ :str ): UpperCamelCase__ :Dict = self.__need() UpperCamelCase__ :Any = self.__allocated_resources_table UpperCamelCase__ :Tuple = self.__available_resources() UpperCamelCase__ :List[str] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: UpperCamelCase__ :List[str] = False for each_need in need_list: UpperCamelCase__ :List[Any] = True for index, need in enumerate(lowerCamelCase__ ): if need > available_resources[index]: UpperCamelCase__ :int = False break if execution: UpperCamelCase__ :Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase__ :Optional[Any] = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(lowerCamelCase__ ) # update available/freed resources stack UpperCamelCase__ :Optional[Any] = np.array(lowerCamelCase__ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(lowerCamelCase__ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def __a ( self :Dict ): print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(lowerCamelCase__ ) + 1}""" + """ """.join(f"""{it:>8}""" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(lowerCamelCase__ ) + 1}""" + """ """.join(f"""{it:>8}""" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(lowerCamelCase__ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(lowerCamelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
45
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[Any] = """xglm""" _snake_case : int = ["""past_key_values"""] _snake_case : int = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self :Any , lowerCamelCase__ :int=25_60_08 , lowerCamelCase__ :str=20_48 , lowerCamelCase__ :Dict=10_24 , lowerCamelCase__ :Union[str, Any]=40_96 , lowerCamelCase__ :Tuple=24 , lowerCamelCase__ :Optional[int]=16 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :int=0.0 , lowerCamelCase__ :Dict=0.0 , lowerCamelCase__ :Dict=0.02 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=True , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :Optional[int]=1 , lowerCamelCase__ :Tuple=0 , lowerCamelCase__ :Dict=2 , **lowerCamelCase__ :int , ): UpperCamelCase__ :str = vocab_size UpperCamelCase__ :Optional[Any] = max_position_embeddings UpperCamelCase__ :List[Any] = d_model UpperCamelCase__ :int = ffn_dim UpperCamelCase__ :List[str] = num_layers UpperCamelCase__ :List[Any] = attention_heads UpperCamelCase__ :List[Any] = activation_function UpperCamelCase__ :Tuple = dropout UpperCamelCase__ :str = attention_dropout UpperCamelCase__ :Optional[Any] = activation_dropout UpperCamelCase__ :List[Any] = layerdrop UpperCamelCase__ :Optional[Any] = init_std UpperCamelCase__ :Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase__ :str = use_cache super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
45
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : str = """data2vec-audio""" def __init__( self :List[Any] , lowerCamelCase__ :List[str]=32 , lowerCamelCase__ :Optional[Any]=7_68 , lowerCamelCase__ :int=12 , lowerCamelCase__ :List[Any]=12 , lowerCamelCase__ :List[str]=30_72 , lowerCamelCase__ :int="gelu" , lowerCamelCase__ :Tuple=0.1 , lowerCamelCase__ :List[str]=0.1 , lowerCamelCase__ :Dict=0.1 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :Dict=0.02 , lowerCamelCase__ :List[str]=1e-5 , lowerCamelCase__ :Union[str, Any]="gelu" , lowerCamelCase__ :Optional[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCamelCase__ :int=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase__ :Dict=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase__ :List[Any]=False , lowerCamelCase__ :List[Any]=16 , lowerCamelCase__ :Union[str, Any]=19 , lowerCamelCase__ :int=5 , lowerCamelCase__ :Dict=0.05 , lowerCamelCase__ :Union[str, Any]=10 , lowerCamelCase__ :Optional[int]=2 , lowerCamelCase__ :int=0.0 , lowerCamelCase__ :Dict=10 , lowerCamelCase__ :List[str]=0 , lowerCamelCase__ :Dict="sum" , lowerCamelCase__ :Optional[int]=False , lowerCamelCase__ :int=False , lowerCamelCase__ :Dict=2_56 , lowerCamelCase__ :Any=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCamelCase__ :int=(5, 3, 3, 1, 1) , lowerCamelCase__ :Union[str, Any]=(1, 2, 3, 1, 1) , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=0 , lowerCamelCase__ :str=1 , lowerCamelCase__ :Optional[int]=2 , lowerCamelCase__ :Optional[Any]=False , lowerCamelCase__ :Optional[Any]=3 , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=None , **lowerCamelCase__ :Any , ): super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) UpperCamelCase__ :int = hidden_size UpperCamelCase__ :int = feat_extract_activation UpperCamelCase__ :str = list(lowerCamelCase__ ) UpperCamelCase__ :Tuple = list(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = list(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = conv_bias UpperCamelCase__ :Any = num_conv_pos_embeddings UpperCamelCase__ :Optional[Any] = num_conv_pos_embedding_groups UpperCamelCase__ :Optional[Any] = conv_pos_kernel_size UpperCamelCase__ :int = len(self.conv_dim ) UpperCamelCase__ :List[str] = num_hidden_layers UpperCamelCase__ :List[Any] = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :List[Any] = num_attention_heads UpperCamelCase__ :int = hidden_dropout UpperCamelCase__ :Dict = attention_dropout UpperCamelCase__ :Any = activation_dropout UpperCamelCase__ :int = feat_proj_dropout UpperCamelCase__ :List[Any] = final_dropout UpperCamelCase__ :List[Any] = layerdrop UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Any = initializer_range UpperCamelCase__ :Any = vocab_size UpperCamelCase__ :str = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ :Tuple = mask_time_prob UpperCamelCase__ :Union[str, Any] = mask_time_length UpperCamelCase__ :Any = mask_time_min_masks UpperCamelCase__ :Tuple = mask_feature_prob UpperCamelCase__ :Optional[Any] = mask_feature_length UpperCamelCase__ :Tuple = mask_feature_min_masks # ctc loss UpperCamelCase__ :List[str] = ctc_loss_reduction UpperCamelCase__ :Optional[int] = ctc_zero_infinity # adapter UpperCamelCase__ :Optional[int] = add_adapter UpperCamelCase__ :List[str] = adapter_kernel_size UpperCamelCase__ :Dict = adapter_stride UpperCamelCase__ :Optional[Any] = num_adapter_layers UpperCamelCase__ :Union[str, Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ :Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ :List[str] = list(lowerCamelCase__ ) UpperCamelCase__ :int = list(lowerCamelCase__ ) UpperCamelCase__ :List[str] = list(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = xvector_output_dim @property def __a ( self :Optional[Any] ): return math.prod(self.conv_stride )
45
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def A ( lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :List[str] = [False] * len(lowercase__ ) UpperCamelCase__ :List[str] = [-1] * len(lowercase__ ) def dfs(lowercase__ : Optional[Any] , lowercase__ : List[str] ): UpperCamelCase__ :List[Any] = True UpperCamelCase__ :List[str] = c for u in graph[v]: if not visited[u]: dfs(lowercase__ , 1 - c ) for i in range(len(lowercase__ ) ): if not visited[i]: dfs(lowercase__ , 0 ) for i in range(len(lowercase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCamelCase = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
45
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
1
import itertools import math def A ( lowercase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( ) -> Optional[int]: UpperCamelCase__ :List[str] = 2 while True: if is_prime(lowercase__ ): yield num num += 1 def A ( lowercase__ : int = 1_0001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , lowercase__ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
45
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Tuple = """distilbert""" _snake_case : Tuple = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self :Dict , lowerCamelCase__ :Tuple=3_05_22 , lowerCamelCase__ :List[str]=5_12 , lowerCamelCase__ :Union[str, Any]=False , lowerCamelCase__ :Union[str, Any]=6 , lowerCamelCase__ :Optional[Any]=12 , lowerCamelCase__ :str=7_68 , lowerCamelCase__ :List[str]=4 * 7_68 , lowerCamelCase__ :Optional[Any]=0.1 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :List[Any]="gelu" , lowerCamelCase__ :Any=0.02 , lowerCamelCase__ :Optional[Any]=0.1 , lowerCamelCase__ :Dict=0.2 , lowerCamelCase__ :List[str]=0 , **lowerCamelCase__ :Any , ): UpperCamelCase__ :Dict = vocab_size UpperCamelCase__ :Optional[Any] = max_position_embeddings UpperCamelCase__ :Any = sinusoidal_pos_embds UpperCamelCase__ :Union[str, Any] = n_layers UpperCamelCase__ :Any = n_heads UpperCamelCase__ :List[Any] = dim UpperCamelCase__ :Optional[Any] = hidden_dim UpperCamelCase__ :List[Any] = dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[Any] = activation UpperCamelCase__ :Any = initializer_range UpperCamelCase__ :Any = qa_dropout UpperCamelCase__ :str = seq_classif_dropout super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" @property def __a ( self :str ): if self.task == "multiple-choice": UpperCamelCase__ :List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase__ :List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
45
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCAmelCase_ ( unittest.TestCase , lowercase ): """simple docstring""" def __a ( self :int ): UpperCamelCase__ :Dict = load_tool("""text-to-speech""" ) self.tool.setup() def __a ( self :Union[str, Any] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCamelCase__ :Tuple = self.tool("""hey""" ) UpperCamelCase__ :Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __a ( self :int ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCamelCase__ :List[str] = self.tool("""hey""" ) UpperCamelCase__ :Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
45
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
1
def A ( lowercase__ : float , lowercase__ : list[float] ) -> float: if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) UpperCamelCase__ :Union[str, Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowercase__ ) ) return round(lowercase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
45
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = "▁" UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = BigBirdTokenizer _snake_case : List[Any] = BigBirdTokenizerFast _snake_case : Any = True _snake_case : Optional[int] = True def __a ( self :Union[str, Any] ): super().setUp() UpperCamelCase__ :List[Any] = self.tokenizer_class(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self :str ): UpperCamelCase__ :List[str] = """<s>""" UpperCamelCase__ :str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(lowerCamelCase__ ) , 10_04 ) def __a ( self :Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __a ( self :Optional[Any] ): if not self.test_rust_tokenizer: return UpperCamelCase__ :Any = self.get_tokenizer() UpperCamelCase__ :str = self.get_rust_tokenizer() UpperCamelCase__ :List[Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase__ :List[str] = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = self.get_rust_tokenizer() UpperCamelCase__ :Any = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ :Tuple = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Dict = BigBirdTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCamelCase__ :List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase__ :Tuple = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCamelCase__ :Optional[int] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __a ( self :Dict ): return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def __a ( self :List[str] ): UpperCamelCase__ :Dict = """Hello World!""" UpperCamelCase__ :Any = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def __a ( self :str ): UpperCamelCase__ :Optional[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off UpperCamelCase__ :Any = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @require_torch @slow def __a ( self :str ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCamelCase__ :Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCamelCase__ :Optional[Any] = """ """.join(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = self.big_tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = BigBirdConfig(attention_type="""original_full""" ) UpperCamelCase__ :List[str] = BigBirdModel(lowerCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase__ ) model(**lowerCamelCase__ ) @slow def __a ( self :List[str] ): UpperCamelCase__ :Any = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) UpperCamelCase__ :Any = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def __a ( self :Union[str, Any] ): # fmt: off UpperCamelCase__ :int = {"""input_ids""": [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase = 16 UpperCamelCase = 32 def A ( lowercase__ : Union[str, Any] ) -> int: return int(x / 2**20 ) class lowerCAmelCase_ : """simple docstring""" def __enter__( self :Tuple ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero UpperCamelCase__ :Optional[Any] = torch.cuda.memory_allocated() return self def __exit__( self :Optional[int] , *lowerCamelCase__ :Dict ): gc.collect() torch.cuda.empty_cache() UpperCamelCase__ :List[Any] = torch.cuda.memory_allocated() UpperCamelCase__ :List[Any] = torch.cuda.max_memory_allocated() UpperCamelCase__ :Any = bamb(self.end - self.begin ) UpperCamelCase__ :Union[str, Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def A ( lowercase__ : Accelerator , lowercase__ : int = 16 , lowercase__ : str = "bert-base-cased" , lowercase__ : int = 320 , lowercase__ : int = 160 , ) -> Union[str, Any]: UpperCamelCase__ :Tuple = AutoTokenizer.from_pretrained(lowercase__ ) UpperCamelCase__ :Optional[Any] = load_dataset( """glue""" , """mrpc""" , split={"""train""": f"""train[:{n_train}]""", """validation""": f"""validation[:{n_val}]"""} ) def tokenize_function(lowercase__ : Any ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ :Any = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :Optional[int] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCamelCase__ :Any = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) UpperCamelCase__ :Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def A ( lowercase__ : List[str] , lowercase__ : Dict ) -> int: # Initialize accelerator UpperCamelCase__ :Dict = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Dict = config["""lr"""] UpperCamelCase__ :Optional[int] = int(config["""num_epochs"""] ) UpperCamelCase__ :Union[str, Any] = int(config["""seed"""] ) UpperCamelCase__ :int = int(config["""batch_size"""] ) UpperCamelCase__ :str = args.model_name_or_path set_seed(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = get_dataloaders(lowercase__ , lowercase__ , lowercase__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :str = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer UpperCamelCase__ :str = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase__ :Optional[Any] = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase__ :Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCamelCase__ :int = 1 UpperCamelCase__ :str = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: UpperCamelCase__ :Dict = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase__ :str = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase__ :List[Any] = 0 # Now we train the model UpperCamelCase__ :Optional[Any] = {} for epoch in range(lowercase__ , lowercase__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase__ ): UpperCamelCase__ :List[Any] = model(**lowercase__ ) UpperCamelCase__ :Optional[Any] = outputs.loss UpperCamelCase__ :str = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) UpperCamelCase__ :Dict = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[str] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=lowercase__ , default=lowercase__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=lowercase__ , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=lowercase__ , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=1 , help="""Number of train epochs.""" , ) UpperCamelCase__ :List[str] = parser.parse_args() UpperCamelCase__ :List[str] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
45
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case : Optional[str] = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _snake_case : bool = field(default=lowercase , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _snake_case : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def A ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) UpperCamelCase__ :Optional[Any] = import_module("""tasks""" ) try: UpperCamelCase__ :Tuple = getattr(lowercase__ , model_args.task_type ) UpperCamelCase__ :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowercase__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task UpperCamelCase__ :Dict = token_classification_task.get_labels(data_args.labels ) UpperCamelCase__ :Dict[int, str] = dict(enumerate(lowercase__ ) ) UpperCamelCase__ :Any = len(lowercase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase__ , idalabel=lowercase__ , labelaid={label: i for i, label in enumerate(lowercase__ )} , cache_dir=model_args.cache_dir , ) UpperCamelCase__ :Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) UpperCamelCase__ :List[str] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) # Get datasets UpperCamelCase__ :List[str] = ( TokenClassificationDataset( token_classification_task=lowercase__ , data_dir=data_args.data_dir , tokenizer=lowercase__ , labels=lowercase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCamelCase__ :Tuple = ( TokenClassificationDataset( token_classification_task=lowercase__ , data_dir=data_args.data_dir , tokenizer=lowercase__ , labels=lowercase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> Tuple[List[int], List[int]]: UpperCamelCase__ :List[Any] = np.argmax(lowercase__ , axis=2 ) UpperCamelCase__ , UpperCamelCase__ :int = preds.shape UpperCamelCase__ :Optional[Any] = [[] for _ in range(lowercase__ )] UpperCamelCase__ :Optional[int] = [[] for _ in range(lowercase__ )] for i in range(lowercase__ ): for j in range(lowercase__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowercase__ : EvalPrediction ) -> Dict: UpperCamelCase__ , UpperCamelCase__ :str = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowercase__ , lowercase__ ), "precision": precision_score(lowercase__ , lowercase__ ), "recall": recall_score(lowercase__ , lowercase__ ), "f1": fa_score(lowercase__ , lowercase__ ), } # Data collator UpperCamelCase__ :int = DataCollatorWithPadding(lowercase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase__ :Dict = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ :Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase__ :List[str] = trainer.evaluate() UpperCamelCase__ :str = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowercase__ , lowercase__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowercase__ ) # Predict if training_args.do_predict: UpperCamelCase__ :Dict = TokenClassificationDataset( token_classification_task=lowercase__ , data_dir=data_args.data_dir , tokenizer=lowercase__ , labels=lowercase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Any = trainer.predict(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ :Optional[int] = align_predictions(lowercase__ , lowercase__ ) UpperCamelCase__ :Dict = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , lowercase__ , lowercase__ ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions UpperCamelCase__ :int = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(lowercase__ , lowercase__ , lowercase__ ) return results def A ( lowercase__ : int ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "nielsr/canine-s": 2_048, } # Unicode defines 1,114,112 total “codepoints” UpperCamelCase = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py UpperCamelCase = 0 UpperCamelCase = 0xe0_00 UpperCamelCase = 0xe0_01 UpperCamelCase = 0xe0_02 UpperCamelCase = 0xe0_03 UpperCamelCase = 0xe0_04 # Maps special codepoints to human-readable names. UpperCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. UpperCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :Tuple , lowerCamelCase__ :Optional[int]=chr(lowerCamelCase__ ) , lowerCamelCase__ :Optional[Any]=chr(lowerCamelCase__ ) , lowerCamelCase__ :Optional[Any]=chr(lowerCamelCase__ ) , lowerCamelCase__ :Dict=chr(lowerCamelCase__ ) , lowerCamelCase__ :List[Any]=chr(lowerCamelCase__ ) , lowerCamelCase__ :Dict=chr(lowerCamelCase__ ) , lowerCamelCase__ :Union[str, Any]=False , lowerCamelCase__ :int=20_48 , **lowerCamelCase__ :List[str] , ): UpperCamelCase__ :int = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token UpperCamelCase__ :List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token UpperCamelCase__ :Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token UpperCamelCase__ :Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token UpperCamelCase__ :Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ :str = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , model_max_length=lowerCamelCase__ , **lowerCamelCase__ , ) # Creates a mapping for looking up the IDs of special symbols. UpperCamelCase__ :Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCamelCase__ :str = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCamelCase__ :Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCamelCase__ :Any = UNICODE_VOCAB_SIZE UpperCamelCase__ :List[str] = len(self._special_codepoints ) @property def __a ( self :Any ): return self._unicode_vocab_size def __a ( self :Optional[int] , lowerCamelCase__ :str ): return list(lowerCamelCase__ ) def __a ( self :List[str] , lowerCamelCase__ :str ): try: return ord(lowerCamelCase__ ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def __a ( self :Any , lowerCamelCase__ :int ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCamelCase__ ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] ): return "".join(lowerCamelCase__ ) def __a ( self :Optional[int] , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): UpperCamelCase__ :Union[str, Any] = [self.sep_token_id] UpperCamelCase__ :Any = [self.cls_token_id] UpperCamelCase__ :Dict = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __a ( self :Tuple , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None , lowerCamelCase__ :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Tuple = [1] + ([0] * len(lowerCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(lowerCamelCase__ )) + [1] return result def __a ( self :int , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): UpperCamelCase__ :List[Any] = [self.sep_token_id] UpperCamelCase__ :Optional[Any] = [self.cls_token_id] UpperCamelCase__ :Tuple = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Optional[str] = None ): return ()
45
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
1
from __future__ import annotations import numpy as np def A ( lowercase__ : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: UpperCamelCase__ , UpperCamelCase__ :str = np.shape(lowercase__ ) if rows != columns: UpperCamelCase__ :str = ( """'table' has to be of square shaped array but got a """ f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(lowercase__ ) UpperCamelCase__ :Union[str, Any] = np.zeros((rows, columns) ) UpperCamelCase__ :int = np.zeros((rows, columns) ) for i in range(lowercase__ ): for j in range(lowercase__ ): UpperCamelCase__ :List[str] = sum(lower[i][k] * upper[k][j] for k in range(lowercase__ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) UpperCamelCase__ :int = (table[i][j] - total) / upper[j][j] UpperCamelCase__ :Optional[Any] = 1 for j in range(lowercase__ , lowercase__ ): UpperCamelCase__ :int = sum(lower[i][k] * upper[k][j] for k in range(lowercase__ ) ) UpperCamelCase__ :Optional[int] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
45
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
1
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
1
from math import isqrt def A ( lowercase__ : int ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase__ ) + 1 ) ) def A ( lowercase__ : int = 10**6 ) -> int: UpperCamelCase__ :Tuple = 0 UpperCamelCase__ :List[Any] = 1 UpperCamelCase__ :Any = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
45
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[Any] = """deit""" def __init__( self :Optional[Any] , lowerCamelCase__ :List[str]=7_68 , lowerCamelCase__ :int=12 , lowerCamelCase__ :Any=12 , lowerCamelCase__ :Optional[Any]=30_72 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :str=0.0 , lowerCamelCase__ :Tuple=0.0 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :Tuple=1e-12 , lowerCamelCase__ :Union[str, Any]=2_24 , lowerCamelCase__ :List[Any]=16 , lowerCamelCase__ :List[Any]=3 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :str=16 , **lowerCamelCase__ :str , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :int = hidden_size UpperCamelCase__ :Dict = num_hidden_layers UpperCamelCase__ :Optional[int] = num_attention_heads UpperCamelCase__ :Optional[Any] = intermediate_size UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :Dict = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :str = initializer_range UpperCamelCase__ :int = layer_norm_eps UpperCamelCase__ :Any = image_size UpperCamelCase__ :int = patch_size UpperCamelCase__ :List[str] = num_channels UpperCamelCase__ :Any = qkv_bias UpperCamelCase__ :Tuple = encoder_stride class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : int = version.parse("""1.11""" ) @property def __a ( self :List[str] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __a ( self :Union[str, Any] ): return 1e-4
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) UpperCamelCase = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase = "sshleifer/tiny-mbart" @require_torch class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __a ( self :str , lowerCamelCase__ :List[str]=False , lowerCamelCase__ :Optional[int]=None , lowerCamelCase__ :int=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[Any]=True , ): UpperCamelCase__ :Tuple = self.run_trainer( eval_steps=1 , max_len=12 , model_name=lowerCamelCase__ , num_train_epochs=1 , distributed=lowerCamelCase__ , extra_args_str=lowerCamelCase__ , predict_with_generate=lowerCamelCase__ , do_train=lowerCamelCase__ , do_eval=lowerCamelCase__ , do_predict=lowerCamelCase__ , ) UpperCamelCase__ :str = TrainerState.load_from_json(os.path.join(lowerCamelCase__ , """trainer_state.json""" ) ).log_history if not do_eval: return UpperCamelCase__ :int = [log for log in logs if """eval_loss""" in log.keys()] UpperCamelCase__ :List[str] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCamelCase__ :List[Any] = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , lowerCamelCase__ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Optional[Any] ): self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any ): self.run_seqaseq_quick(distributed=lowerCamelCase__ ) @require_torch_multi_gpu def __a ( self :int ): self.run_seqaseq_quick(distributed=lowerCamelCase__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __a ( self :Dict ): self.run_seqaseq_quick(distributed=lowerCamelCase__ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any] ): self.run_seqaseq_quick(distributed=lowerCamelCase__ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __a ( self :List[str] ): self.run_seqaseq_quick(distributed=lowerCamelCase__ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=lowerCamelCase__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __a ( self :str ): self.run_seqaseq_quick( distributed=lowerCamelCase__ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=lowerCamelCase__ ) @require_apex @require_torch_gpu def __a ( self :str ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=lowerCamelCase__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=lowerCamelCase__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def __a ( self :List[str] , lowerCamelCase__ :Union[str, Any] ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCamelCase__ :Optional[int] = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } UpperCamelCase__ :Union[str, Any] = experiments[experiment_id] UpperCamelCase__ :int = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} UpperCamelCase__ :Any = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**lowerCamelCase__ , extra_args_str=data["""extra_args_str"""] ) UpperCamelCase__ :Any = len(re.findall(lowerCamelCase__ , cl.err ) ) self.assertEqual(lowerCamelCase__ , data["""n_matches"""] ) @slow def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=lowerCamelCase__ , learning_rate=3e-4 , num_train_epochs=10 , distributed=lowerCamelCase__ , ) # Check metrics UpperCamelCase__ :Tuple = TrainerState.load_from_json(os.path.join(lowerCamelCase__ , """trainer_state.json""" ) ).log_history UpperCamelCase__ :int = [log for log in logs if """eval_loss""" in log.keys()] UpperCamelCase__ :Tuple = eval_metrics[0] UpperCamelCase__ :List[Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , lowerCamelCase__ ) # test if do_predict saves generations and metrics UpperCamelCase__ :int = os.listdir(lowerCamelCase__ ) UpperCamelCase__ :Dict = {os.path.basename(lowerCamelCase__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :Union[str, Any] ): from transformers.training_args import OptimizerNames def train_and_return_metrics(lowerCamelCase__ :str ) -> Tuple[int, float]: UpperCamelCase__ :List[str] = """--skip_memory_metrics 0""" UpperCamelCase__ :Tuple = self.run_trainer( max_len=1_28 , model_name=lowerCamelCase__ , learning_rate=3e-4 , num_train_epochs=1 , optim=lowerCamelCase__ , distributed=lowerCamelCase__ , extra_args_str=lowerCamelCase__ , do_eval=lowerCamelCase__ , do_predict=lowerCamelCase__ , n_gpus_to_use=1 , ) # Check metrics UpperCamelCase__ :List[Any] = TrainerState.load_from_json(Path(lowerCamelCase__ , """trainer_state.json""" ) ).log_history UpperCamelCase__ :List[Any] = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) UpperCamelCase__ :Tuple = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) UpperCamelCase__ :Tuple = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCamelCase__ :Optional[Any] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCamelCase__ :List[str] = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCamelCase__ :str = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCamelCase__ :Optional[Any] = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCamelCase__ :Union[str, Any] = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( lowerCamelCase__ , lowerCamelCase__ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" f""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( lowerCamelCase__ , lowerCamelCase__ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" f""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( lowerCamelCase__ , lowerCamelCase__ , f"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def __a ( self :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :float = 3e-3 , lowerCamelCase__ :str = "adafactor" , lowerCamelCase__ :bool = False , lowerCamelCase__ :str = None , lowerCamelCase__ :int = 0 , lowerCamelCase__ :bool = True , lowerCamelCase__ :bool = True , lowerCamelCase__ :bool = True , lowerCamelCase__ :bool = True , lowerCamelCase__ :int = None , ): UpperCamelCase__ :List[Any] = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" UpperCamelCase__ :int = self.get_auto_remove_tmp_dir() UpperCamelCase__ :List[Any] = f""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(lowerCamelCase__ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(lowerCamelCase__ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() UpperCamelCase__ :Optional[Any] = f""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(lowerCamelCase__ )} """.split() UpperCamelCase__ :Optional[Any] = """ --do_predict """.split() UpperCamelCase__ :Union[str, Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCamelCase__ :List[Any] = get_gpu_count() UpperCamelCase__ :int = get_torch_dist_unique_port() UpperCamelCase__ :Tuple = f""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() UpperCamelCase__ :Dict = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase__ , env=self.get_env() ) else: UpperCamelCase__ :Dict = ["""run_translation.py"""] + args with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): main() return output_dir
45
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
1
from math import sqrt def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :int = 0 UpperCamelCase__ :int = 0 UpperCamelCase__ :int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowercase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
45
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=13 , lowerCamelCase__ :List[str]=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Tuple=True , lowerCamelCase__ :Any=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :Union[str, Any]=5 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :List[str]=37 , lowerCamelCase__ :Any="gelu" , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :Optional[Any]=0.1 , lowerCamelCase__ :str=50 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :List[str]=None , ): UpperCamelCase__ :Dict = parent UpperCamelCase__ :Optional[Any] = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :Any = vocab_size UpperCamelCase__ :str = hidden_size UpperCamelCase__ :int = num_hidden_layers UpperCamelCase__ :Dict = num_attention_heads UpperCamelCase__ :Union[str, Any] = intermediate_size UpperCamelCase__ :Optional[int] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :List[Any] = attention_probs_dropout_prob UpperCamelCase__ :List[Any] = max_position_embeddings UpperCamelCase__ :Optional[int] = initializer_range UpperCamelCase__ :str = use_labels UpperCamelCase__ :Union[str, Any] = scope def __a ( self :Optional[Any] ): UpperCamelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_mask: UpperCamelCase__ :str = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Dict = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Optional[int] ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.prepare_config_and_inputs() UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __a ( self :Dict , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :List[Any] , **lowerCamelCase__ :str , ): UpperCamelCase__ :Dict = BertGenerationEncoder(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] , lowerCamelCase__ :str , **lowerCamelCase__ :Union[str, Any] , ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :List[str] = BertGenerationEncoder(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , ) UpperCamelCase__ :Any = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :Any , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , **lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :int = True UpperCamelCase__ :List[str] = BertGenerationDecoder(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() # first forward pass UpperCamelCase__ :List[str] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ , ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Dict = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] UpperCamelCase__ :Optional[int] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :int = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Tuple , *lowerCamelCase__ :str , ): UpperCamelCase__ :List[Any] = BertGenerationDecoder(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Optional[Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _snake_case : Any = (BertGenerationDecoder,) if is_torch_available() else () _snake_case : Optional[int] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def __a ( self :List[Any] ): UpperCamelCase__ :int = BertGenerationEncoderTester(self ) UpperCamelCase__ :Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Union[str, Any] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ :Optional[Any] = """bert""" self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase__ ) def __a ( self :Dict ): # This regression test was failing with PyTorch < 1.3 ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Optional[int] = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) def __a ( self :str ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :Tuple ): UpperCamelCase__ :Any = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) UpperCamelCase__ :List[str] = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): UpperCamelCase__ :str = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = torch.Size([1, 8, 10_24] ) self.assertEqual(output.shape , lowerCamelCase__ ) UpperCamelCase__ :Tuple = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :int ): UpperCamelCase__ :str = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) UpperCamelCase__ :Optional[Any] = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :str = torch.Size([1, 8, 5_03_58] ) self.assertEqual(output.shape , lowerCamelCase__ ) UpperCamelCase__ :Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
1
def A ( lowercase__ : int ) -> str: if number > 0: raise ValueError("""input must be a negative integer""" ) UpperCamelCase__ :List[Any] = len(bin(lowercase__ )[3:] ) UpperCamelCase__ :str = bin(abs(lowercase__ ) - (1 << binary_number_length) )[3:] UpperCamelCase__ :List[Any] = ( ( """1""" + """0""" * (binary_number_length - len(lowercase__ )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
45
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = KandinskyInpaintPipeline _snake_case : int = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _snake_case : Any = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _snake_case : List[Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _snake_case : Tuple = False @property def __a ( self :Optional[int] ): return 32 @property def __a ( self :Any ): return 32 @property def __a ( self :str ): return self.time_input_dim @property def __a ( self :List[Any] ): return self.time_input_dim * 4 @property def __a ( self :Dict ): return 1_00 @property def __a ( self :List[str] ): UpperCamelCase__ :Any = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def __a ( self :Dict ): torch.manual_seed(0 ) UpperCamelCase__ :Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) UpperCamelCase__ :Optional[Any] = MultilingualCLIP(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = text_encoder.eval() return text_encoder @property def __a ( self :Dict ): torch.manual_seed(0 ) UpperCamelCase__ :Optional[Any] = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCamelCase__ :Optional[Any] = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def __a ( self :List[Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self :str ): torch.manual_seed(0 ) UpperCamelCase__ :Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = self.dummy_text_encoder UpperCamelCase__ :str = self.dummy_tokenizer UpperCamelCase__ :List[str] = self.dummy_unet UpperCamelCase__ :Any = self.dummy_movq UpperCamelCase__ :Optional[int] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCamelCase__ , ) UpperCamelCase__ :Optional[int] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int=0 ): UpperCamelCase__ :Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCamelCase__ :int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCamelCase__ ) # create init_image UpperCamelCase__ :Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCamelCase__ :str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ :Any = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask UpperCamelCase__ :Any = np.ones((64, 64) , dtype=np.floataa ) UpperCamelCase__ :Optional[int] = 0 if str(lowerCamelCase__ ).startswith("""mps""" ): UpperCamelCase__ :List[str] = torch.manual_seed(lowerCamelCase__ ) else: UpperCamelCase__ :str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCamelCase__ :List[str] = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __a ( self :str ): UpperCamelCase__ :Dict = """cpu""" UpperCamelCase__ :Any = self.get_dummy_components() UpperCamelCase__ :List[Any] = self.pipeline_class(**lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) UpperCamelCase__ :List[str] = output.images UpperCamelCase__ :str = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] UpperCamelCase__ :str = image[0, -3:, -3:, -1] UpperCamelCase__ :Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCamelCase__ :Optional[int] = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __a ( self :Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :Union[str, Any] ): UpperCamelCase__ :Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) UpperCamelCase__ :List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCamelCase__ :List[Any] = np.ones((7_68, 7_68) , dtype=np.floataa ) UpperCamelCase__ :Dict = 0 UpperCamelCase__ :Optional[int] = """a hat""" UpperCamelCase__ :Dict = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) UpperCamelCase__ :Optional[Any] = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCamelCase__ , UpperCamelCase__ :str = pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCamelCase__ :int = pipeline( lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) UpperCamelCase__ :List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
45
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
1
import unittest from knapsack import greedy_knapsack as kp class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = [10, 20, 30, 40, 50, 60] UpperCamelCase__ :str = [2, 4, 6, 8, 10, 12] UpperCamelCase__ :Dict = 1_00 self.assertEqual(kp.calc_profit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , 2_10 ) def __a ( self :Dict ): self.assertRaisesRegex(lowerCamelCase__ , """max_weight must greater than zero.""" ) def __a ( self :Union[str, Any] ): self.assertRaisesRegex(lowerCamelCase__ , """Weight can not be negative.""" ) def __a ( self :Union[str, Any] ): self.assertRaisesRegex(lowerCamelCase__ , """Profit can not be negative.""" ) def __a ( self :Union[str, Any] ): self.assertRaisesRegex(lowerCamelCase__ , """max_weight must greater than zero.""" ) def __a ( self :Union[str, Any] ): self.assertRaisesRegex( lowerCamelCase__ , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
45
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCamelCase = logging.getLogger(__name__) def A ( lowercase__ : Tuple , lowercase__ : str ) -> Optional[int]: # save results if os.path.exists(lowercase__ ): if os.path.exists(os.path.join(lowercase__ , """config.json""" ) ) and os.path.isfile( os.path.join(lowercase__ , """config.json""" ) ): os.remove(os.path.join(lowercase__ , """config.json""" ) ) if os.path.exists(os.path.join(lowercase__ , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(lowercase__ , """pytorch_model.bin""" ) ): os.remove(os.path.join(lowercase__ , """pytorch_model.bin""" ) ) else: os.makedirs(lowercase__ ) model.save_pretrained(lowercase__ ) def A ( lowercase__ : Union[str, Any] , lowercase__ : Tuple=False ) -> List[Any]: UpperCamelCase__ :int = 2 if unlogit: UpperCamelCase__ :int = torch.pow(lowercase__ , lowercase__ ) UpperCamelCase__ :List[Any] = p * torch.log(lowercase__ ) UpperCamelCase__ :Tuple = 0 return -plogp.sum(dim=-1 ) def A ( lowercase__ : Optional[int] ) -> int: logger.info("""lv, h >\t""" + """\t""".join(f"""{x + 1}""" for x in range(len(lowercase__ ) ) ) ) for row in range(len(lowercase__ ) ): if tensor.dtype != torch.long: logger.info(f"""layer {row + 1}:\t""" + """\t""".join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(f"""layer {row + 1}:\t""" + """\t""".join(f"""{x:d}""" for x in tensor[row].cpu().data ) ) def A ( lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Union[str, Any]=True , lowercase__ : Dict=True , lowercase__ : Optional[Any]=None , lowercase__ : Any=False ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ :Dict = model.config.num_hidden_layers, model.config.num_attention_heads UpperCamelCase__ :Optional[Any] = torch.zeros(lowercase__ , lowercase__ ).to(args.device ) UpperCamelCase__ :List[Any] = torch.zeros(lowercase__ , lowercase__ ).to(args.device ) if head_mask is None: UpperCamelCase__ :Tuple = torch.ones(lowercase__ , lowercase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowercase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCamelCase__ :int = None UpperCamelCase__ :str = 0.0 UpperCamelCase__ :Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(lowercase__ , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): UpperCamelCase__ :Optional[Any] = tuple(t.to(args.device ) for t in inputs ) ((UpperCamelCase__) , ) :Optional[int] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCamelCase__ :List[Any] = model(lowercase__ , labels=lowercase__ , head_mask=lowercase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowercase__ ): UpperCamelCase__ :Any = entropy(attn.detach() , lowercase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowercase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :int = torch.pow(torch.pow(lowercase__ , lowercase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: UpperCamelCase__ :Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(lowercase__ ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(lowercase__ ) logger.info("""Head ranked by importance scores""" ) UpperCamelCase__ :str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCamelCase__ :List[Any] = torch.arange( head_importance.numel() , device=args.device ) UpperCamelCase__ :List[Any] = head_ranks.view_as(lowercase__ ) print_ad_tensor(lowercase__ ) return attn_entropy, head_importance, total_loss def A ( lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Dict ) -> Union[str, Any]: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = compute_heads_importance(lowercase__ , lowercase__ , lowercase__ , compute_entropy=lowercase__ ) UpperCamelCase__ :Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , lowercase__ , original_score * args.masking_threshold ) UpperCamelCase__ :Tuple = torch.ones_like(lowercase__ ) UpperCamelCase__ :List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCamelCase__ :Any = original_score while current_score >= original_score * args.masking_threshold: UpperCamelCase__ :Optional[int] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCamelCase__ :Optional[int] = float("""Inf""" ) UpperCamelCase__ :Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(lowercase__ ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads UpperCamelCase__ :int = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) UpperCamelCase__ :str = new_head_mask.view(-1 ) UpperCamelCase__ :Union[str, Any] = 0.0 UpperCamelCase__ :Union[str, Any] = new_head_mask.view_as(lowercase__ ) UpperCamelCase__ :Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(lowercase__ ) # Compute metric and head importance again UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[int] = compute_heads_importance( lowercase__ , lowercase__ , lowercase__ , compute_entropy=lowercase__ , head_mask=lowercase__ ) UpperCamelCase__ :Tuple = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , lowercase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(lowercase__ ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def A ( lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : int , lowercase__ : Optional[int] ) -> Union[str, Any]: UpperCamelCase__ :Optional[Any] = datetime.now() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = compute_heads_importance( lowercase__ , lowercase__ , lowercase__ , compute_entropy=lowercase__ , compute_importance=lowercase__ , head_mask=lowercase__ ) UpperCamelCase__ :Dict = 1 / loss UpperCamelCase__ :Optional[Any] = datetime.now() - before_time UpperCamelCase__ :str = sum(p.numel() for p in model.parameters() ) UpperCamelCase__ :Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowercase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ :Optional[int] = [ v, ] assert sum(len(lowercase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowercase__ ) UpperCamelCase__ :int = sum(p.numel() for p in model.parameters() ) UpperCamelCase__ :Dict = datetime.now() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = compute_heads_importance( lowercase__ , lowercase__ , lowercase__ , compute_entropy=lowercase__ , compute_importance=lowercase__ , head_mask=lowercase__ , actually_pruned=lowercase__ , ) UpperCamelCase__ :List[str] = 1 / loss UpperCamelCase__ :List[str] = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , lowercase__ , lowercase__ , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , lowercase__ , lowercase__ ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(lowercase__ , args.output_dir ) def A ( ) -> Any: UpperCamelCase__ :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=lowercase__ , type=lowercase__ , required=lowercase__ , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=lowercase__ , type=lowercase__ , required=lowercase__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=lowercase__ , type=lowercase__ , required=lowercase__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=lowercase__ , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=lowercase__ , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=lowercase__ , type=lowercase__ , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=lowercase__ , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=lowercase__ , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=lowercase__ , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=lowercase__ , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=lowercase__ , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=lowercase__ , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=lowercase__ , default=42 ) parser.add_argument("""--local_rank""" , type=lowercase__ , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=lowercase__ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=lowercase__ , default="""""" , help="""Can be used for distant debugging.""" ) UpperCamelCase__ :List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowercase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCamelCase__ :Dict = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) UpperCamelCase__ :Tuple = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCamelCase__ :int = torch.device("""cuda""" , args.local_rank ) UpperCamelCase__ :List[str] = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCamelCase__ :Union[str, Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCamelCase__ :Any = nn.parallel.DistributedDataParallel( lowercase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowercase__ ) elif args.n_gpu > 1: UpperCamelCase__ :Tuple = nn.DataParallel(lowercase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowercase__ ) torch.save(lowercase__ , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , lowercase__ ) # Prepare dataset UpperCamelCase__ :Optional[int] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCamelCase__ :int = (torch.from_numpy(lowercase__ ),) UpperCamelCase__ :List[Any] = TensorDataset(*lowercase__ ) UpperCamelCase__ :Tuple = RandomSampler(lowercase__ ) UpperCamelCase__ :Optional[int] = DataLoader(lowercase__ , sampler=lowercase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowercase__ , lowercase__ , lowercase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCamelCase__ :Optional[int] = mask_heads(lowercase__ , lowercase__ , lowercase__ ) prune_heads(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if __name__ == "__main__": main()
45
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
1
import requests def A ( lowercase__ : str , lowercase__ : str ) -> None: UpperCamelCase__ :Dict = {"""Content-Type""": """application/json"""} UpperCamelCase__ :Optional[Any] = requests.post(lowercase__ , json={"""text""": message_body} , headers=lowercase__ ) if response.status_code != 200: UpperCamelCase__ :Union[str, Any] = ( """Request to slack returned an error """ f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
45
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
1
import torch def A ( ) -> Optional[int]: if torch.cuda.is_available(): UpperCamelCase__ :int = torch.cuda.device_count() else: UpperCamelCase__ :List[str] = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A ( lowercase__ : int ) -> str: UpperCamelCase__ :str = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def A ( lowercase__ : str ) -> int: UpperCamelCase__ :int = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCamelCase__ :List[str] = s_dict.pop(lowercase__ ) elif "subsample" in key: UpperCamelCase__ :Any = s_dict.pop(lowercase__ ) def A ( lowercase__ : Optional[int] ) -> str: UpperCamelCase__ , UpperCamelCase__ :int = emb.weight.shape UpperCamelCase__ :Optional[Any] = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) UpperCamelCase__ :Optional[Any] = emb.weight.data return lin_layer def A ( lowercase__ : List[str] , lowercase__ : List[Any] ) -> Union[str, Any]: UpperCamelCase__ :Any = torch.load(lowercase__ , map_location="""cpu""" ) UpperCamelCase__ :int = mam_aaa["""args"""] UpperCamelCase__ :Union[str, Any] = mam_aaa["""model"""] UpperCamelCase__ :Optional[int] = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(lowercase__ ) rename_keys(lowercase__ ) UpperCamelCase__ :int = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCamelCase__ :List[str] = args.share_decoder_input_output_embed UpperCamelCase__ :Dict = [int(lowercase__ ) for i in args.conv_kernel_sizes.split(""",""" )] UpperCamelCase__ :str = SpeechaTextConfig( vocab_size=lowercase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(lowercase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowercase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowercase__ , num_beams=5 , max_length=200 , use_cache=lowercase__ , decoder_start_token_id=2 , early_stopping=lowercase__ , ) UpperCamelCase__ :List[Any] = SpeechaTextForConditionalGeneration(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ :int = model.model.load_state_dict(lowercase__ , strict=lowercase__ ) if len(lowercase__ ) > 0 and not set(lowercase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f""" but all the following weights are missing {missing}""" ) if tie_embeds: UpperCamelCase__ :Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCamelCase__ :Dict = lm_head_weights model.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
from __future__ import annotations from math import gcd def A ( lowercase__ : int , lowercase__ : int = 2 , lowercase__ : int = 1 , lowercase__ : int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: return (pow(lowercase__ , 2 ) + step) % modulus for _ in range(lowercase__ ): # These track the position within the cycle detection logic. UpperCamelCase__ :Dict = seed UpperCamelCase__ :List[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. UpperCamelCase__ :Optional[int] = rand_fn(lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ :List[str] = rand_fn(lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ :str = rand_fn(lowercase__ , lowercase__ , lowercase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. UpperCamelCase__ :str = gcd(hare - tortoise , lowercase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. UpperCamelCase__ :Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) UpperCamelCase = parser.parse_args() UpperCamelCase = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'''{args.num} is probably prime''') else: UpperCamelCase = args.num // divisor print(f'''{args.num} = {divisor} * {quotient}''')
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1