code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :List[str]=13 , lowerCamelCase__ :Any=7 , lowerCamelCase__ :Dict=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :Optional[Any]=32 , lowerCamelCase__ :Any=5 , lowerCamelCase__ :Any=4 , lowerCamelCase__ :List[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Tuple=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :Tuple=5_12 , lowerCamelCase__ :int=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Optional[int]=0.02 , lowerCamelCase__ :Optional[Any]=4 , ): UpperCamelCase__ :Union[str, Any] = parent UpperCamelCase__ :Optional[Any] = batch_size UpperCamelCase__ :Optional[Any] = seq_length UpperCamelCase__ :str = is_training UpperCamelCase__ :int = use_attention_mask UpperCamelCase__ :Dict = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[str] = vocab_size UpperCamelCase__ :Optional[int] = hidden_size UpperCamelCase__ :int = num_hidden_layers UpperCamelCase__ :Optional[int] = num_attention_heads UpperCamelCase__ :Dict = intermediate_size UpperCamelCase__ :str = hidden_act UpperCamelCase__ :List[Any] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Optional[int] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :Dict = type_sequence_label_size UpperCamelCase__ :Dict = initializer_range UpperCamelCase__ :Union[str, Any] = num_choices def __a ( self :Optional[Any] ): UpperCamelCase__ :Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Optional[Any] = None if self.use_attention_mask: UpperCamelCase__ :List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :List[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ :Optional[int] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __a ( self :int ): UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = config_and_inputs UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __a ( self :List[Any] ): UpperCamelCase__ :Dict = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Optional[Any] = True UpperCamelCase__ :Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Any = True _snake_case : Union[str, Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = FlaxRobertaModelTester(self ) @slow def __a ( self :Any ): for model_class_name in self.all_model_classes: UpperCamelCase__ :int = model_class_name.from_pretrained("""roberta-base""" , from_pt=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1
import pprint import requests UpperCamelCase = "https://zenquotes.io/api" def A ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def A ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCamelCase = random_quotes() pprint.pprint(response)
45
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) UpperCamelCase = logging.getLogger(__name__) def A ( ) -> int: UpperCamelCase__ :Union[str, Any] = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=lowercase__ , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=lowercase__ , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=lowercase__ , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=lowercase__ , default="""data/dump""" , help="""The dump file prefix.""" ) UpperCamelCase__ :Dict = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": UpperCamelCase__ :Dict = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase__ :Union[str, Any] = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` UpperCamelCase__ :Dict = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCamelCase__ :List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase__ :Union[str, Any] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` UpperCamelCase__ :Any = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": UpperCamelCase__ :int = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase__ :Optional[Any] = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` UpperCamelCase__ :Optional[Any] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: UpperCamelCase__ :Any = fp.readlines() logger.info("""Start encoding""" ) logger.info(f"""{len(lowercase__ )} examples to process.""" ) UpperCamelCase__ :str = [] UpperCamelCase__ :Dict = 0 UpperCamelCase__ :Optional[int] = 1_0000 UpperCamelCase__ :Optional[int] = time.time() for text in data: UpperCamelCase__ :Any = f"""{bos} {text.strip()} {sep}""" UpperCamelCase__ :Dict = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) rslt.append(lowercase__ ) iter += 1 if iter % interval == 0: UpperCamelCase__ :int = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) UpperCamelCase__ :Optional[int] = time.time() logger.info("""Finished binarization""" ) logger.info(f"""{len(lowercase__ )} examples processed.""" ) UpperCamelCase__ :Any = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" UpperCamelCase__ :Any = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCamelCase__ :List[str] = [np.uintaa(lowercase__ ) for d in rslt] else: UpperCamelCase__ :List[str] = [np.intaa(lowercase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(lowercase__ , """wb""" ) as handle: pickle.dump(rslt_ , lowercase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
45
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
def A ( lowercase__ : int , lowercase__ : float , lowercase__ : float ) -> float: return round(float(moles / volume ) * nfactor ) def A ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def A ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def A ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
45
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : str = """resnet""" _snake_case : Any = ["""basic""", """bottleneck"""] def __init__( self :List[Any] , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :str=64 , lowerCamelCase__ :Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ :List[str]=[3, 4, 6, 3] , lowerCamelCase__ :Any="bottleneck" , lowerCamelCase__ :List[Any]="relu" , lowerCamelCase__ :Optional[Any]=False , lowerCamelCase__ :int=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :Optional[int] , ): super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) UpperCamelCase__ :List[str] = num_channels UpperCamelCase__ :List[Any] = embedding_size UpperCamelCase__ :str = hidden_sizes UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = layer_type UpperCamelCase__ :List[str] = hidden_act UpperCamelCase__ :int = downsample_in_first_stage UpperCamelCase__ :str = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Dict = version.parse("""1.11""" ) @property def __a ( self :str ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __a ( self :Dict ): return 1e-3
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
45
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
1
from dataclasses import dataclass, field from typing import Optional @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) _snake_case : Optional[str] = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) _snake_case : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for training."""} ) _snake_case : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) _snake_case : Optional[float] = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) _snake_case : Optional[int] = field( default=10_000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) _snake_case : Optional[float] = field(default=2e-4 , metadata={"""help""": """Learning rate fo training."""} ) _snake_case : Optional[str] = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) _snake_case : Optional[int] = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) _snake_case : Optional[int] = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) _snake_case : Optional[bool] = field( default=lowercase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) _snake_case : Optional[int] = field(default=50_000 , metadata={"""help""": """Maximum number of training steps."""} ) _snake_case : Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) _snake_case : Optional[int] = field(default=1_024 , metadata={"""help""": """Sequence lengths used for training."""} ) _snake_case : Optional[int] = field(default=1 , metadata={"""help""": """Training seed."""} ) _snake_case : Optional[int] = field( default=1_024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) _snake_case : Optional[bool] = field(default=lowercase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) _snake_case : Optional[int] = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) _snake_case : Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) _snake_case : Optional[int] = field(default=1_024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) _snake_case : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) _snake_case : Optional[int] = field(default=lowercase , metadata={"""help""": """Number of workers used for code evaluation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) _snake_case : Optional[bool] = field( default=lowercase , metadata={"""help""": """Sample from the language model's output distribution."""} ) _snake_case : Optional[float] = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) _snake_case : Optional[int] = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) _snake_case : Optional[int] = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) _snake_case : Optional[float] = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) _snake_case : Optional[int] = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) _snake_case : Optional[int] = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) _snake_case : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) _snake_case : Optional[str] = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) _snake_case : Optional[str] = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) _snake_case : Optional[int] = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) _snake_case : Optional[str] = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) _snake_case : Optional[str] = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) _snake_case : Optional[int] = field( default=100_000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) _snake_case : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) _snake_case : Optional[float] = field( default=1_000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) _snake_case : Optional[float] = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) _snake_case : Optional[float] = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) _snake_case : Optional[float] = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) _snake_case : Optional[float] = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) _snake_case : Optional[bool] = field( default=lowercase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) _snake_case : Optional[float] = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) _snake_case : Optional[str] = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) _snake_case : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) _snake_case : Optional[int] = field(default=200_000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) _snake_case : Optional[int] = field( default=32_768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) _snake_case : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) _snake_case : Optional[bool] = field(default=lowercase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) _snake_case : Optional[str] = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) _snake_case : Optional[int] = field(default=lowercase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) _snake_case : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) _snake_case : Optional[bool] = field(default=lowercase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
45
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
1
from collections.abc import Sequence def A ( lowercase__ : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) UpperCamelCase__ :int = nums[0] for i in range(1 , len(lowercase__ ) ): UpperCamelCase__ :str = nums[i] UpperCamelCase__ :List[str] = max(lowercase__ , ans + num , lowercase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCamelCase = int(input("Enter number of elements : ").strip()) UpperCamelCase = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
45
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int=13 , lowerCamelCase__ :str=32 , lowerCamelCase__ :List[Any]=2 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :int=16 , lowerCamelCase__ :Union[str, Any]=[32, 64, 1_28] , lowerCamelCase__ :List[str]=[1, 2, 1] , lowerCamelCase__ :List[Any]=[2, 2, 4] , lowerCamelCase__ :Any=2 , lowerCamelCase__ :Any=2.0 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Tuple=0.1 , lowerCamelCase__ :List[Any]="gelu" , lowerCamelCase__ :str=False , lowerCamelCase__ :int=True , lowerCamelCase__ :List[str]=0.02 , lowerCamelCase__ :str=1e-5 , lowerCamelCase__ :Tuple=True , lowerCamelCase__ :Union[str, Any]=None , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Any=10 , lowerCamelCase__ :Optional[int]=8 , lowerCamelCase__ :str=["stage1", "stage2"] , lowerCamelCase__ :Optional[int]=[1, 2] , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Union[str, Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :List[Any] = num_channels UpperCamelCase__ :Union[str, Any] = embed_dim UpperCamelCase__ :List[Any] = hidden_sizes UpperCamelCase__ :List[str] = depths UpperCamelCase__ :str = num_heads UpperCamelCase__ :Union[str, Any] = window_size UpperCamelCase__ :int = mlp_ratio UpperCamelCase__ :str = qkv_bias UpperCamelCase__ :Any = hidden_dropout_prob UpperCamelCase__ :Optional[int] = attention_probs_dropout_prob UpperCamelCase__ :Optional[int] = drop_path_rate UpperCamelCase__ :int = hidden_act UpperCamelCase__ :str = use_absolute_embeddings UpperCamelCase__ :Dict = patch_norm UpperCamelCase__ :List[str] = layer_norm_eps UpperCamelCase__ :Optional[int] = initializer_range UpperCamelCase__ :Optional[Any] = is_training UpperCamelCase__ :str = scope UpperCamelCase__ :List[Any] = use_labels UpperCamelCase__ :Optional[int] = type_sequence_label_size UpperCamelCase__ :str = encoder_stride UpperCamelCase__ :int = out_features UpperCamelCase__ :str = out_indices def __a ( self :Optional[Any] ): UpperCamelCase__ :Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Tuple = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, pixel_values, labels def __a ( self :Any ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :List[Any] = FocalNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase__ :Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __a ( self :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] ): UpperCamelCase__ :Optional[int] = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :str = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase__ :str = None UpperCamelCase__ :Optional[Any] = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :int = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __a ( self :Optional[int] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any ): UpperCamelCase__ :List[Any] = FocalNetForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase__ :List[str] = 1 UpperCamelCase__ :List[str] = FocalNetForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __a ( self :Any , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :List[str] ): UpperCamelCase__ :List[Any] = self.type_sequence_label_size UpperCamelCase__ :int = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ :List[Any] = 1 UpperCamelCase__ :Optional[Any] = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :int ): UpperCamelCase__ :Dict = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Any = config_and_inputs UpperCamelCase__ :List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _snake_case : Any = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) _snake_case : Optional[Any] = False _snake_case : int = False _snake_case : Any = False _snake_case : List[Any] = False _snake_case : Optional[Any] = False def __a ( self :Optional[Any] ): UpperCamelCase__ :Dict = FocalNetModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 , has_text_modality=lowerCamelCase__ ) def __a ( self :Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self :Union[str, Any] ): return def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __a ( self :Dict ): pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __a ( self :str ): pass def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :List[Any] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ :Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def __a ( self :Tuple ): UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) UpperCamelCase__ :int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :Dict = [*signature.parameters.keys()] UpperCamelCase__ :Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :str = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase__ :int = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase__ :Dict = outputs.hidden_states UpperCamelCase__ :Optional[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # FocalNet has a different seq_length UpperCamelCase__ :Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase__ :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase__ :int = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = reshaped_hidden_states[0].shape UpperCamelCase__ :Any = ( reshaped_hidden_states[0].view(lowerCamelCase__ , lowerCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :Optional[int] = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :Optional[int] = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :str ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Dict = 3 UpperCamelCase__ :Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase__ :List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase__ :Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase__ :Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :Tuple = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :Any = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @slow def __a ( self :Optional[Any] ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Optional[Any] = FocalNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :List[Any] = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: UpperCamelCase__ :Optional[Any] = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __a ( self :Optional[Any] ): UpperCamelCase__ :Optional[Any] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase__ ) UpperCamelCase__ :Tuple = self.default_image_processor UpperCamelCase__ :int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase__ :List[str] = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase__ :Optional[int] = model(**lowerCamelCase__ ) # verify the logits UpperCamelCase__ :Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCamelCase__ :str = torch.tensor([0.2166, -0.4368, 0.2191] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = (FocalNetBackbone,) if is_torch_available() else () _snake_case : Optional[Any] = FocalNetConfig _snake_case : List[str] = False def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[Any] = FocalNetModelTester(self )
45
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : str = """convnextv2""" def __init__( self :Dict , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :Dict=4 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :Dict=None , lowerCamelCase__ :Dict=None , lowerCamelCase__ :List[str]="gelu" , lowerCamelCase__ :str=0.02 , lowerCamelCase__ :str=1e-12 , lowerCamelCase__ :int=0.0 , lowerCamelCase__ :str=2_24 , lowerCamelCase__ :Tuple=None , lowerCamelCase__ :Optional[Any]=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :List[str] = num_channels UpperCamelCase__ :Optional[Any] = patch_size UpperCamelCase__ :Union[str, Any] = num_stages UpperCamelCase__ :List[str] = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes UpperCamelCase__ :int = [3, 3, 9, 3] if depths is None else depths UpperCamelCase__ :int = hidden_act UpperCamelCase__ :Optional[Any] = initializer_range UpperCamelCase__ :Optional[int] = layer_norm_eps UpperCamelCase__ :Any = drop_path_rate UpperCamelCase__ :Dict = image_size UpperCamelCase__ :Union[str, Any] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :int = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[Any] = """ClapFeatureExtractor""" _snake_case : int = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self :Optional[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[Any] ): super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self :List[Any] , lowerCamelCase__ :List[Any]=None , lowerCamelCase__ :Optional[int]=None , lowerCamelCase__ :Dict=None , **lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :List[str] = kwargs.pop("""sampling_rate""" , lowerCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: UpperCamelCase__ :Optional[Any] = self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if audios is not None: UpperCamelCase__ :str = self.feature_extractor( lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None and audios is not None: UpperCamelCase__ :Tuple = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__ ) , tensor_type=lowerCamelCase__ ) def __a ( self :Any , *lowerCamelCase__ :List[str] , **lowerCamelCase__ :Any ): return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :int , *lowerCamelCase__ :Any , **lowerCamelCase__ :Optional[int] ): return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def __a ( self :Tuple ): UpperCamelCase__ :List[str] = self.tokenizer.model_input_names UpperCamelCase__ :Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1
from __future__ import annotations from fractions import Fraction def A ( lowercase__ : int , lowercase__ : int ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( lowercase__ : int ) -> list[str]: UpperCamelCase__ :int = [] UpperCamelCase__ :Tuple = 11 UpperCamelCase__ :int = int("""1""" + """0""" * digit_len ) for num in range(lowercase__ , lowercase__ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase__ , lowercase__ ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 UpperCamelCase__ :Optional[Any] = 10 return solutions def A ( lowercase__ : int = 2 ) -> int: UpperCamelCase__ :Optional[Any] = 1.0 for fraction in fraction_list(lowercase__ ): UpperCamelCase__ :Any = Fraction(lowercase__ ) result *= frac.denominator / frac.numerator return int(lowercase__ ) if __name__ == "__main__": print(solution())
45
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
1
def A ( lowercase__ : int ) -> Optional[Any]: UpperCamelCase__ :List[str] = len(lowercase__ ) for i in range(length - 1 ): UpperCamelCase__ :Tuple = i for k in range(i + 1 , lowercase__ ): if collection[k] < collection[least]: UpperCamelCase__ :str = k if least != i: UpperCamelCase__ , UpperCamelCase__ :str = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
45
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def A ( lowercase__ : list , lowercase__ : list , lowercase__ : list , lowercase__ : list , lowercase__ : list ) -> float: UpperCamelCase__ :int = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowercase__ )] ) UpperCamelCase__ :List[Any] = np.array(lowercase__ ) UpperCamelCase__ :Dict = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowercase__ ) ) , x.transpose() ) , lowercase__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def A ( lowercase__ : list , lowercase__ : list , lowercase__ : list ) -> float: UpperCamelCase__ :Optional[int] = (1, 2, 1) UpperCamelCase__ :Optional[int] = (1, 1, 0, 7) UpperCamelCase__ :Optional[int] = SARIMAX( lowercase__ , exog=lowercase__ , order=lowercase__ , seasonal_order=lowercase__ ) UpperCamelCase__ :Tuple = model.fit(disp=lowercase__ , maxiter=600 , method="""nm""" ) UpperCamelCase__ :int = model_fit.predict(1 , len(lowercase__ ) , exog=[test_match] ) return result[0] def A ( lowercase__ : list , lowercase__ : list , lowercase__ : list ) -> float: UpperCamelCase__ :Optional[Any] = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowercase__ , lowercase__ ) UpperCamelCase__ :Optional[int] = regressor.predict(lowercase__ ) return y_pred[0] def A ( lowercase__ : list ) -> float: train_user.sort() UpperCamelCase__ :List[Any] = np.percentile(lowercase__ , 25 ) UpperCamelCase__ :Optional[Any] = np.percentile(lowercase__ , 75 ) UpperCamelCase__ :Optional[int] = qa - qa UpperCamelCase__ :Tuple = qa - (iqr * 0.1) return low_lim def A ( lowercase__ : list , lowercase__ : float ) -> bool: UpperCamelCase__ :List[Any] = 0 UpperCamelCase__ :str = 0 for i in list_vote: if i > actual_result: UpperCamelCase__ :List[str] = not_safe + 1 else: if abs(abs(lowercase__ ) - abs(lowercase__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCamelCase = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCamelCase = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) UpperCamelCase = Normalizer().fit_transform(data_input_df.values) # split data UpperCamelCase = normalize_df[:, 2].tolist() UpperCamelCase = normalize_df[:, 0].tolist() UpperCamelCase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCamelCase = normalize_df[:, [1, 2]].tolist() UpperCamelCase = x[: len(x) - 1] UpperCamelCase = x[len(x) - 1 :] # for linear regression & sarimax UpperCamelCase = total_date[: len(total_date) - 1] UpperCamelCase = total_user[: len(total_user) - 1] UpperCamelCase = total_match[: len(total_match) - 1] UpperCamelCase = total_date[len(total_date) - 1 :] UpperCamelCase = total_user[len(total_user) - 1 :] UpperCamelCase = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCamelCase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCamelCase = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
45
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : int = (PNDMScheduler,) _snake_case : Any = (("""num_inference_steps""", 50),) def __a ( self :str , **lowerCamelCase__ :int ): UpperCamelCase__ :Any = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCamelCase__ ) return config def __a ( self :Dict , lowerCamelCase__ :List[Any]=0 , **lowerCamelCase__ :List[str] ): UpperCamelCase__ :Optional[int] = dict(self.forward_default_kwargs ) UpperCamelCase__ :int = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = self.dummy_sample UpperCamelCase__ :Tuple = 0.1 * sample UpperCamelCase__ :List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ :str = self.get_scheduler_config(**lowerCamelCase__ ) UpperCamelCase__ :Tuple = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals UpperCamelCase__ :str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) UpperCamelCase__ :int = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals UpperCamelCase__ :List[str] = dummy_past_residuals[:] UpperCamelCase__ :Dict = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample UpperCamelCase__ :List[str] = new_scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase__ :Optional[Any] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample UpperCamelCase__ :Optional[int] = new_scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __a ( self :List[Any] ): pass def __a ( self :Optional[int] , lowerCamelCase__ :Tuple=0 , **lowerCamelCase__ :Tuple ): UpperCamelCase__ :List[Any] = dict(self.forward_default_kwargs ) UpperCamelCase__ :List[str] = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) UpperCamelCase__ :List[str] = self.dummy_sample UpperCamelCase__ :Union[str, Any] = 0.1 * sample UpperCamelCase__ :Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ :Optional[Any] = self.get_scheduler_config() UpperCamelCase__ :Optional[Any] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ :int = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ :Optional[int] = dummy_past_residuals[:] UpperCamelCase__ :Any = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample UpperCamelCase__ :Tuple = new_scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase__ :Any = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample UpperCamelCase__ :Union[str, Any] = new_scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __a ( self :Dict , **lowerCamelCase__ :Union[str, Any] ): UpperCamelCase__ :Optional[Any] = self.scheduler_classes[0] UpperCamelCase__ :int = self.get_scheduler_config(**lowerCamelCase__ ) UpperCamelCase__ :str = scheduler_class(**lowerCamelCase__ ) UpperCamelCase__ :int = 10 UpperCamelCase__ :Any = self.dummy_model() UpperCamelCase__ :int = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCamelCase__ :str = model(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCamelCase__ :Dict = model(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = dict(self.forward_default_kwargs ) UpperCamelCase__ :int = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: UpperCamelCase__ :Union[str, Any] = self.get_scheduler_config() UpperCamelCase__ :int = scheduler_class(**lowerCamelCase__ ) UpperCamelCase__ :Dict = self.dummy_sample UpperCamelCase__ :Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ , """set_timesteps""" ): UpperCamelCase__ :Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase__ :Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase__ :Tuple = dummy_past_residuals[:] UpperCamelCase__ :int = scheduler.step_prk(lowerCamelCase__ , 0 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample UpperCamelCase__ :Dict = scheduler.step_prk(lowerCamelCase__ , 1 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase__ :int = scheduler.step_plms(lowerCamelCase__ , 0 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample UpperCamelCase__ :Union[str, Any] = scheduler.step_plms(lowerCamelCase__ , 1 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __a ( self :Any ): for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def __a ( self :str ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) UpperCamelCase__ :Tuple = self.scheduler_classes[0] UpperCamelCase__ :Tuple = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__ :Optional[int] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def __a ( self :List[str] ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def __a ( self :Tuple ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def __a ( self :List[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def __a ( self :Any ): for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase__ ) def __a ( self :List[Any] ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowerCamelCase__ ) def __a ( self :Dict ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCamelCase__ :int = 27 for scheduler_class in self.scheduler_classes: UpperCamelCase__ :Tuple = self.dummy_sample UpperCamelCase__ :List[str] = 0.1 * sample UpperCamelCase__ :List[Any] = self.get_scheduler_config() UpperCamelCase__ :Any = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCamelCase__ :Union[str, Any] = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample def __a ( self :str ): with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = self.scheduler_classes[0] UpperCamelCase__ :Union[str, Any] = self.get_scheduler_config() UpperCamelCase__ :str = scheduler_class(**lowerCamelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __a ( self :Optional[int] ): UpperCamelCase__ :Tuple = self.full_loop() UpperCamelCase__ :str = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCamelCase__ :Tuple = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def __a ( self :Dict ): UpperCamelCase__ :str = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase__ :Tuple = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCamelCase__ :str = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def __a ( self :Union[str, Any] ): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ :Dict = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.01 ) UpperCamelCase__ :Union[str, Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCamelCase__ :Tuple = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def __a ( self :Dict ): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ :Union[str, Any] = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.01 ) UpperCamelCase__ :List[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCamelCase__ :Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
45
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[str] = """data2vec-vision""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[Any]=7_68 , lowerCamelCase__ :Tuple=12 , lowerCamelCase__ :str=12 , lowerCamelCase__ :Optional[int]=30_72 , lowerCamelCase__ :Union[str, Any]="gelu" , lowerCamelCase__ :Any=0.0 , lowerCamelCase__ :Dict=0.0 , lowerCamelCase__ :Dict=0.02 , lowerCamelCase__ :Tuple=1e-12 , lowerCamelCase__ :Union[str, Any]=2_24 , lowerCamelCase__ :Union[str, Any]=16 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Tuple=False , lowerCamelCase__ :Tuple=False , lowerCamelCase__ :Union[str, Any]=False , lowerCamelCase__ :Optional[Any]=False , lowerCamelCase__ :Tuple=0.1 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Dict=True , lowerCamelCase__ :Optional[Any]=[3, 5, 7, 11] , lowerCamelCase__ :int=[1, 2, 3, 6] , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Any=0.4 , lowerCamelCase__ :List[Any]=2_56 , lowerCamelCase__ :str=1 , lowerCamelCase__ :Optional[int]=False , lowerCamelCase__ :str=2_55 , **lowerCamelCase__ :Tuple , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = hidden_size UpperCamelCase__ :Any = num_hidden_layers UpperCamelCase__ :Dict = num_attention_heads UpperCamelCase__ :Union[str, Any] = intermediate_size UpperCamelCase__ :Optional[int] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ :Optional[int] = initializer_range UpperCamelCase__ :Tuple = layer_norm_eps UpperCamelCase__ :int = image_size UpperCamelCase__ :List[Any] = patch_size UpperCamelCase__ :Optional[Any] = num_channels UpperCamelCase__ :List[Any] = use_mask_token UpperCamelCase__ :List[Any] = use_absolute_position_embeddings UpperCamelCase__ :Any = use_relative_position_bias UpperCamelCase__ :Union[str, Any] = use_shared_relative_position_bias UpperCamelCase__ :List[Any] = layer_scale_init_value UpperCamelCase__ :List[Any] = drop_path_rate UpperCamelCase__ :List[Any] = use_mean_pooling # decode head attributes (semantic segmentation) UpperCamelCase__ :Tuple = out_indices UpperCamelCase__ :Any = pool_scales # auxiliary head attributes (semantic segmentation) UpperCamelCase__ :int = use_auxiliary_head UpperCamelCase__ :List[str] = auxiliary_loss_weight UpperCamelCase__ :Optional[Any] = auxiliary_channels UpperCamelCase__ :Tuple = auxiliary_num_convs UpperCamelCase__ :List[str] = auxiliary_concat_input UpperCamelCase__ :Optional[Any] = semantic_loss_ignore_index class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : int = version.parse("""1.11""" ) @property def __a ( self :List[str] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __a ( self :Union[str, Any] ): return 1e-4
45
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
1
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece_bpe.model") UpperCamelCase = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = CamembertTokenizer _snake_case : Optional[int] = CamembertTokenizerFast _snake_case : Tuple = True _snake_case : Dict = True def __a ( self :Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ :Union[str, Any] = CamembertTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self :List[str] ): UpperCamelCase__ :List[str] = """<pad>""" UpperCamelCase__ :Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowerCamelCase__ ) , 10_04 ) def __a ( self :Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def __a ( self :Dict ): UpperCamelCase__ :List[str] = CamembertTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Union[str, Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCamelCase__ :Any = """I was born in 92000, and this is falsé.""" UpperCamelCase__ :List[Any] = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ :Dict = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCamelCase__ :Any = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) UpperCamelCase__ :str = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): if not self.test_rust_tokenizer: return UpperCamelCase__ :Dict = self.get_tokenizer() UpperCamelCase__ :str = self.get_rust_tokenizer() UpperCamelCase__ :str = """I was born in 92000, and this is falsé.""" UpperCamelCase__ :Optional[Any] = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = self.get_rust_tokenizer() UpperCamelCase__ :Union[str, Any] = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :List[str] ): # fmt: off UpperCamelCase__ :Any = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCamelCase__ :Tuple = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=lowerCamelCase__ , )
45
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Tuple = """conditional_detr""" _snake_case : List[Any] = ["""past_key_values"""] _snake_case : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self :Dict , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Any=None , lowerCamelCase__ :Dict=3 , lowerCamelCase__ :Dict=3_00 , lowerCamelCase__ :Union[str, Any]=6 , lowerCamelCase__ :List[Any]=20_48 , lowerCamelCase__ :List[str]=8 , lowerCamelCase__ :Any=6 , lowerCamelCase__ :Optional[int]=20_48 , lowerCamelCase__ :Tuple=8 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :List[str]="relu" , lowerCamelCase__ :List[Any]=2_56 , lowerCamelCase__ :Optional[Any]=0.1 , lowerCamelCase__ :Dict=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Tuple=0.02 , lowerCamelCase__ :Any=1.0 , lowerCamelCase__ :Dict=False , lowerCamelCase__ :str="sine" , lowerCamelCase__ :Dict="resnet50" , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=False , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[str]=5 , lowerCamelCase__ :List[Any]=2 , lowerCamelCase__ :str=1 , lowerCamelCase__ :Any=1 , lowerCamelCase__ :Optional[int]=2 , lowerCamelCase__ :Union[str, Any]=5 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.25 , **lowerCamelCase__ :Dict , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase__ :Tuple = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ :int = backbone_config.get("""model_type""" ) UpperCamelCase__ :Optional[int] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ :List[Any] = config_class.from_dict(lowerCamelCase__ ) UpperCamelCase__ :str = use_timm_backbone UpperCamelCase__ :Dict = backbone_config UpperCamelCase__ :Union[str, Any] = num_channels UpperCamelCase__ :Optional[Any] = num_queries UpperCamelCase__ :Any = d_model UpperCamelCase__ :str = encoder_ffn_dim UpperCamelCase__ :Union[str, Any] = encoder_layers UpperCamelCase__ :Tuple = encoder_attention_heads UpperCamelCase__ :Optional[Any] = decoder_ffn_dim UpperCamelCase__ :Optional[int] = decoder_layers UpperCamelCase__ :Optional[Any] = decoder_attention_heads UpperCamelCase__ :Any = dropout UpperCamelCase__ :Union[str, Any] = attention_dropout UpperCamelCase__ :List[Any] = activation_dropout UpperCamelCase__ :int = activation_function UpperCamelCase__ :Tuple = init_std UpperCamelCase__ :Any = init_xavier_std UpperCamelCase__ :Any = encoder_layerdrop UpperCamelCase__ :Optional[int] = decoder_layerdrop UpperCamelCase__ :Optional[int] = encoder_layers UpperCamelCase__ :Optional[Any] = auxiliary_loss UpperCamelCase__ :List[Any] = position_embedding_type UpperCamelCase__ :Any = backbone UpperCamelCase__ :Dict = use_pretrained_backbone UpperCamelCase__ :Tuple = dilation # Hungarian matcher UpperCamelCase__ :Optional[Any] = class_cost UpperCamelCase__ :str = bbox_cost UpperCamelCase__ :int = giou_cost # Loss coefficients UpperCamelCase__ :Dict = mask_loss_coefficient UpperCamelCase__ :str = dice_loss_coefficient UpperCamelCase__ :Union[str, Any] = cls_loss_coefficient UpperCamelCase__ :List[Any] = bbox_loss_coefficient UpperCamelCase__ :List[Any] = giou_loss_coefficient UpperCamelCase__ :Dict = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def __a ( self :Union[str, Any] ): return self.encoder_attention_heads @property def __a ( self :int ): return self.d_model def __a ( self :Any ): UpperCamelCase__ :str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__ :str = self.backbone_config.to_dict() UpperCamelCase__ :Dict = self.__class__.model_type return output class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Union[str, Any] = version.parse("""1.11""" ) @property def __a ( self :int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __a ( self :List[Any] ): return 1e-5 @property def __a ( self :Optional[int] ): return 12
45
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
1
from __future__ import annotations def A ( lowercase__ : list[int] ) -> int: if not nums: return 0 UpperCamelCase__ :Tuple = nums[0] UpperCamelCase__ :int = 0 for num in nums[1:]: UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = ( max_excluding + num, max(lowercase__ , lowercase__ ), ) return max(lowercase__ , lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] ): super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self :Optional[int] , lowerCamelCase__ :int = 1 , lowerCamelCase__ :int = 1_00 , lowerCamelCase__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ :Optional[float] = None , lowerCamelCase__ :bool = True , ): if audio_length_in_s is None: UpperCamelCase__ :List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate UpperCamelCase__ :Tuple = audio_length_in_s * self.unet.config.sample_rate UpperCamelCase__ :str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) UpperCamelCase__ :Tuple = int(lowerCamelCase__ ) if sample_size % down_scale_factor != 0: UpperCamelCase__ :Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" """ process.""" ) UpperCamelCase__ :Dict = int(lowerCamelCase__ ) UpperCamelCase__ :Any = next(iter(self.unet.parameters() ) ).dtype UpperCamelCase__ :Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase__ :Union[str, Any] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ ) # set step values self.scheduler.set_timesteps(lowerCamelCase__ , device=audio.device ) UpperCamelCase__ :List[Any] = self.scheduler.timesteps.to(lowerCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase__ :Tuple = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. compute previous image: x_t -> t_t-1 UpperCamelCase__ :str = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample UpperCamelCase__ :Any = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCamelCase__ :Optional[int] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase__ )
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
from __future__ import annotations import bisect def A ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = -1 ) -> int: if hi < 0: UpperCamelCase__ :List[Any] = len(lowercase__ ) while lo < hi: UpperCamelCase__ :List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: UpperCamelCase__ :Any = mid + 1 else: UpperCamelCase__ :Union[str, Any] = mid return lo def A ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = -1 ) -> int: if hi < 0: UpperCamelCase__ :Union[str, Any] = len(lowercase__ ) while lo < hi: UpperCamelCase__ :Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: UpperCamelCase__ :Dict = mid + 1 else: UpperCamelCase__ :Dict = mid return lo def A ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = -1 ) -> None: sorted_collection.insert(bisect_left(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def A ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = -1 ) -> None: sorted_collection.insert(bisect_right(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def A ( lowercase__ : list[int] , lowercase__ : int ) -> int | None: UpperCamelCase__ :str = 0 UpperCamelCase__ :int = len(lowercase__ ) - 1 while left <= right: UpperCamelCase__ :Optional[Any] = left + (right - left) // 2 UpperCamelCase__ :Tuple = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: UpperCamelCase__ :str = midpoint - 1 else: UpperCamelCase__ :Optional[Any] = midpoint + 1 return None def A ( lowercase__ : list[int] , lowercase__ : int ) -> int | None: UpperCamelCase__ :int = bisect.bisect_left(lowercase__ , lowercase__ ) if index != len(lowercase__ ) and sorted_collection[index] == item: return index return None def A ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int | None: if right < left: return None UpperCamelCase__ :List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase__ , lowercase__ , midpoint + 1 , lowercase__ ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by comma:\n").strip() UpperCamelCase = sorted(int(item) for item in user_input.split(",")) UpperCamelCase = int(input("Enter a single number to be found in the list:\n")) UpperCamelCase = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCamelCase = TaTokenizerFast UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
45
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , """num_attention_heads""" ) ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str=13 , lowerCamelCase__ :Dict=64 , lowerCamelCase__ :Dict=3 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :Tuple=1 , lowerCamelCase__ :Tuple=16 , lowerCamelCase__ :int=[1_28, 2_56, 3_84] , lowerCamelCase__ :int=[4, 6, 8] , lowerCamelCase__ :Optional[Any]=[2, 3, 4] , lowerCamelCase__ :int=[16, 16, 16] , lowerCamelCase__ :List[Any]=0 , lowerCamelCase__ :List[Any]=[2, 2, 2] , lowerCamelCase__ :List[Any]=[2, 2, 2] , lowerCamelCase__ :Dict=0.02 , lowerCamelCase__ :Tuple=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :int=2 , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Optional[int] = image_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[Any] = kernel_size UpperCamelCase__ :List[Any] = stride UpperCamelCase__ :Optional[Any] = padding UpperCamelCase__ :Optional[int] = hidden_sizes UpperCamelCase__ :Tuple = num_attention_heads UpperCamelCase__ :Optional[int] = depths UpperCamelCase__ :Dict = key_dim UpperCamelCase__ :Tuple = drop_path_rate UpperCamelCase__ :Optional[Any] = patch_size UpperCamelCase__ :Optional[Any] = attention_ratio UpperCamelCase__ :List[str] = mlp_ratio UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCamelCase__ :int = is_training UpperCamelCase__ :Union[str, Any] = use_labels UpperCamelCase__ :Optional[int] = num_labels UpperCamelCase__ :Any = initializer_range def __a ( self :str ): UpperCamelCase__ :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :int = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, pixel_values, labels def __a ( self :Union[str, Any] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __a ( self :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Any = LevitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) UpperCamelCase__ :Tuple = (self.image_size, self.image_size) UpperCamelCase__ , UpperCamelCase__ :List[Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ :List[str] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCamelCase__ :str = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __a ( self :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :Union[str, Any] = LevitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :List[Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :Optional[Any] ): UpperCamelCase__ :str = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = config_and_inputs UpperCamelCase__ :Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : int = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _snake_case : Union[str, Any] = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _snake_case : List[str] = False _snake_case : Dict = False _snake_case : Dict = False _snake_case : List[Any] = False _snake_case : Dict = False def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = LevitModelTester(self ) UpperCamelCase__ :int = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self :Union[str, Any] ): return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def __a ( self :Union[str, Any] ): pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def __a ( self :Tuple ): pass @unittest.skip(reason="""Levit does not output attentions""" ) def __a ( self :int ): pass def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :List[str] = model_class(lowerCamelCase__ ) UpperCamelCase__ :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :Tuple = [*signature.parameters.keys()] UpperCamelCase__ :Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def __a ( self :int ): def check_hidden_states_output(lowerCamelCase__ :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :str ): UpperCamelCase__ :Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase__ :Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase__ :Optional[int] = outputs.hidden_states UpperCamelCase__ :Dict = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) UpperCamelCase__ :int = (self.model_tester.image_size, self.model_tester.image_size) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ :Dict = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCamelCase__ :Optional[int] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCamelCase__ , UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :int = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :Dict = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __a ( self :Dict ): pass def __a ( self :Dict , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str]=False ): UpperCamelCase__ :int = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): if not self.model_tester.is_training: return UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :str = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCamelCase__ :str = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ :str = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(**lowerCamelCase__ ).loss loss.backward() def __a ( self :Tuple ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase__ :Union[str, Any] = False UpperCamelCase__ :Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCamelCase__ :Dict = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = model(**lowerCamelCase__ ).loss loss.backward() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Dict = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): UpperCamelCase__ :str = problem_type["""title"""] UpperCamelCase__ :Tuple = problem_type["""num_labels"""] UpperCamelCase__ :Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ :List[str] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if problem_type["num_labels"] > 1: UpperCamelCase__ :Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) UpperCamelCase__ :str = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase__ ) as warning_list: UpperCamelCase__ :Dict = model(**lowerCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __a ( self :Any ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Any = LevitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> str: UpperCamelCase__ :int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Any ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __a ( self :Tuple ): UpperCamelCase__ :Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = self.default_image_processor UpperCamelCase__ :Union[str, Any] = prepare_img() UpperCamelCase__ :str = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase__ :List[str] = model(**lowerCamelCase__ ) # verify the logits UpperCamelCase__ :str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCamelCase__ :Tuple = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Dict ): UpperCamelCase__ :Union[str, Any] = parent def __a ( self :Any ): return {} def A ( ) -> Union[str, Any]: UpperCamelCase__ :Dict = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" UpperCamelCase__ :Tuple = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __a ( self :List[str] ): UpperCamelCase__ :str = MarkupLMFeatureExtractionTester(self ) @property def __a ( self :str ): return self.feature_extract_tester.prepare_feat_extract_dict() def __a ( self :Union[str, Any] ): # Initialize feature_extractor UpperCamelCase__ :Optional[int] = self.feature_extraction_class() # Test not batched input UpperCamelCase__ :List[str] = get_html_strings()[0] UpperCamelCase__ :List[str] = feature_extractor(lowerCamelCase__ ) # fmt: off UpperCamelCase__ :List[Any] = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] UpperCamelCase__ :List[Any] = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , lowerCamelCase__ ) self.assertEqual(encoding.xpaths , lowerCamelCase__ ) # Test batched UpperCamelCase__ :int = get_html_strings() UpperCamelCase__ :str = feature_extractor(lowerCamelCase__ ) # fmt: off UpperCamelCase__ :Union[str, Any] = expected_nodes + [["""My First Heading""", """My first paragraph."""]] UpperCamelCase__ :List[Any] = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCamelCase__ ) self.assertEqual(encoding.xpaths , lowerCamelCase__ )
45
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration UpperCamelCase = "facebook/wmt19-en-de" UpperCamelCase = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model UpperCamelCase = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) UpperCamelCase = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test UpperCamelCase = tokenizer(["Making tiny model"], return_tensors="pt") UpperCamelCase = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save UpperCamelCase = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
45
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
1
def A ( lowercase__ : int , lowercase__ : int ) -> int: UpperCamelCase__ :List[str] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): UpperCamelCase__ :Any = n - k # Calculate C(n,k) for i in range(lowercase__ ): result *= n - i result //= i + 1 return result def A ( lowercase__ : int ) -> int: return binomial_coefficient(2 * node_count , lowercase__ ) // (node_count + 1) def A ( lowercase__ : int ) -> int: if n < 0: raise ValueError("""factorial() not defined for negative values""" ) UpperCamelCase__ :Union[str, Any] = 1 for i in range(1 , n + 1 ): result *= i return result def A ( lowercase__ : int ) -> int: return catalan_number(lowercase__ ) * factorial(lowercase__ ) if __name__ == "__main__": UpperCamelCase = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
45
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ("""foo.json""",)] ) def __a ( self :Tuple , lowerCamelCase__ :Any ): UpperCamelCase__ :List[str] = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , config_name=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = GenerationConfig.from_pretrained(lowerCamelCase__ , config_name=lowerCamelCase__ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowerCamelCase__ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Union[str, Any] = AutoConfig.from_pretrained("""gpt2""" ) UpperCamelCase__ :List[Any] = GenerationConfig.from_model_config(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __a ( self :Any ): UpperCamelCase__ :Any = GenerationConfig() UpperCamelCase__ :List[str] = { """max_new_tokens""": 10_24, """foo""": """bar""", } UpperCamelCase__ :Optional[int] = copy.deepcopy(lowerCamelCase__ ) UpperCamelCase__ :int = generation_config.update(**lowerCamelCase__ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowerCamelCase__ , {"""foo""": """bar"""} ) def __a ( self :List[str] ): UpperCamelCase__ :List[str] = GenerationConfig() UpperCamelCase__ :Optional[Any] = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = GenerationConfig.from_pretrained(lowerCamelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) UpperCamelCase__ :Optional[int] = GenerationConfig.from_model_config(lowerCamelCase__ ) assert not hasattr(lowerCamelCase__ , """foo""" ) # no new kwargs should be initialized if from config def __a ( self :Dict ): UpperCamelCase__ :str = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowerCamelCase__ ) self.assertEqual(default_config.num_beams , 1 ) UpperCamelCase__ :Dict = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowerCamelCase__ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = GenerationConfig.from_pretrained(lowerCamelCase__ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowerCamelCase__ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __a ( cls :List[str] ): UpperCamelCase__ :List[str] = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def __a ( cls :Optional[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def __a ( self :Dict ): UpperCamelCase__ :Tuple = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) UpperCamelCase__ :List[Any] = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="""test-generation-config""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ :List[str] = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def __a ( self :List[Any] ): UpperCamelCase__ :List[Any] = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) UpperCamelCase__ :Any = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ :Dict = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) )
45
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
1
from PIL import Image def A ( lowercase__ : Image , lowercase__ : float ) -> Image: def brightness(lowercase__ : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowercase__ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 UpperCamelCase = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
45
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
1
import json import sys def A ( lowercase__ : Optional[Any] , lowercase__ : Any ) -> Tuple: with open(lowercase__ , encoding="""utf-8""" ) as f: UpperCamelCase__ :Union[str, Any] = json.load(lowercase__ ) UpperCamelCase__ :Optional[Any] = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(lowercase__ ): UpperCamelCase__ :List[Any] = results[benchmark_name] UpperCamelCase__ :Dict = benchmark_name.split("""/""" )[-1] output_md.append(f"""### Benchmark: {benchmark_file_name}""" ) UpperCamelCase__ :int = """| metric |""" UpperCamelCase__ :Tuple = """|--------|""" UpperCamelCase__ :Tuple = """| new / old (diff) |""" for metric_name in sorted(lowercase__ ): UpperCamelCase__ :Dict = benchmark_res[metric_name] UpperCamelCase__ :Any = metric_vals["""new"""] UpperCamelCase__ :Optional[Any] = metric_vals.get("""old""" , lowercase__ ) UpperCamelCase__ :int = metric_vals.get("""diff""" , lowercase__ ) UpperCamelCase__ :Optional[Any] = f""" {new_val:f}""" if isinstance(lowercase__ , (int, float) ) else """None""" if old_val is not None: val_str += f""" / {old_val:f}""" if isinstance(lowercase__ , (int, float) ) else "None" if dif_val is not None: val_str += f""" ({dif_val:f})""" if isinstance(lowercase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(lowercase__ ) ) if __name__ == "__main__": UpperCamelCase = sys.argv[1] UpperCamelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) UpperCamelCase = logging.getLogger() UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] ): os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) UpperCamelCase__ :int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase__ :int = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase__ :int = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCamelCase__ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowerCamelCase__ ) def __a ( self :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :str = "pytorch" ): UpperCamelCase__ :Union[str, Any] = self.get_auto_remove_tmp_dir() UpperCamelCase__ :Optional[Any] = os.path.join(lowerCamelCase__ , """output""" ) UpperCamelCase__ :str = os.path.join(lowerCamelCase__ , """data""" ) self._create_dummy_data(data_dir=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase__ :List[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCamelCase__ , env=self.get_env() ) UpperCamelCase__ :Optional[int] = os.path.join(lowerCamelCase__ , """metrics.json""" ) with open(lowerCamelCase__ ) as f: UpperCamelCase__ :List[str] = json.load(lowerCamelCase__ ) return result @require_torch_gpu def __a ( self :Union[str, Any] ): UpperCamelCase__ :List[Any] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def __a ( self :Optional[Any] ): UpperCamelCase__ :List[str] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def __a ( self :str ): UpperCamelCase__ :Any = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
45
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Any , *lowerCamelCase__ :List[str] , **lowerCamelCase__ :Tuple ): warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[str] = """vision-encoder-decoder""" _snake_case : Optional[Any] = True def __init__( self :List[Any] , **lowerCamelCase__ :List[str] ): super().__init__(**lowerCamelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase__ :List[Any] = kwargs.pop("""encoder""" ) UpperCamelCase__ :Any = encoder_config.pop("""model_type""" ) UpperCamelCase__ :Optional[int] = kwargs.pop("""decoder""" ) UpperCamelCase__ :Optional[Any] = decoder_config.pop("""model_type""" ) UpperCamelCase__ :Optional[Any] = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :Dict = True @classmethod def __a ( cls :Union[str, Any] , lowerCamelCase__ :PretrainedConfig , lowerCamelCase__ :PretrainedConfig , **lowerCamelCase__ :List[Any] ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) UpperCamelCase__ :Dict = True UpperCamelCase__ :Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Any = copy.deepcopy(self.__dict__ ) UpperCamelCase__ :str = self.encoder.to_dict() UpperCamelCase__ :Any = self.decoder.to_dict() UpperCamelCase__ :List[Any] = self.__class__.model_type return output class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[Any] = version.parse("""1.11""" ) @property def __a ( self :int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __a ( self :Union[str, Any] ): return 1e-4 @property def __a ( self :List[Any] ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" @property def __a ( self :Optional[Any] ): UpperCamelCase__ :str = OrderedDict() UpperCamelCase__ :Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} UpperCamelCase__ :List[str] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} UpperCamelCase__ :str = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def __a ( self :int , lowerCamelCase__ :"PreTrainedTokenizerBase" , lowerCamelCase__ :int = -1 , lowerCamelCase__ :int = -1 , lowerCamelCase__ :bool = False , lowerCamelCase__ :Optional["TensorType"] = None , ): import torch UpperCamelCase__ :Dict = OrderedDict() UpperCamelCase__ :Tuple = super().generate_dummy_inputs( lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ :str = dummy_input["""input_ids"""].shape UpperCamelCase__ :str = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase__ :Optional[Any] = dummy_input.pop("""input_ids""" ) UpperCamelCase__ :List[Any] = dummy_input.pop("""attention_mask""" ) UpperCamelCase__ :str = torch.zeros(lowerCamelCase__ ) return common_inputs class lowerCAmelCase_ ( lowercase ): """simple docstring""" @property def __a ( self :List[str] ): pass def __a ( self :List[str] , lowerCamelCase__ :PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(lowerCamelCase__ ) def __a ( self :Dict , lowerCamelCase__ :PretrainedConfig , lowerCamelCase__ :PretrainedConfig , lowerCamelCase__ :str = "default" ): UpperCamelCase__ :Tuple = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCamelCase__ , lowerCamelCase__ )
45
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
1
UpperCamelCase = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCamelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def A ( lowercase__ : str ) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A ( lowercase__ : str ) -> str: return "".join(REVERSE_DICT[char] for char in message.split() ) def A ( ) -> None: UpperCamelCase__ :Union[str, Any] = """Morse code here!""" print(lowercase__ ) UpperCamelCase__ :Dict = encrypt(lowercase__ ) print(lowercase__ ) UpperCamelCase__ :Optional[Any] = decrypt(lowercase__ ) print(lowercase__ ) if __name__ == "__main__": main()
45
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
1
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :str , lowerCamelCase__ :Distribution , lowerCamelCase__ :Any=None , lowerCamelCase__ :List[Any]=None , lowerCamelCase__ :List[str]=0 ): UpperCamelCase__ :int = 1.0 if scale is None else scale UpperCamelCase__ :Union[str, Any] = 0.0 if loc is None else loc super().__init__(lowerCamelCase__ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase__ )] ) @property def __a ( self :Any ): return self.base_dist.mean * self.scale + self.loc @property def __a ( self :List[Any] ): return self.base_dist.variance * self.scale**2 @property def __a ( self :Optional[int] ): return self.variance.sqrt() class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :int , lowerCamelCase__ :Dict[str, int] , lowerCamelCase__ :Callable[..., Tuple[torch.Tensor]] , **lowerCamelCase__ :Any ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = args_dim UpperCamelCase__ :Dict = nn.ModuleList([nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) for dim in args_dim.values()] ) UpperCamelCase__ :List[str] = domain_map def __a ( self :Tuple , lowerCamelCase__ :torch.Tensor ): UpperCamelCase__ :Optional[Any] = [proj(lowerCamelCase__ ) for proj in self.proj] return self.domain_map(*lowerCamelCase__ ) class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :Optional[int] ): super().__init__() UpperCamelCase__ :Union[str, Any] = function def __a ( self :int , lowerCamelCase__ :Union[str, Any] , *lowerCamelCase__ :Tuple ): return self.function(lowerCamelCase__ , *lowerCamelCase__ ) class lowerCAmelCase_ : """simple docstring""" _snake_case : type _snake_case : int _snake_case : Dict[str, int] def __init__( self :Tuple , lowerCamelCase__ :int = 1 ): UpperCamelCase__ :str = dim UpperCamelCase__ :List[str] = {k: dim * self.args_dim[k] for k in self.args_dim} def __a ( self :Union[str, Any] , lowerCamelCase__ :Union[str, Any] ): if self.dim == 1: return self.distribution_class(*lowerCamelCase__ ) else: return Independent(self.distribution_class(*lowerCamelCase__ ) , 1 ) def __a ( self :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[torch.Tensor] = None , lowerCamelCase__ :Optional[torch.Tensor] = None , ): UpperCamelCase__ :Union[str, Any] = self._base_distribution(lowerCamelCase__ ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase__ , loc=lowerCamelCase__ , scale=lowerCamelCase__ , event_dim=self.event_dim ) @property def __a ( self :Optional[Any] ): return () if self.dim == 1 else (self.dim,) @property def __a ( self :List[str] ): return len(self.event_shape ) @property def __a ( self :Any ): return 0.0 def __a ( self :Any , lowerCamelCase__ :int ): return ParameterProjection( in_features=lowerCamelCase__ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __a ( self :Union[str, Any] , *lowerCamelCase__ :torch.Tensor ): raise NotImplementedError() @staticmethod def __a ( lowerCamelCase__ :torch.Tensor ): return (x + torch.sqrt(torch.square(lowerCamelCase__ ) + 4.0 )) / 2.0 class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} _snake_case : type = StudentT @classmethod def __a ( cls :List[str] , lowerCamelCase__ :torch.Tensor , lowerCamelCase__ :torch.Tensor , lowerCamelCase__ :torch.Tensor ): UpperCamelCase__ :Dict = cls.squareplus(lowerCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCamelCase__ :Dict = 2.0 + cls.squareplus(lowerCamelCase__ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Dict[str, int] = {"loc": 1, "scale": 1} _snake_case : type = Normal @classmethod def __a ( cls :Union[str, Any] , lowerCamelCase__ :torch.Tensor , lowerCamelCase__ :torch.Tensor ): UpperCamelCase__ :Tuple = cls.squareplus(lowerCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Dict[str, int] = {"total_count": 1, "logits": 1} _snake_case : type = NegativeBinomial @classmethod def __a ( cls :Tuple , lowerCamelCase__ :torch.Tensor , lowerCamelCase__ :torch.Tensor ): UpperCamelCase__ :Union[str, Any] = cls.squareplus(lowerCamelCase__ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __a ( self :Optional[Any] , lowerCamelCase__ :int ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase__ , logits=lowerCamelCase__ ) else: return Independent(self.distribution_class(total_count=lowerCamelCase__ , logits=lowerCamelCase__ ) , 1 ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[torch.Tensor] = None , lowerCamelCase__ :Optional[torch.Tensor] = None ): UpperCamelCase__ , UpperCamelCase__ :int = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
45
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
1
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowerCAmelCase_ : """simple docstring""" def __init__( self :str , lowerCamelCase__ :Dict ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden UpperCamelCase__ :Optional[Any] = deepcopy(lowerCamelCase__ ) elif os.path.exists(lowerCamelCase__ ): with io.open(lowerCamelCase__ , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase__ :int = json.load(lowerCamelCase__ ) else: try: UpperCamelCase__ :int = baseaa.urlsafe_baadecode(lowerCamelCase__ ).decode("""utf-8""" ) UpperCamelCase__ :Union[str, Any] = json.loads(lowerCamelCase__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) UpperCamelCase__ :Tuple = config self.set_stage_and_offload() def __a ( self :Tuple ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. UpperCamelCase__ :Dict = self.get_value("""zero_optimization.stage""" , -1 ) # offload UpperCamelCase__ :Tuple = False if self.is_zeroa() or self.is_zeroa(): UpperCamelCase__ :Optional[int] = set(["""cpu""", """nvme"""] ) UpperCamelCase__ :Optional[Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: UpperCamelCase__ :Optional[int] = True def __a ( self :Union[str, Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Tuple = self.config # find the config node of interest if it exists UpperCamelCase__ :Any = ds_key_long.split(""".""" ) UpperCamelCase__ :int = nodes.pop() for node in nodes: UpperCamelCase__ :Dict = config.get(lowerCamelCase__ ) if config is None: return None, ds_key return config, ds_key def __a ( self :Dict , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any]=None ): UpperCamelCase__ , UpperCamelCase__ :Dict = self.find_config_node(lowerCamelCase__ ) if config is None: return default return config.get(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Tuple=False ): UpperCamelCase__ :Tuple = self.config # find the config node of interest if it exists UpperCamelCase__ :Optional[Any] = ds_key_long.split(""".""" ) for node in nodes: UpperCamelCase__ :Any = config UpperCamelCase__ :Optional[Any] = config.get(lowerCamelCase__ ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowerCamelCase__ ) def __a ( self :Any , lowerCamelCase__ :str ): UpperCamelCase__ :Any = self.get_value(lowerCamelCase__ ) return False if value is None else bool(lowerCamelCase__ ) def __a ( self :List[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :Dict = self.get_value(lowerCamelCase__ ) return False if value is None else not bool(lowerCamelCase__ ) def __a ( self :Dict ): return self._stage == 2 def __a ( self :List[str] ): return self._stage == 3 def __a ( self :Optional[int] ): return self._offload class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :int ): UpperCamelCase__ :Union[str, Any] = engine def __a ( self :str , lowerCamelCase__ :List[str] , **lowerCamelCase__ :Optional[int] ): # runs backpropagation and handles mixed precision self.engine.backward(lowerCamelCase__ , **lowerCamelCase__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :Tuple ): super().__init__(lowerCamelCase__ , device_placement=lowerCamelCase__ , scaler=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = hasattr(self.optimizer , """overflow""" ) def __a ( self :int , lowerCamelCase__ :str=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __a ( self :List[Any] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __a ( self :List[Any] ): if self.__has_overflow__: return self.optimizer.overflow return False class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple ): super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict=0.001 , lowerCamelCase__ :Optional[int]=0 , **lowerCamelCase__ :List[Any] ): UpperCamelCase__ :Any = params UpperCamelCase__ :Tuple = lr UpperCamelCase__ :Optional[int] = weight_decay UpperCamelCase__ :Optional[Any] = kwargs class lowerCAmelCase_ : """simple docstring""" def __init__( self :Any , lowerCamelCase__ :int , lowerCamelCase__ :int=None , lowerCamelCase__ :List[str]=0 , **lowerCamelCase__ :List[str] ): UpperCamelCase__ :Optional[Any] = optimizer UpperCamelCase__ :List[Any] = total_num_steps UpperCamelCase__ :Any = warmup_num_steps UpperCamelCase__ :Any = kwargs
45
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Union[str, Any] , ): UpperCamelCase__ :Tuple = parent UpperCamelCase__ :str = 13 UpperCamelCase__ :Union[str, Any] = 7 UpperCamelCase__ :List[Any] = 30 UpperCamelCase__ :int = self.seq_length + self.mem_len UpperCamelCase__ :Tuple = 15 UpperCamelCase__ :int = True UpperCamelCase__ :int = True UpperCamelCase__ :Union[str, Any] = 99 UpperCamelCase__ :Any = [10, 50, 80] UpperCamelCase__ :List[str] = 32 UpperCamelCase__ :Optional[Any] = 32 UpperCamelCase__ :int = 4 UpperCamelCase__ :Optional[int] = 8 UpperCamelCase__ :Tuple = 1_28 UpperCamelCase__ :List[Any] = 2 UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :Dict = None UpperCamelCase__ :List[Any] = 1 UpperCamelCase__ :Any = 0 UpperCamelCase__ :List[str] = 3 UpperCamelCase__ :Any = self.vocab_size - 1 UpperCamelCase__ :Optional[int] = 0.01 def __a ( self :Optional[Any] ): UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :int = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __a ( self :Optional[int] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = TFTransfoXLModel(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ :List[str] = model(lowerCamelCase__ ).to_tuple() UpperCamelCase__ :int = {"""input_ids""": input_ids_a, """mems""": mems_a} UpperCamelCase__ , UpperCamelCase__ :str = model(lowerCamelCase__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __a ( self :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict ): UpperCamelCase__ :Union[str, Any] = TFTransfoXLLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ :str = model(lowerCamelCase__ ).to_tuple() UpperCamelCase__ :Tuple = {"""input_ids""": input_ids_a, """labels""": lm_labels} UpperCamelCase__ , UpperCamelCase__ :Any = model(lowerCamelCase__ ).to_tuple() UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() UpperCamelCase__ :str = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __a ( self :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :Union[str, Any] = TFTransfoXLForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[Any] ): UpperCamelCase__ :Dict = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :int = config_and_inputs UpperCamelCase__ :List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : str = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _snake_case : List[str] = () if is_tf_available() else () _snake_case : List[str] = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _snake_case : Optional[Any] = False _snake_case : Any = False _snake_case : Tuple = False _snake_case : List[Any] = False def __a ( self :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :str ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __a ( self :List[str] ): UpperCamelCase__ :Any = TFTransfoXLModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , d_embed=37 ) def __a ( self :str ): self.config_tester.run_common_tests() def __a ( self :List[str] ): self.model_tester.set_seed() UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCamelCase__ ) def __a ( self :str ): self.model_tester.set_seed() UpperCamelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ , UpperCamelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCamelCase__ :Dict = model_class(lowerCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCamelCase__ :Optional[Any] = model.get_output_embeddings() assert isinstance(lowerCamelCase__ , tf.keras.layers.Layer ) UpperCamelCase__ :List[Any] = model.get_bias() assert name is None else: UpperCamelCase__ :Union[str, Any] = model.get_output_embeddings() assert x is None UpperCamelCase__ :int = model.get_bias() assert name is None def __a ( self :int ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __a ( self :int ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :str = TFTransfoXLModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __a ( self :Union[str, Any] ): pass @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __a ( self :str ): UpperCamelCase__ :int = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCamelCase__ :Tuple = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCamelCase__ :str = model.generate(lowerCamelCase__ , max_length=2_00 , do_sample=lowerCamelCase__ ) self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ )
45
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def A ( lowercase__ : Optional[Any] , lowercase__ : str=7 ) -> List[str]: UpperCamelCase__ :List[Any] = None if token is not None: UpperCamelCase__ :Optional[int] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) UpperCamelCase__ :str = """636036""" UpperCamelCase__ :Tuple = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" UpperCamelCase__ :List[str] = requests.get(lowercase__ , headers=lowercase__ ).json() return result["workflow_runs"] def A ( lowercase__ : Optional[Any] ) -> Optional[Any]: UpperCamelCase__ :Any = get_daily_ci_runs(lowercase__ ) UpperCamelCase__ :Optional[Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": UpperCamelCase__ :Tuple = workflow_run["""id"""] break return workflow_run_id def A ( lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : int ) -> List[str]: UpperCamelCase__ :Any = get_last_daily_ci_runs(lowercase__ ) if workflow_run_id is not None: UpperCamelCase__ :int = get_artifacts_links(worflow_run_id=lowercase__ , token=lowercase__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: UpperCamelCase__ :int = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase__ , artifact_url=lowercase__ , output_dir=lowercase__ , token=lowercase__ ) def A ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : List[str] ) -> Optional[int]: get_last_daily_ci_artifacts(lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ :str = {} for artifact_name in artifact_names: UpperCamelCase__ :List[Any] = os.path.join(lowercase__ , f"""{artifact_name}.zip""" ) if os.path.isfile(lowercase__ ): UpperCamelCase__ :Optional[Any] = {} with zipfile.ZipFile(lowercase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase__ ): # read the file with z.open(lowercase__ ) as f: UpperCamelCase__ :str = f.read().decode("""UTF-8""" ) return results
45
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
1
from random import shuffle import tensorflow as tf from numpy import array def A ( lowercase__ : str , lowercase__ : Optional[int] ) -> str: UpperCamelCase__ :Any = int(lowercase__ ) assert noofclusters < len(lowercase__ ) # Find out the dimensionality UpperCamelCase__ :str = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCamelCase__ :Dict = list(range(len(lowercase__ ) ) ) shuffle(lowercase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase__ :List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase__ :Dict = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase__ :Optional[Any] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase__ :Optional[Any] = tf.placeholder("""float64""" , [dim] ) UpperCamelCase__ :List[Any] = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase__ , lowercase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase__ :str = [tf.Variable(0 ) for i in range(len(lowercase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase__ :Union[str, Any] = tf.placeholder("""int32""" ) UpperCamelCase__ :str = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase__ , lowercase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase__ :int = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase__ :List[str] = tf.reduce_mean(lowercase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase__ :str = tf.placeholder("""float""" , [dim] ) UpperCamelCase__ :Any = tf.placeholder("""float""" , [dim] ) UpperCamelCase__ :List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase__ , lowercase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase__ :Dict = tf.placeholder("""float""" , [noofclusters] ) UpperCamelCase__ :Optional[int] = tf.argmin(lowercase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase__ :Union[str, Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase__ :Dict = 100 for _ in range(lowercase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase__ ) ): UpperCamelCase__ :Optional[Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase__ :str = [ sess.run(lowercase__ , feed_dict={va: vect, va: sess.run(lowercase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase__ :Optional[int] = sess.run( lowercase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase__ ): # Collect all the vectors assigned to this cluster UpperCamelCase__ :Any = [ vectors[i] for i in range(len(lowercase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCamelCase__ :Optional[int] = sess.run( lowercase__ , feed_dict={mean_input: array(lowercase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCamelCase__ :Optional[Any] = sess.run(lowercase__ ) UpperCamelCase__ :Dict = sess.run(lowercase__ ) return centroids, assignments
45
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
1
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def A ( lowercase__ : str , lowercase__ : str ) -> int: UpperCamelCase__ :List[Any] = RobertaPreLayerNormConfig.from_pretrained( lowercase__ , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict UpperCamelCase__ :Union[str, Any] = torch.load(hf_hub_download(repo_id=lowercase__ , filename="""pytorch_model.bin""" ) ) UpperCamelCase__ :List[str] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): UpperCamelCase__ :Tuple = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue UpperCamelCase__ :Dict = tensor_value UpperCamelCase__ :Dict = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowercase__ , config=lowercase__ , state_dict=lowercase__ ) model.save_pretrained(lowercase__ ) # convert tokenizer UpperCamelCase__ :Tuple = AutoTokenizer.from_pretrained(lowercase__ ) tokenizer.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
from __future__ import annotations UpperCamelCase = 8.988E9 # units = N * m^s * C^-2 def A ( lowercase__ : float , lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> dict[str, float]: UpperCamelCase__ :Optional[int] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: UpperCamelCase__ :Any = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: UpperCamelCase__ :List[Any] = abs(lowercase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: UpperCamelCase__ :int = abs(lowercase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: UpperCamelCase__ :Optional[Any] = (COULOMBS_CONSTANT * charge_product / abs(lowercase__ )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1
def A ( lowercase__ : int ) -> bool: return str(lowercase__ ) == str(lowercase__ )[::-1] def A ( lowercase__ : int ) -> int: return int(lowercase__ ) + int(str(lowercase__ )[::-1] ) def A ( lowercase__ : int = 1_0000 ) -> int: UpperCamelCase__ :int = [] for num in range(1 , lowercase__ ): UpperCamelCase__ :int = 0 UpperCamelCase__ :Optional[Any] = num while iterations < 50: UpperCamelCase__ :List[Any] = sum_reverse(lowercase__ ) iterations += 1 if is_palindrome(lowercase__ ): break else: lychrel_nums.append(lowercase__ ) return len(lowercase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
45
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCamelCase = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
def A ( lowercase__ : list[int] , lowercase__ : list[int] ) -> None: UpperCamelCase__ :Union[str, Any] = len(lowercase__ ) print("""The following activities are selected:""" ) # The first activity is always selected UpperCamelCase__ :int = 0 print(lowercase__ , end=""",""" ) # Consider rest of the activities for j in range(lowercase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase__ , end=""",""" ) UpperCamelCase__ :str = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = [1, 3, 0, 5, 8, 5] UpperCamelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
45
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) _snake_case : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) _snake_case : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __a ( self :int ): UpperCamelCase__ :List[Any] = self.task_name.lower() class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[str] = """train""" _snake_case : Optional[int] = """dev""" _snake_case : Union[str, Any] = """test""" class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : GlueDataTrainingArguments _snake_case : str _snake_case : List[InputFeatures] def __init__( self :Any , lowerCamelCase__ :GlueDataTrainingArguments , lowerCamelCase__ :PreTrainedTokenizerBase , lowerCamelCase__ :Optional[int] = None , lowerCamelCase__ :Union[str, Split] = Split.train , lowerCamelCase__ :Optional[str] = None , ): warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , lowerCamelCase__ , ) UpperCamelCase__ :List[Any] = args UpperCamelCase__ :Optional[int] = glue_processors[args.task_name]() UpperCamelCase__ :List[str] = glue_output_modes[args.task_name] if isinstance(lowerCamelCase__ , lowerCamelCase__ ): try: UpperCamelCase__ :Tuple = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file UpperCamelCase__ :str = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) UpperCamelCase__ :str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase__ , UpperCamelCase__ :str = label_list[2], label_list[1] UpperCamelCase__ :Optional[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase__ :Optional[Any] = cached_features_file + """.lock""" with FileLock(lowerCamelCase__ ): if os.path.exists(lowerCamelCase__ ) and not args.overwrite_cache: UpperCamelCase__ :Dict = time.time() UpperCamelCase__ :List[str] = torch.load(lowerCamelCase__ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: UpperCamelCase__ :Any = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCamelCase__ :List[str] = self.processor.get_test_examples(args.data_dir ) else: UpperCamelCase__ :int = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCamelCase__ :str = examples[:limit_length] UpperCamelCase__ :Tuple = glue_convert_examples_to_features( lowerCamelCase__ , lowerCamelCase__ , max_length=args.max_seq_length , label_list=lowerCamelCase__ , output_mode=self.output_mode , ) UpperCamelCase__ :Union[str, Any] = time.time() torch.save(self.features , lowerCamelCase__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self :Dict ): return len(self.features ) def __getitem__( self :Union[str, Any] , lowerCamelCase__ :List[Any] ): return self.features[i] def __a ( self :int ): return self.label_list
45
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def A ( lowercase__ : str = "" ) -> dict[str, float]: UpperCamelCase__ :Union[str, Any] = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" UpperCamelCase__ :List[str] = BeautifulSoup(requests.get(lowercase__ ).text , """html.parser""" ) UpperCamelCase__ :Any = soup.find_all("""td""" , attrs="""titleColumn""" ) UpperCamelCase__ :Optional[int] = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase__ , lowercase__ ) } def A ( lowercase__ : str = "IMDb_Top_250_Movies.csv" ) -> None: UpperCamelCase__ :List[str] = get_imdb_top_aaa_movies() with open(lowercase__ , """w""" , newline="""""" ) as out_file: UpperCamelCase__ :str = csv.writer(lowercase__ ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
45
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
1
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar UpperCamelCase = TypeVar("T") class lowerCAmelCase_ ( Generic[T] ): """simple docstring""" def __init__( self :List[str] , lowerCamelCase__ :bool = True ): UpperCamelCase__ :dict[T, list[T]] = {} # dictionary of lists UpperCamelCase__ :Optional[int] = directed def __a ( self :Dict , lowerCamelCase__ :T , lowerCamelCase__ :T ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase__ ) self.adj_list[destination_vertex].append(lowerCamelCase__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase__ ) UpperCamelCase__ :Tuple = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCamelCase__ ) UpperCamelCase__ :Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: UpperCamelCase__ :List[str] = [destination_vertex] UpperCamelCase__ :Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: UpperCamelCase__ :Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: UpperCamelCase__ :Optional[Any] = [destination_vertex] UpperCamelCase__ :Any = [] return self def __repr__( self :Dict ): return pformat(self.adj_list )
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1
def A ( lowercase__ : int = 50 ) -> int: UpperCamelCase__ :Optional[int] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
45
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
1
from __future__ import annotations def A ( lowercase__ : list[float] ) -> float: UpperCamelCase__ :Optional[int] = 0.00 UpperCamelCase__ :Tuple = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase__ :List[Any] = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def A ( lowercase__ : list[float] ) -> float: UpperCamelCase__ :str = 0.00 UpperCamelCase__ :int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase__ :Optional[Any] = f"""Resistor at index {index} has a negative value!""" raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
45
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
1
UpperCamelCase = range(2, 20 + 1) UpperCamelCase = [10**k for k in range(ks[-1] + 1)] UpperCamelCase = {} def A ( lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : str , lowercase__ : Optional[Any] ) -> Any: UpperCamelCase__ :List[Any] = sum(a_i[j] for j in range(lowercase__ , len(lowercase__ ) ) ) UpperCamelCase__ :str = sum(a_i[j] * base[j] for j in range(min(len(lowercase__ ) , lowercase__ ) ) ) UpperCamelCase__ , UpperCamelCase__ :List[str] = 0, 0 UpperCamelCase__ :Union[str, Any] = n - i UpperCamelCase__ :str = memo.get(lowercase__ ) if sub_memo is not None: UpperCamelCase__ :Tuple = sub_memo.get(lowercase__ ) if jumps is not None and len(lowercase__ ) > 0: # find and make the largest jump without going over UpperCamelCase__ :List[Any] = -1 for _k in range(len(lowercase__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCamelCase__ :str = _k break if max_jump >= 0: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = jumps[max_jump] # since the difference between jumps is cached, add c UpperCamelCase__ :Tuple = diff + c for j in range(min(lowercase__ , len(lowercase__ ) ) ): UpperCamelCase__ , UpperCamelCase__ :Any = divmod(lowercase__ , 10 ) if new_c > 0: add(lowercase__ , lowercase__ , lowercase__ ) else: UpperCamelCase__ :Dict = [] else: UpperCamelCase__ :int = {c: []} UpperCamelCase__ :int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCamelCase__ , UpperCamelCase__ :Dict = next_term(lowercase__ , k - 1 , i + dn , lowercase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCamelCase__ , UpperCamelCase__ :Dict = compute(lowercase__ , lowercase__ , i + dn , lowercase__ ) diff += _diff dn += terms_jumped UpperCamelCase__ :Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCamelCase__ :Optional[Any] = 0 while j < len(lowercase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowercase__ , (diff, dn, k) ) return (diff, dn) def A ( lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : int ) -> Tuple: if i >= n: return 0, i if k > len(lowercase__ ): a_i.extend([0 for _ in range(k - len(lowercase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCamelCase__ :Optional[Any] = i UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[int] = 0, 0, 0 for j in range(len(lowercase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCamelCase__ :Any = ds_c + ds_b diff += addend UpperCamelCase__ :int = 0 for j in range(lowercase__ ): UpperCamelCase__ :Union[str, Any] = a_i[j] + addend UpperCamelCase__ , UpperCamelCase__ :str = divmod(lowercase__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowercase__ , lowercase__ , lowercase__ ) return diff, i - start_i def A ( lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : List[str] ) -> Any: for j in range(lowercase__ , len(lowercase__ ) ): UpperCamelCase__ :Union[str, Any] = digits[j] + addend if s >= 10: UpperCamelCase__ , UpperCamelCase__ :int = divmod(lowercase__ , 10 ) UpperCamelCase__ :Optional[int] = addend // 10 + quotient else: UpperCamelCase__ :Union[str, Any] = s UpperCamelCase__ :Dict = addend // 10 if addend == 0: break while addend > 0: UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = divmod(lowercase__ , 10 ) digits.append(lowercase__ ) def A ( lowercase__ : int = 10**15 ) -> int: UpperCamelCase__ :Any = [1] UpperCamelCase__ :Any = 1 UpperCamelCase__ :Dict = 0 while True: UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = next_term(lowercase__ , 20 , i + dn , lowercase__ ) dn += terms_jumped if dn == n - i: break UpperCamelCase__ :Tuple = 0 for j in range(len(lowercase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
45
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = StableDiffusionSAGPipeline _snake_case : Union[str, Any] = TEXT_TO_IMAGE_PARAMS _snake_case : int = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : Any = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : Union[str, Any] = False def __a ( self :List[Any] ): torch.manual_seed(0 ) UpperCamelCase__ :Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase__ :Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) UpperCamelCase__ :int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ :str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) UpperCamelCase__ :int = CLIPTextModel(lowerCamelCase__ ) UpperCamelCase__ :str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase__ :Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __a ( self :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any]=0 ): if str(lowerCamelCase__ ).startswith("""mps""" ): UpperCamelCase__ :Dict = torch.manual_seed(lowerCamelCase__ ) else: UpperCamelCase__ :int = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCamelCase__ :Any = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def __a ( self :Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :int ): UpperCamelCase__ :int = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) UpperCamelCase__ :Optional[int] = sag_pipe.to(lowerCamelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = """.""" UpperCamelCase__ :Dict = torch.manual_seed(0 ) UpperCamelCase__ :str = sag_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) UpperCamelCase__ :Optional[int] = output.images UpperCamelCase__ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Optional[Any] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __a ( self :Dict ): UpperCamelCase__ :Tuple = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) UpperCamelCase__ :Dict = sag_pipe.to(lowerCamelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = """.""" UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :List[Any] = sag_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) UpperCamelCase__ :List[str] = output.images UpperCamelCase__ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[str] = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __a ( self :str ): UpperCamelCase__ :str = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) UpperCamelCase__ :Tuple = sag_pipe.to(lowerCamelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = """.""" UpperCamelCase__ :int = torch.manual_seed(0 ) UpperCamelCase__ :int = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=lowerCamelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) UpperCamelCase__ :str = output.images assert image.shape == (1, 5_12, 7_68, 3)
45
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase = "bert-base-cased" UpperCamelCase = "fp16" UpperCamelCase = "bf16" UpperCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __a ( self :List[str] ): super().setUp() UpperCamelCase__ :str = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def __a ( self :Union[str, Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = self.dist_env.copy() UpperCamelCase__ :List[Any] = f"""{i + 1}""" UpperCamelCase__ :List[Any] = strategy with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __a ( self :Union[str, Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = self.dist_env.copy() UpperCamelCase__ :Optional[int] = prefetch_policy with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :Dict = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __a ( self :Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = self.dist_env.copy() UpperCamelCase__ :Tuple = state_dict_type with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = AutoModel.from_pretrained(lowerCamelCase__ ) for policy in FSDP_AUTO_WRAP_POLICY: UpperCamelCase__ :Optional[int] = self.dist_env.copy() UpperCamelCase__ :int = policy if policy == "TRANSFORMER_BASED_WRAP": UpperCamelCase__ :Optional[Any] = """BertLayer""" elif policy == "SIZE_BASED_WRAP": UpperCamelCase__ :Union[str, Any] = """2000""" with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :int = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCamelCase__ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) UpperCamelCase__ :Optional[int] = self.dist_env.copy() UpperCamelCase__ :str = """TRANSFORMER_BASED_WRAP""" UpperCamelCase__ :Union[str, Any] = """T5Layer""" with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :Any = FullyShardedDataParallelPlugin() with self.assertRaises(lowerCamelCase__ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowerCamelCase__ ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) UpperCamelCase__ :Dict = self.dist_env.copy() UpperCamelCase__ :int = """SIZE_BASED_WRAP""" UpperCamelCase__ :Union[str, Any] = """0""" with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCamelCase__ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __a ( self :Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: UpperCamelCase__ :Dict = self.dist_env.copy() UpperCamelCase__ :Dict = mp_dtype with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = Accelerator() if mp_dtype == "fp16": UpperCamelCase__ :Tuple = torch.floataa elif mp_dtype == "bf16": UpperCamelCase__ :Tuple = torch.bfloataa UpperCamelCase__ :int = MixedPrecision(param_dtype=lowerCamelCase__ , reduce_dtype=lowerCamelCase__ , buffer_dtype=lowerCamelCase__ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowerCamelCase__ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowerCamelCase__ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowerCamelCase__ ) def __a ( self :Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: UpperCamelCase__ :List[str] = self.dist_env.copy() UpperCamelCase__ :Dict = str(lowerCamelCase__ ).lower() with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowerCamelCase__ ) ) @require_fsdp @require_multi_gpu @slow class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __a ( self :Dict ): super().setUp() UpperCamelCase__ :str = 0.82 UpperCamelCase__ :int = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] UpperCamelCase__ :int = { """multi_gpu_fp16""": 32_00, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 20_00, """fsdp_full_shard_transformer_based_wrap_fp16""": 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } UpperCamelCase__ :Optional[Any] = 1_60 UpperCamelCase__ :List[str] = 1_60 UpperCamelCase__ :Union[str, Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase__ :Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def __a ( self :str ): UpperCamelCase__ :int = os.path.join(self.test_scripts_folder , """test_performance.py""" ) UpperCamelCase__ :List[str] = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: UpperCamelCase__ :Optional[Any] = cmd.copy() for i, strategy in enumerate(lowerCamelCase__ ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) def __a ( self :str ): UpperCamelCase__ :List[Any] = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) UpperCamelCase__ :Any = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue UpperCamelCase__ :Optional[int] = len(lowerCamelCase__ ) for state_dict_type in FSDP_STATE_DICT_TYPE: UpperCamelCase__ :Tuple = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) UpperCamelCase__ :List[Any] = cmd_config[:-1] UpperCamelCase__ :Tuple = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) def __a ( self :List[str] ): UpperCamelCase__ :List[str] = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) UpperCamelCase__ :Optional[int] = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): UpperCamelCase__ :Optional[int] = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(lowerCamelCase__ ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() )
45
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Dict=13 , lowerCamelCase__ :Tuple=30 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :Tuple=3 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :List[str]=True , lowerCamelCase__ :Any=32 , lowerCamelCase__ :Optional[Any]=5 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :List[Any]=37 , lowerCamelCase__ :Any="gelu" , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :Tuple=0.1 , lowerCamelCase__ :Optional[int]=10 , lowerCamelCase__ :Tuple=0.02 , lowerCamelCase__ :Optional[Any]=None , lowerCamelCase__ :Optional[Any]=2 , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = image_size UpperCamelCase__ :List[Any] = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :Tuple = is_training UpperCamelCase__ :List[str] = use_labels UpperCamelCase__ :str = hidden_size UpperCamelCase__ :Dict = num_hidden_layers UpperCamelCase__ :Any = num_attention_heads UpperCamelCase__ :str = intermediate_size UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ :Any = type_sequence_label_size UpperCamelCase__ :Tuple = initializer_range UpperCamelCase__ :Optional[Any] = scope UpperCamelCase__ :Optional[int] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ :Any = (image_size // patch_size) ** 2 UpperCamelCase__ :Optional[Any] = num_patches + 1 def __a ( self :Optional[Any] ): UpperCamelCase__ :Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Dict = self.get_config() return config, pixel_values, labels def __a ( self :Tuple ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __a ( self :str , lowerCamelCase__ :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Any ): UpperCamelCase__ :Any = ViTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Union[str, Any] = ViTForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Dict = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase__ :Any = 1 UpperCamelCase__ :Optional[int] = ViTForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __a ( self :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , lowerCamelCase__ :Dict ): UpperCamelCase__ :Optional[Any] = self.type_sequence_label_size UpperCamelCase__ :Union[str, Any] = ViTForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ :Tuple = 1 UpperCamelCase__ :List[str] = ViTForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Any = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = config_and_inputs UpperCamelCase__ :Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _snake_case : str = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) _snake_case : Optional[int] = True _snake_case : Optional[int] = False _snake_case : Tuple = False _snake_case : Tuple = False def __a ( self :str ): UpperCamelCase__ :int = ViTModelTester(self ) UpperCamelCase__ :Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __a ( self :str ): pass def __a ( self :List[Any] ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :List[str] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ :Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def __a ( self :Tuple ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :List[Any] = model_class(lowerCamelCase__ ) UpperCamelCase__ :str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :Optional[Any] = [*signature.parameters.keys()] UpperCamelCase__ :Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :int = ViTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> Dict: UpperCamelCase__ :List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :List[Any] ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __a ( self :str ): UpperCamelCase__ :int = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(lowerCamelCase__ ) UpperCamelCase__ :Dict = self.default_image_processor UpperCamelCase__ :Tuple = prepare_img() UpperCamelCase__ :Optional[Any] = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase__ :Dict = model(**lowerCamelCase__ ) # verify the logits UpperCamelCase__ :str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCamelCase__ :Any = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def __a ( self :Tuple ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. UpperCamelCase__ :Any = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(lowerCamelCase__ ) UpperCamelCase__ :Any = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_80 ) UpperCamelCase__ :Optional[Any] = prepare_img() UpperCamelCase__ :int = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ) UpperCamelCase__ :Union[str, Any] = inputs.pixel_values.to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase__ :Dict = model(lowerCamelCase__ , interpolate_pos_encoding=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :Union[str, Any] = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :str = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __a ( self :str ): UpperCamelCase__ :Dict = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) UpperCamelCase__ :Union[str, Any] = self.default_image_processor UpperCamelCase__ :Any = prepare_img() UpperCamelCase__ :List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ) UpperCamelCase__ :Dict = inputs.pixel_values.to(lowerCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )
45
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Tuple = """sew-d""" def __init__( self :Optional[Any] , lowerCamelCase__ :int=32 , lowerCamelCase__ :Optional[Any]=7_68 , lowerCamelCase__ :Optional[Any]=12 , lowerCamelCase__ :Dict=12 , lowerCamelCase__ :Any=30_72 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Tuple=5_12 , lowerCamelCase__ :Optional[Any]=2_56 , lowerCamelCase__ :int=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :int=("p2c", "c2p") , lowerCamelCase__ :List[str]="layer_norm" , lowerCamelCase__ :int="gelu_python" , lowerCamelCase__ :Tuple=0.1 , lowerCamelCase__ :List[str]=0.1 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :int=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :List[Any]=0.02 , lowerCamelCase__ :str=1e-7 , lowerCamelCase__ :List[Any]=1e-5 , lowerCamelCase__ :Tuple="group" , lowerCamelCase__ :List[Any]="gelu" , lowerCamelCase__ :List[Any]=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , lowerCamelCase__ :Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__ :Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__ :Union[str, Any]=False , lowerCamelCase__ :Any=1_28 , lowerCamelCase__ :Any=16 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=0.05 , lowerCamelCase__ :List[Any]=10 , lowerCamelCase__ :Union[str, Any]=2 , lowerCamelCase__ :int=0.0 , lowerCamelCase__ :str=10 , lowerCamelCase__ :Any=0 , lowerCamelCase__ :str="mean" , lowerCamelCase__ :Union[str, Any]=False , lowerCamelCase__ :Optional[Any]=False , lowerCamelCase__ :Dict=2_56 , lowerCamelCase__ :str=0 , lowerCamelCase__ :Union[str, Any]=1 , lowerCamelCase__ :Any=2 , **lowerCamelCase__ :str , ): super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = hidden_size UpperCamelCase__ :Optional[Any] = feat_extract_norm UpperCamelCase__ :Any = feat_extract_activation UpperCamelCase__ :Any = list(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = list(lowerCamelCase__ ) UpperCamelCase__ :Any = list(lowerCamelCase__ ) UpperCamelCase__ :str = conv_bias UpperCamelCase__ :Any = num_conv_pos_embeddings UpperCamelCase__ :List[str] = num_conv_pos_embedding_groups UpperCamelCase__ :List[Any] = len(self.conv_dim ) UpperCamelCase__ :Union[str, Any] = num_hidden_layers UpperCamelCase__ :Dict = intermediate_size UpperCamelCase__ :str = squeeze_factor UpperCamelCase__ :Optional[Any] = max_position_embeddings UpperCamelCase__ :Tuple = position_buckets UpperCamelCase__ :int = share_att_key UpperCamelCase__ :str = relative_attention UpperCamelCase__ :List[str] = norm_rel_ebd UpperCamelCase__ :Any = list(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :List[Any] = num_attention_heads UpperCamelCase__ :Tuple = hidden_dropout UpperCamelCase__ :int = attention_dropout UpperCamelCase__ :List[str] = activation_dropout UpperCamelCase__ :Optional[int] = feat_proj_dropout UpperCamelCase__ :int = final_dropout UpperCamelCase__ :Optional[int] = layer_norm_eps UpperCamelCase__ :str = feature_layer_norm_eps UpperCamelCase__ :Union[str, Any] = initializer_range UpperCamelCase__ :int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ :int = apply_spec_augment UpperCamelCase__ :int = mask_time_prob UpperCamelCase__ :List[Any] = mask_time_length UpperCamelCase__ :List[str] = mask_time_min_masks UpperCamelCase__ :int = mask_feature_prob UpperCamelCase__ :Optional[int] = mask_feature_length UpperCamelCase__ :str = mask_feature_min_masks # ctc loss UpperCamelCase__ :str = ctc_loss_reduction UpperCamelCase__ :Optional[int] = ctc_zero_infinity # sequence classification UpperCamelCase__ :str = use_weighted_layer_sum UpperCamelCase__ :int = classifier_proj_size @property def __a ( self :List[Any] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
45
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
1
from __future__ import annotations def A ( lowercase__ : int | float | str , lowercase__ : int | float | str ) -> list[str]: if nth_term == "": return [""] UpperCamelCase__ :Dict = int(lowercase__ ) UpperCamelCase__ :Union[str, Any] = int(lowercase__ ) UpperCamelCase__ :list[str] = [] for temp in range(int(lowercase__ ) ): series.append(f"""1 / {pow(temp + 1 , int(lowercase__ ) )}""" if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input("Enter the last number (nth term) of the P-Series")) UpperCamelCase = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
45
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
1
def A ( lowercase__ : int = 50 ) -> int: UpperCamelCase__ :Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
45
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : int = """longformer""" def __init__( self :List[str] , lowerCamelCase__ :Union[List[int], int] = 5_12 , lowerCamelCase__ :int = 2 , lowerCamelCase__ :int = 1 , lowerCamelCase__ :int = 0 , lowerCamelCase__ :int = 2 , lowerCamelCase__ :int = 3_05_22 , lowerCamelCase__ :int = 7_68 , lowerCamelCase__ :int = 12 , lowerCamelCase__ :int = 12 , lowerCamelCase__ :int = 30_72 , lowerCamelCase__ :str = "gelu" , lowerCamelCase__ :float = 0.1 , lowerCamelCase__ :float = 0.1 , lowerCamelCase__ :int = 5_12 , lowerCamelCase__ :int = 2 , lowerCamelCase__ :float = 0.02 , lowerCamelCase__ :float = 1e-12 , lowerCamelCase__ :bool = False , **lowerCamelCase__ :Tuple , ): super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :List[Any] = attention_window UpperCamelCase__ :Union[str, Any] = sep_token_id UpperCamelCase__ :Tuple = bos_token_id UpperCamelCase__ :Optional[Any] = eos_token_id UpperCamelCase__ :Tuple = vocab_size UpperCamelCase__ :str = hidden_size UpperCamelCase__ :str = num_hidden_layers UpperCamelCase__ :Dict = num_attention_heads UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :str = intermediate_size UpperCamelCase__ :str = hidden_dropout_prob UpperCamelCase__ :Any = attention_probs_dropout_prob UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Any = type_vocab_size UpperCamelCase__ :str = initializer_range UpperCamelCase__ :Optional[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = onnx_export class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :"PretrainedConfig" , lowerCamelCase__ :str = "default" , lowerCamelCase__ :"List[PatchingSpec]" = None ): super().__init__(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Any = True @property def __a ( self :Optional[Any] ): if self.task == "multiple-choice": UpperCamelCase__ :List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase__ :List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def __a ( self :List[str] ): UpperCamelCase__ :int = super().outputs if self.task == "default": UpperCamelCase__ :Tuple = {0: """batch"""} return outputs @property def __a ( self :List[Any] ): return 1e-4 @property def __a ( self :Tuple ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def __a ( self :List[Any] , lowerCamelCase__ :"PreTrainedTokenizerBase" , lowerCamelCase__ :int = -1 , lowerCamelCase__ :int = -1 , lowerCamelCase__ :bool = False , lowerCamelCase__ :Optional[TensorType] = None , ): UpperCamelCase__ :Any = super().generate_dummy_inputs( preprocessor=lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCamelCase__ :Union[str, Any] = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global UpperCamelCase__ :Union[str, Any] = 1 return inputs
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} def A ( lowercase__ : type , lowercase__ : Optional[str] , lowercase__ : Optional[List[str]] = None , ) -> int: UpperCamelCase__ :Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) UpperCamelCase__ :Union[str, Any] = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) UpperCamelCase__ :List[Any] = format_type def A ( lowercase__ : Exception , lowercase__ : Optional[str] , lowercase__ : Optional[List[str]] = None ) -> List[Any]: UpperCamelCase__ :Any = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): UpperCamelCase__ :Optional[int] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: UpperCamelCase = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: UpperCamelCase = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: UpperCamelCase = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def A ( lowercase__ : Optional[str] ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def A ( lowercase__ : Optional[str] , **lowercase__ : Optional[Any] ) -> Formatter: UpperCamelCase__ :Union[str, Any] = get_format_type_from_alias(lowercase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowercase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1
import random from typing import Any def A ( lowercase__ : list ) -> list[Any]: for _ in range(len(lowercase__ ) ): UpperCamelCase__ :Optional[int] = random.randint(0 , len(lowercase__ ) - 1 ) UpperCamelCase__ :Optional[int] = random.randint(0 , len(lowercase__ ) - 1 ) UpperCamelCase__ , UpperCamelCase__ :List[str] = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
45
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase = "\\n Text data.\n Second line of data." UpperCamelCase = "file" @pytest.fixture(scope="""session""" ) def A ( lowercase__ : List[str] ) -> Union[str, Any]: UpperCamelCase__ :Optional[int] = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") UpperCamelCase__ :Optional[Any] = bytes(lowercase__ , """utf-8""" ) with zstd.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture def A ( lowercase__ : str ) -> int: with open(os.path.join(tmpfs.local_root_dir , lowercase__ ) , """w""" ) as f: f.write(lowercase__ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def A ( lowercase__ : Optional[Any] , lowercase__ : Dict , lowercase__ : int , lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: UpperCamelCase__ :Optional[int] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} UpperCamelCase__ :List[Any] = input_paths[compression_format] UpperCamelCase__ :Tuple = tmp_path / """cache""" UpperCamelCase__ :Dict = DownloadConfig(cache_dir=lowercase__ , extract_compressed_file=lowercase__ ) UpperCamelCase__ :int = cached_path(lowercase__ , download_config=lowercase__ ) with open(lowercase__ ) as f: UpperCamelCase__ :int = f.read() with open(lowercase__ ) as f: UpperCamelCase__ :Tuple = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : Dict , lowercase__ : Any , lowercase__ : List[Any] ) -> List[str]: UpperCamelCase__ :Dict = """custom_cache""" UpperCamelCase__ :Union[str, Any] = """custom_extracted_dir""" UpperCamelCase__ :Optional[int] = tmp_path / """custom_extracted_path""" if default_extracted: UpperCamelCase__ :Union[str, Any] = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , lowercase__ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowercase__ ) ) UpperCamelCase__ :Dict = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCamelCase__ :Optional[int] = xz_file UpperCamelCase__ :Optional[Any] = ( DownloadConfig(extract_compressed_file=lowercase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase__ ) ) UpperCamelCase__ :str = cached_path(lowercase__ , download_config=lowercase__ ) assert Path(lowercase__ ).parent.parts[-2:] == expected def A ( lowercase__ : List[str] ) -> Dict: # absolute path UpperCamelCase__ :Optional[Any] = str(Path(lowercase__ ).resolve() ) assert cached_path(lowercase__ ) == text_file # relative path UpperCamelCase__ :str = str(Path(lowercase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase__ ) == text_file def A ( lowercase__ : Optional[Any] ) -> Tuple: # absolute path UpperCamelCase__ :Tuple = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(lowercase__ ): cached_path(lowercase__ ) # relative path UpperCamelCase__ :Tuple = """./__missing_file__.txt""" with pytest.raises(lowercase__ ): cached_path(lowercase__ ) def A ( lowercase__ : str ) -> Optional[int]: UpperCamelCase__ :Any = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(lowercase__ ) as f: UpperCamelCase__ :Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase__ ) def A ( ) -> Tuple: with pytest.raises(lowercase__ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase__ ) def A ( lowercase__ : str ) -> Optional[int]: UpperCamelCase__ :Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase__ ): http_get("""https://huggingface.co""" , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase__ ) def A ( lowercase__ : List[Any] ) -> int: UpperCamelCase__ :List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase__ ): ftp_get("""ftp://huggingface.co""" , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase__ ) def A ( lowercase__ : Optional[int] ) -> List[Any]: UpperCamelCase__ :Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase__ ): fsspec_get("""s3://huggingface.co""" , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): fsspec_head("""s3://huggingface.co""" )
45
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } UpperCamelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : List[str] ) -> int: for attribute in key.split(""".""" ): UpperCamelCase__ :Union[str, Any] = getattr(lowercase__ , lowercase__ ) if weight_type is not None: UpperCamelCase__ :Optional[int] = getattr(lowercase__ , lowercase__ ).shape else: UpperCamelCase__ :Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase__ :Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ :List[Any] = value elif weight_type == "weight_v": UpperCamelCase__ :Tuple = value elif weight_type == "bias": UpperCamelCase__ :int = value else: UpperCamelCase__ :Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def A ( lowercase__ : int , lowercase__ : Dict ) -> Dict: UpperCamelCase__ :int = [] UpperCamelCase__ :Union[str, Any] = fairseq_model.state_dict() UpperCamelCase__ :str = hf_model.feature_extractor UpperCamelCase__ :int = hf_model.adapter for name, value in fairseq_dict.items(): UpperCamelCase__ :Optional[int] = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase__ :str = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ :Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCamelCase__ :List[str] = True if "*" in mapped_key: UpperCamelCase__ :str = name.split(lowercase__ )[0].split(""".""" )[-2] UpperCamelCase__ :Tuple = mapped_key.replace("""*""" , lowercase__ ) if "weight_g" in name: UpperCamelCase__ :Tuple = """weight_g""" elif "weight_v" in name: UpperCamelCase__ :Union[str, Any] = """weight_v""" elif "bias" in name: UpperCamelCase__ :int = """bias""" elif "weight" in name: UpperCamelCase__ :int = """weight""" else: UpperCamelCase__ :Tuple = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def A ( lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : int ) -> Optional[int]: UpperCamelCase__ :Optional[Any] = full_name.split("""conv_layers.""" )[-1] UpperCamelCase__ :Optional[Any] = name.split(""".""" ) UpperCamelCase__ :Tuple = int(items[0] ) UpperCamelCase__ :Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase__ :List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase__ :List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCamelCase__ :Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase__ :Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) def A ( lowercase__ : int , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : str ) -> Any: UpperCamelCase__ :List[Any] = full_name.split("""adaptor.""" )[-1] UpperCamelCase__ :Union[str, Any] = name.split(""".""" ) if items[1].isdigit(): UpperCamelCase__ :Optional[Any] = int(items[1] ) else: UpperCamelCase__ :Dict = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" UpperCamelCase__ :Optional[int] = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" UpperCamelCase__ :Union[str, Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" UpperCamelCase__ :List[Any] = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" UpperCamelCase__ :Any = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(lowercase__ , lowercase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" UpperCamelCase__ :Dict = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" UpperCamelCase__ :Optional[int] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) def A ( lowercase__ : int ) -> List[str]: UpperCamelCase__ , UpperCamelCase__ :Dict = emb.weight.shape UpperCamelCase__ :Any = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) UpperCamelCase__ :int = emb.weight.data return lin_layer @torch.no_grad() def A ( lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : Any , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : List[Any] , ) -> Union[str, Any]: UpperCamelCase__ :Union[str, Any] = WavaVecaConfig.from_pretrained( lowercase__ , add_adapter=lowercase__ , adapter_stride=lowercase__ , adapter_kernel_size=lowercase__ , use_auth_token=lowercase__ , output_hidden_size=lowercase__ , ) UpperCamelCase__ :List[str] = MBartConfig.from_pretrained(lowercase__ ) # load model UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) UpperCamelCase__ :Tuple = model[0].eval() # load feature extractor UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase__ , use_auth_token=lowercase__ ) # set weights for wav2vec2 encoder UpperCamelCase__ :List[Any] = WavaVecaModel(lowercase__ ) recursively_load_weights_wavaveca(model.encoder , lowercase__ ) # load decoder weights UpperCamelCase__ :List[str] = MBartForCausalLM(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ :Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowercase__ ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCamelCase__ :Tuple = SpeechEncoderDecoderModel(encoder=lowercase__ , decoder=lowercase__ ) UpperCamelCase__ :List[Any] = False UpperCamelCase__ :Optional[Any] = MBartaaTokenizer(lowercase__ ) tokenizer.save_pretrained(lowercase__ ) UpperCamelCase__ :Optional[int] = hf_wavavec.config.to_dict() UpperCamelCase__ :List[Any] = tokenizer.pad_token_id UpperCamelCase__ :Optional[int] = tokenizer.bos_token_id UpperCamelCase__ :Union[str, Any] = tokenizer.eos_token_id UpperCamelCase__ :List[str] = """mbart50""" UpperCamelCase__ :List[Any] = """wav2vec2""" UpperCamelCase__ :int = tokenizer.eos_token_id UpperCamelCase__ :Tuple = 25_0004 UpperCamelCase__ :Optional[Any] = tokenizer.eos_token_id UpperCamelCase__ :Any = SpeechEncoderDecoderConfig.from_dict(lowercase__ ) hf_wavavec.save_pretrained(lowercase__ ) feature_extractor.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250_004, type=int, help="`decoder_start_token_id` of model config") UpperCamelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
45
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
1
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def A ( ) -> Dict: UpperCamelCase__ :Tuple = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) UpperCamelCase__ :List[str] = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(lowercase__ ) DownloadCommand.register_subcommand(lowercase__ ) EnvironmentCommand.register_subcommand(lowercase__ ) RunCommand.register_subcommand(lowercase__ ) ServeCommand.register_subcommand(lowercase__ ) UserCommands.register_subcommand(lowercase__ ) AddNewModelCommand.register_subcommand(lowercase__ ) AddNewModelLikeCommand.register_subcommand(lowercase__ ) LfsCommands.register_subcommand(lowercase__ ) PTtoTFCommand.register_subcommand(lowercase__ ) # Let's go UpperCamelCase__ :Union[str, Any] = parser.parse_args() if not hasattr(lowercase__ , """func""" ): parser.print_help() exit(1 ) # Run UpperCamelCase__ :Optional[Any] = args.func(lowercase__ ) service.run() if __name__ == "__main__": main()
45
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : str = """new-model""" if is_tf_available(): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Any = NewModelConfig @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Optional[Any] = """bert-base-cased""" UpperCamelCase__ :Any = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :List[Any] ): UpperCamelCase__ :Dict = """bert-base-cased""" UpperCamelCase__ :Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :List[Any] ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Any = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ :str = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Any ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :int = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Any ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :List[Any] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :List[str] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Any = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ :List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Dict ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCamelCase__ :List[Any] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :str ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCamelCase__ :Tuple = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow @require_tensorflow_probability def __a ( self :Optional[Any] ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCamelCase__ :Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :str = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :int ): UpperCamelCase__ :Dict = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 1_44_10 ) def __a ( self :str ): UpperCamelCase__ :List[Any] = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 1_44_10 ) def __a ( self :Tuple ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel UpperCamelCase__ :Optional[Any] = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = copy.deepcopy(model.config ) UpperCamelCase__ :int = ["""FunnelBaseModel"""] UpperCamelCase__ :Union[str, Any] = TFAutoModel.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[Any] ): try: AutoConfig.register("""new-model""" , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Dict = BertModelTester(self ).get_config() UpperCamelCase__ :Optional[Any] = NewModelConfig(**tiny_config.to_dict() ) UpperCamelCase__ :Any = auto_class.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :int = auto_class.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __a ( self :List[str] ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Optional[Any] = TFAutoModel.from_pretrained("""bert-base""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = TFAutoModel.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :Optional[int] ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): UpperCamelCase__ :List[str] = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Tuple ): with self.assertRaisesRegex(lowerCamelCase__ , """Use `from_pt=True` to load this model""" ): UpperCamelCase__ :Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def __a ( self :Optional[int] ): # Make sure we have cached the model. UpperCamelCase__ :Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: UpperCamelCase__ :List[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCamelCase__ :Optional[int] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: UpperCamelCase__ :Dict = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
45
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def A ( lowercase__ : Optional[int] ) -> int: UpperCamelCase__ :Optional[int] = os.path.join(args.tf_model_dir , """parameters.json""" ) UpperCamelCase__ :List[str] = json.loads(open(lowercase__ ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(""".pt""" ): UpperCamelCase__ :Union[str, Any] = args.output + """.pt""" UpperCamelCase__ :str = OrderedDict() with tf.device("""/CPU:0""" ): UpperCamelCase__ :List[str] = tf.train.load_checkpoint(args.tf_model_dir ) UpperCamelCase__ :Tuple = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCamelCase__ :Dict = reader.get_tensor(lowercase__ ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): UpperCamelCase__ :Optional[int] = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): UpperCamelCase__ :Tuple = 8 UpperCamelCase__ :List[str] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCamelCase__ :str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :str = torch.tensor(lowercase__ ) elif key_name.startswith("""model/moe""" ): UpperCamelCase__ :List[str] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): UpperCamelCase__ :int = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player UpperCamelCase__ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Optional[Any] = torch.tensor(lowercase__ ) elif key_name.endswith("""/softmlp/kernel""" ): UpperCamelCase__ :Any = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player UpperCamelCase__ :str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Dict = torch.tensor(lowercase__ ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): UpperCamelCase__ :Dict = key_name[-9:-7] for i in range(16 ): UpperCamelCase__ :Optional[Any] = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) UpperCamelCase__ :int = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCamelCase__ :int = torch.tensor(lowercase__ ) elif key_name.startswith("""model/mlp""" ): UpperCamelCase__ :Dict = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): UpperCamelCase__ :Optional[Any] = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player UpperCamelCase__ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Union[str, Any] = torch.tensor(lowercase__ ) elif key_name.endswith("""/p1/bias""" ): UpperCamelCase__ :Tuple = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player UpperCamelCase__ :Dict = vnp.copy() # same because it is one dimensional UpperCamelCase__ :List[str] = torch.tensor(lowercase__ ) elif key_name.endswith("""/p2/kernel""" ): UpperCamelCase__ :List[Any] = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player UpperCamelCase__ :int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Any = torch.tensor(lowercase__ ) elif key_name.endswith("""/p2/bias""" ): UpperCamelCase__ :Optional[int] = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player UpperCamelCase__ :List[Any] = vnp.copy() # same because it is one dimensional UpperCamelCase__ :str = torch.tensor(lowercase__ ) elif key_name.startswith("""model/ln""" ): UpperCamelCase__ :Optional[Any] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): UpperCamelCase__ :List[Any] = """model.blocks.%d.feed_forward.norm.bias""" % player UpperCamelCase__ :List[str] = vnp.copy() # same because it is one dimensional UpperCamelCase__ :Union[str, Any] = torch.tensor(lowercase__ ) elif key_name.endswith("""/g""" ): UpperCamelCase__ :Any = """model.blocks.%d.feed_forward.norm.weight""" % player UpperCamelCase__ :Dict = vnp.copy() # same because it is one dimensional UpperCamelCase__ :List[Any] = torch.tensor(lowercase__ ) elif key_name.startswith("""model/att""" ): UpperCamelCase__ :List[Any] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): UpperCamelCase__ :Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCamelCase__ :Union[str, Any] = state[:, 0, :, :] UpperCamelCase__ :Union[str, Any] = state[:, 1, :, :] UpperCamelCase__ :List[Any] = state[:, 2, :, :] UpperCamelCase__ :str = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Tuple = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Dict = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :str = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player UpperCamelCase__ :List[str] = torch.tensor(lowercase__ ) UpperCamelCase__ :Optional[int] = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player UpperCamelCase__ :Optional[Any] = torch.tensor(lowercase__ ) UpperCamelCase__ :List[str] = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player UpperCamelCase__ :List[str] = torch.tensor(lowercase__ ) elif key_name.endswith("""/o/kernel""" ): UpperCamelCase__ :Dict = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player UpperCamelCase__ :str = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :int = torch.tensor(lowercase__ ) elif key_name.startswith("""model/an""" ): UpperCamelCase__ :Optional[int] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): UpperCamelCase__ :Optional[int] = """model.blocks.%d.self_attn.norm.bias""" % player UpperCamelCase__ :Optional[int] = vnp.copy() # same because it is one dimensional UpperCamelCase__ :str = torch.tensor(lowercase__ ) elif key_name.endswith("""/g""" ): UpperCamelCase__ :str = """model.blocks.%d.self_attn.norm.weight""" % player UpperCamelCase__ :Tuple = vnp.copy() # same because it is one dimensional UpperCamelCase__ :str = torch.tensor(lowercase__ ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): UpperCamelCase__ :int = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] UpperCamelCase__ :List[Any] = """model.%s.weight""" % nlayer UpperCamelCase__ :str = vnp.copy() # same in embedded UpperCamelCase__ :Dict = torch.tensor(lowercase__ ) if key_name.startswith("""model/wte""" ): UpperCamelCase__ :Any = """lm_head.weight""" UpperCamelCase__ :Optional[int] = vnp.copy() # same in embedded UpperCamelCase__ :Tuple = torch.tensor(lowercase__ ) elif key_name.startswith("""model/wob""" ): UpperCamelCase__ :Dict = """final_logits_bias""" UpperCamelCase__ :Optional[Any] = vnp.copy() # same in embedded UpperCamelCase__ :Optional[Any] = state.reshape((1, -1) ) UpperCamelCase__ :Optional[Any] = torch.tensor(lowercase__ ) elif key_name == "model/dense/kernel": UpperCamelCase__ :Tuple = """model.last_project.weight""" UpperCamelCase__ :List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Tuple = torch.tensor(lowercase__ ) elif key_name == "model/dense_1/bias": UpperCamelCase__ :List[Any] = """model.last_project.bias""" UpperCamelCase__ :Any = vnp.copy() # same because it is one dimensional UpperCamelCase__ :List[Any] = torch.tensor(lowercase__ ) torch.save(lowercase__ , args.output ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") UpperCamelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
45
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
1
class lowerCAmelCase_ : # Public class to implement a graph """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :list[list[bool]] ): UpperCamelCase__ :List[str] = row UpperCamelCase__ :List[Any] = col UpperCamelCase__ :Dict = graph def __a ( self :Dict , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self :str , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :list[list[bool]] ): # Checking all 8 elements surrounding nth element UpperCamelCase__ :Union[str, Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCamelCase__ :Optional[Any] = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCamelCase__ :List[Any] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase__ ) def __a ( self :str ): # And finally, count all islands. UpperCamelCase__ :List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCamelCase__ :str = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) count += 1 return count
45
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
1
# Algorithm for the pigeonhole sorting def A ( lowercase__ : Dict ) -> Optional[int]: UpperCamelCase__ :Tuple = min(lowercase__ ) # min() finds the minimum value UpperCamelCase__ :Optional[int] = max(lowercase__ ) # max() finds the maximum value UpperCamelCase__ :str = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size UpperCamelCase__ :List[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowercase__ , lowercase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. UpperCamelCase__ :Optional[int] = 0 for count in range(lowercase__ ): while holes[count] > 0: holes[count] -= 1 UpperCamelCase__ :Tuple = count + min_val i += 1 def A ( ) -> Any: UpperCamelCase__ :Dict = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowercase__ ) print("""Sorted order is:""" , """ """.join(lowercase__ ) ) if __name__ == "__main__": main()
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1
def A ( lowercase__ : list ) -> bool: if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(lowercase__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(lowercase__ ) == 1: return True UpperCamelCase__ :Tuple = series[1] - series[0] for index in range(len(lowercase__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def A ( lowercase__ : list ) -> float: if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(lowercase__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) UpperCamelCase__ :Union[str, Any] = 0 for val in series: answer += val return answer / len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
1
import pytest import datasets # Import fixture modules as plugins UpperCamelCase = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def A ( lowercase__ : int , lowercase__ : Optional[Any] ) -> int: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def A ( lowercase__ : Optional[int] ) -> Any: config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=lowercase__ ) def A ( lowercase__ : str , lowercase__ : int ) -> int: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? UpperCamelCase__ :Union[str, Any] = tmp_path_factory.getbasetemp() / """cache""" UpperCamelCase__ :Union[str, Any] = test_hf_cache_home / """datasets""" UpperCamelCase__ :Optional[int] = test_hf_cache_home / """metrics""" UpperCamelCase__ :Tuple = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(lowercase__ ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(lowercase__ ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(lowercase__ ) ) UpperCamelCase__ :Union[str, Any] = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(lowercase__ ) ) UpperCamelCase__ :Optional[Any] = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowercase__ ) ) @pytest.fixture(autouse=lowercase__ , scope="""session""" ) def A ( ) -> Optional[Any]: datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase__ ) def A ( lowercase__ : Tuple ) -> int: # don't take tests into account when counting downloads monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , lowercase__ ) @pytest.fixture def A ( lowercase__ : Optional[int] ) -> Dict: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , lowercase__ )
45
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } UpperCamelCase = { "b0": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1_408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1_536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1_792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2_048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2_304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2_560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def A ( lowercase__ : Union[str, Any] ) -> int: UpperCamelCase__ :Optional[int] = EfficientNetConfig() UpperCamelCase__ :Union[str, Any] = CONFIG_MAP[model_name]["""hidden_dim"""] UpperCamelCase__ :int = CONFIG_MAP[model_name]["""width_coef"""] UpperCamelCase__ :int = CONFIG_MAP[model_name]["""depth_coef"""] UpperCamelCase__ :List[Any] = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase__ :List[str] = CONFIG_MAP[model_name]["""dropout_rate"""] UpperCamelCase__ :Optional[int] = CONFIG_MAP[model_name]["""dw_padding"""] UpperCamelCase__ :str = """huggingface/label-files""" UpperCamelCase__ :str = """imagenet-1k-id2label.json""" UpperCamelCase__ :Tuple = 1000 UpperCamelCase__ :Any = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase__ :Union[str, Any] = {int(lowercase__ ): v for k, v in idalabel.items()} UpperCamelCase__ :Any = idalabel UpperCamelCase__ :Optional[Any] = {v: k for k, v in idalabel.items()} return config def A ( ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase__ :int = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im def A ( lowercase__ : int ) -> List[str]: UpperCamelCase__ :Union[str, Any] = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase__ :Any = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase__ , ) return preprocessor def A ( lowercase__ : Union[str, Any] ) -> Any: UpperCamelCase__ :Optional[int] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] UpperCamelCase__ :Union[str, Any] = sorted(set(lowercase__ ) ) UpperCamelCase__ :Any = len(lowercase__ ) UpperCamelCase__ :Tuple = {b: str(lowercase__ ) for b, i in zip(lowercase__ , range(lowercase__ ) )} UpperCamelCase__ :List[Any] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: UpperCamelCase__ :str = block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) UpperCamelCase__ :Tuple = {} for item in rename_keys: if item[0] in original_param_names: UpperCamelCase__ :List[str] = """efficientnet.""" + item[1] UpperCamelCase__ :Dict = """classifier.weight""" UpperCamelCase__ :int = """classifier.bias""" return key_mapping def A ( lowercase__ : str , lowercase__ : str , lowercase__ : List[str] ) -> List[str]: for key, value in tf_params.items(): if "normalization" in key: continue UpperCamelCase__ :Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCamelCase__ :int = torch.from_numpy(lowercase__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCamelCase__ :List[str] = torch.from_numpy(lowercase__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCamelCase__ :Any = torch.from_numpy(np.transpose(lowercase__ ) ) else: UpperCamelCase__ :Any = torch.from_numpy(lowercase__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase__ ) @torch.no_grad() def A ( lowercase__ : Optional[Any] , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : int ) -> Dict: UpperCamelCase__ :str = model_classes[model_name]( include_top=lowercase__ , weights="""imagenet""" , input_tensor=lowercase__ , input_shape=lowercase__ , pooling=lowercase__ , classes=1000 , classifier_activation="""softmax""" , ) UpperCamelCase__ :Optional[int] = original_model.trainable_variables UpperCamelCase__ :Optional[Any] = original_model.non_trainable_variables UpperCamelCase__ :Tuple = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCamelCase__ :int = param.numpy() UpperCamelCase__ :Optional[int] = list(tf_params.keys() ) # Load HuggingFace model UpperCamelCase__ :str = get_efficientnet_config(lowercase__ ) UpperCamelCase__ :Any = EfficientNetForImageClassification(lowercase__ ).eval() UpperCamelCase__ :List[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) UpperCamelCase__ :Union[str, Any] = rename_keys(lowercase__ ) replace_params(lowercase__ , lowercase__ , lowercase__ ) # Initialize preprocessor and preprocess input image UpperCamelCase__ :int = convert_image_processor(lowercase__ ) UpperCamelCase__ :Any = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCamelCase__ :Dict = hf_model(**lowercase__ ) UpperCamelCase__ :Union[str, Any] = outputs.logits.detach().numpy() # Original model inference UpperCamelCase__ :str = False UpperCamelCase__ :Tuple = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase__ :Optional[int] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCamelCase__ :Any = image.img_to_array(lowercase__ ) UpperCamelCase__ :Union[str, Any] = np.expand_dims(lowercase__ , axis=0 ) UpperCamelCase__ :List[Any] = original_model.predict(lowercase__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase__ , lowercase__ , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase__ ): os.mkdir(lowercase__ ) # Save converted model and image processor hf_model.save_pretrained(lowercase__ ) preprocessor.save_pretrained(lowercase__ ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) UpperCamelCase__ :Dict = f"""efficientnet-{model_name}""" preprocessor.push_to_hub(lowercase__ ) hf_model.push_to_hub(lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") UpperCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
45
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCamelCase = parser.parse_args() UpperCamelCase = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCamelCase = CLIPImageProcessor() UpperCamelCase = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCamelCase = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
45
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
1
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :List[Any] = torch.manual_seed(0 ) UpperCamelCase__ :Any = pipe( image=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Optional[int] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
45
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = BertTokenizer _snake_case : str = BertTokenizerFast _snake_case : Optional[Any] = True _snake_case : Optional[int] = True _snake_case : Dict = filter_non_english def __a ( self :List[str] ): super().setUp() UpperCamelCase__ :str = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCamelCase__ :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __a ( self :Tuple , lowerCamelCase__ :Dict ): UpperCamelCase__ :Tuple = """UNwant\u00E9d,running""" UpperCamelCase__ :Tuple = """unwanted, running""" return input_text, output_text def __a ( self :int ): UpperCamelCase__ :Optional[Any] = self.tokenizer_class(self.vocab_file ) UpperCamelCase__ :Union[str, Any] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [9, 6, 7, 12, 10, 11] ) def __a ( self :Dict ): if not self.test_rust_tokenizer: return UpperCamelCase__ :Tuple = self.get_tokenizer() UpperCamelCase__ :Dict = self.get_rust_tokenizer() UpperCamelCase__ :str = """UNwant\u00E9d,running""" UpperCamelCase__ :Optional[int] = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase__ :List[str] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :int = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = self.get_rust_tokenizer() UpperCamelCase__ :str = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ :Any = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # With lower casing UpperCamelCase__ :Dict = self.get_tokenizer(do_lower_case=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = self.get_rust_tokenizer(do_lower_case=lowerCamelCase__ ) UpperCamelCase__ :List[str] = """UNwant\u00E9d,running""" UpperCamelCase__ :List[Any] = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase__ :Optional[Any] = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ :Any = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :str ): UpperCamelCase__ :str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :str = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __a ( self :str ): UpperCamelCase__ :Optional[int] = BasicTokenizer(do_lower_case=lowerCamelCase__ , strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Any = BasicTokenizer(do_lower_case=lowerCamelCase__ , strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __a ( self :int ): UpperCamelCase__ :int = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = BasicTokenizer(do_lower_case=lowerCamelCase__ , strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = BasicTokenizer(do_lower_case=lowerCamelCase__ , strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __a ( self :str ): UpperCamelCase__ :str = BasicTokenizer(do_lower_case=lowerCamelCase__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __a ( self :str ): UpperCamelCase__ :List[str] = BasicTokenizer() UpperCamelCase__ :List[str] = """a\n'll !!to?'d of, can't.""" UpperCamelCase__ :Dict = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(lowerCamelCase__ ) , lowerCamelCase__ ) def __a ( self :Optional[Any] ): UpperCamelCase__ :str = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] UpperCamelCase__ :Optional[Any] = {} for i, token in enumerate(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = i UpperCamelCase__ :Optional[int] = WordpieceTokenizer(vocab=lowerCamelCase__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __a ( self :Optional[int] ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __a ( self :Optional[int] ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __a ( self :List[Any] ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __a ( self :Tuple ): UpperCamelCase__ :List[str] = self.get_tokenizer() UpperCamelCase__ :Dict = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def __a ( self :List[str] ): UpperCamelCase__ :Optional[int] = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) UpperCamelCase__ :str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :List[str] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) UpperCamelCase__ :Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def __a ( self :int ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase__ :Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCamelCase__ :Any = tokenizer_r.encode_plus( lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , ) UpperCamelCase__ :Optional[Any] = tokenizer_r.do_lower_case if hasattr(lowerCamelCase__ , """do_lower_case""" ) else False UpperCamelCase__ :Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __a ( self :Dict ): UpperCamelCase__ :Any = ["""的""", """人""", """有"""] UpperCamelCase__ :Optional[Any] = """""".join(lowerCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase__ :str = True UpperCamelCase__ :int = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :List[str] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :Tuple = tokenizer_p.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = tokenizer_r.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :List[str] = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = False UpperCamelCase__ :str = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :int = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = tokenizer_r.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer_p.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) UpperCamelCase__ :Dict = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCamelCase__ :Any = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase__ ) ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Tuple = ["""image_processor""", """tokenizer"""] _snake_case : int = """OwlViTImageProcessor""" _snake_case : Optional[Any] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self :Dict , lowerCamelCase__ :Tuple=None , lowerCamelCase__ :Tuple=None , **lowerCamelCase__ :List[str] ): UpperCamelCase__ :str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase__ , ) UpperCamelCase__ :Optional[int] = kwargs.pop("""feature_extractor""" ) UpperCamelCase__ :Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self :Union[str, Any] , lowerCamelCase__ :Optional[Any]=None , lowerCamelCase__ :Tuple=None , lowerCamelCase__ :Optional[int]=None , lowerCamelCase__ :Union[str, Any]="max_length" , lowerCamelCase__ :Dict="np" , **lowerCamelCase__ :Tuple ): if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ) or (isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not isinstance(text[0] , lowerCamelCase__ )): UpperCamelCase__ :Any = [self.tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ )] elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(text[0] , lowerCamelCase__ ): UpperCamelCase__ :Any = [] # Maximum number of queries across batch UpperCamelCase__ :Dict = max([len(lowerCamelCase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase__ ) != max_num_queries: UpperCamelCase__ :Optional[Any] = t + [""" """] * (max_num_queries - len(lowerCamelCase__ )) UpperCamelCase__ :int = self.tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) encodings.append(lowerCamelCase__ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCamelCase__ :Any = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase__ :Any = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCamelCase__ :Dict = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase__ :Union[str, Any] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCamelCase__ :Optional[Any] = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCamelCase__ :Any = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCamelCase__ :Optional[int] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase__ :Optional[Any] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCamelCase__ :Optional[int] = BatchEncoding() UpperCamelCase__ :List[Any] = input_ids UpperCamelCase__ :Optional[int] = attention_mask if query_images is not None: UpperCamelCase__ :List[Any] = BatchEncoding() UpperCamelCase__ :int = self.image_processor( lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ).pixel_values UpperCamelCase__ :List[Any] = query_pixel_values if images is not None: UpperCamelCase__ :Union[str, Any] = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None and images is not None: UpperCamelCase__ :int = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCamelCase__ :Dict = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__ ) , tensor_type=lowerCamelCase__ ) def __a ( self :List[Any] , *lowerCamelCase__ :Optional[Any] , **lowerCamelCase__ :List[str] ): return self.image_processor.post_process(*lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :List[str] , *lowerCamelCase__ :Union[str, Any] , **lowerCamelCase__ :Tuple ): return self.image_processor.post_process_object_detection(*lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :Optional[int] , *lowerCamelCase__ :Tuple , **lowerCamelCase__ :int ): return self.image_processor.post_process_image_guided_detection(*lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :int , *lowerCamelCase__ :Dict , **lowerCamelCase__ :Any ): return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :List[Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :List[Any] ): return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def __a ( self :List[Any] ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCamelCase__ , ) return self.image_processor_class @property def __a ( self :Dict ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCamelCase__ , ) return self.image_processor
45
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCamelCase = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] , lowerCamelCase__ :Path , lowerCamelCase__ :Union[str, None] = None , lowerCamelCase__ :Union[List[str], None] = None , lowerCamelCase__ :Union[str, List[str], None] = None , lowerCamelCase__ :bool = True , ): UpperCamelCase__ :Dict = [file for file in os.listdir(lowerCamelCase__ ) if os.path.isfile(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) )] if identifier is not None: UpperCamelCase__ :Union[str, Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): for n_ in n_identifier: UpperCamelCase__ :Tuple = [file for file in files if n_ not in file] else: UpperCamelCase__ :int = [file for file in files if n_identifier not in file] UpperCamelCase__ :List[Any] = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCamelCase__ :Dict = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , lowerCamelCase__ ) if only_modules: UpperCamelCase__ :int = file.split(""".""" )[0] try: UpperCamelCase__ :Tuple = getattr(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = doctest.DocTestSuite(lowerCamelCase__ ) UpperCamelCase__ :Tuple = unittest.TextTestRunner().run(lowerCamelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: UpperCamelCase__ :Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __a ( self :Optional[int] ): UpperCamelCase__ :int = Path("""src/transformers""" ) UpperCamelCase__ :Union[str, Any] = """modeling""" UpperCamelCase__ :List[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ , ignore_files=lowerCamelCase__ ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Tuple = Path("""src/transformers""" ) UpperCamelCase__ :int = """tokenization""" self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = Path("""src/transformers""" ) UpperCamelCase__ :List[str] = """configuration""" self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ ) def __a ( self :int ): UpperCamelCase__ :Optional[int] = Path("""src/transformers""" ) UpperCamelCase__ :int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(lowerCamelCase__ , n_identifier=lowerCamelCase__ ) def __a ( self :Optional[Any] ): UpperCamelCase__ :int = Path("""docs/source""" ) UpperCamelCase__ :str = ["""favicon.ico"""] self.analyze_directory(lowerCamelCase__ , ignore_files=lowerCamelCase__ , only_modules=lowerCamelCase__ )
45
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
1
from math import factorial UpperCamelCase = {str(d): factorial(d) for d in range(10)} def A ( lowercase__ : int ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(lowercase__ ) ) def A ( ) -> int: UpperCamelCase__ :Dict = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowercase__ ) if sum_of_digit_factorial(lowercase__ ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
45
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
1
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def A ( lowercase__ : str , lowercase__ : str ) -> str | Literal[False]: UpperCamelCase__ :Any = list(lowercase__ ) UpperCamelCase__ :Optional[Any] = list(lowercase__ ) UpperCamelCase__ :Union[str, Any] = 0 for i in range(len(lowercase__ ) ): if lista[i] != lista[i]: count += 1 UpperCamelCase__ :str = """_""" if count > 1: return False else: return "".join(lowercase__ ) def A ( lowercase__ : list[str] ) -> list[str]: UpperCamelCase__ :int = [] while True: UpperCamelCase__ :Tuple = ["""$"""] * len(lowercase__ ) UpperCamelCase__ :Tuple = [] for i in range(len(lowercase__ ) ): for j in range(i + 1 , len(lowercase__ ) ): UpperCamelCase__ :str = compare_string(binary[i] , binary[j] ) if k is False: UpperCamelCase__ :str = """*""" UpperCamelCase__ :Union[str, Any] = """*""" temp.append("""X""" ) for i in range(len(lowercase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowercase__ ) == 0: return pi UpperCamelCase__ :Tuple = list(set(lowercase__ ) ) def A ( lowercase__ : int , lowercase__ : Sequence[float] ) -> list[str]: UpperCamelCase__ :int = [] for minterm in minterms: UpperCamelCase__ :Any = """""" for _ in range(lowercase__ ): UpperCamelCase__ :Any = str(minterm % 2 ) + string minterm //= 2 temp.append(lowercase__ ) return temp def A ( lowercase__ : str , lowercase__ : str , lowercase__ : int ) -> bool: UpperCamelCase__ :Tuple = list(lowercase__ ) UpperCamelCase__ :List[str] = list(lowercase__ ) UpperCamelCase__ :Any = 0 for i in range(len(lowercase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def A ( lowercase__ : list[list[int]] , lowercase__ : list[str] ) -> list[str]: UpperCamelCase__ :int = [] UpperCamelCase__ :Union[str, Any] = [0] * len(lowercase__ ) for i in range(len(chart[0] ) ): UpperCamelCase__ :str = 0 UpperCamelCase__ :Dict = -1 for j in range(len(lowercase__ ) ): if chart[j][i] == 1: count += 1 UpperCamelCase__ :int = j if count == 1: UpperCamelCase__ :Optional[Any] = 1 for i in range(len(lowercase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowercase__ ) ): UpperCamelCase__ :Tuple = 0 temp.append(prime_implicants[i] ) while True: UpperCamelCase__ :int = 0 UpperCamelCase__ :List[Any] = -1 UpperCamelCase__ :Any = 0 for i in range(len(lowercase__ ) ): UpperCamelCase__ :Dict = chart[i].count(1 ) if count_n > max_n: UpperCamelCase__ :List[Any] = count_n UpperCamelCase__ :Optional[int] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowercase__ ) ): UpperCamelCase__ :Optional[int] = 0 def A ( lowercase__ : list[str] , lowercase__ : list[str] ) -> list[list[int]]: UpperCamelCase__ :Union[str, Any] = [[0 for x in range(len(lowercase__ ) )] for x in range(len(lowercase__ ) )] for i in range(len(lowercase__ ) ): UpperCamelCase__ :Union[str, Any] = prime_implicants[i].count("""_""" ) for j in range(len(lowercase__ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowercase__ ): UpperCamelCase__ :Union[str, Any] = 1 return chart def A ( ) -> None: UpperCamelCase__ :List[str] = int(input("""Enter the no. of variables\n""" ) ) UpperCamelCase__ :Union[str, Any] = [ float(lowercase__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCamelCase__ :List[Any] = decimal_to_binary(lowercase__ , lowercase__ ) UpperCamelCase__ :int = check(lowercase__ ) print("""Prime Implicants are:""" ) print(lowercase__ ) UpperCamelCase__ :List[str] = prime_implicant_chart(lowercase__ , lowercase__ ) UpperCamelCase__ :Tuple = selection(lowercase__ , lowercase__ ) print("""Essential Prime Implicants are:""" ) print(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=lowercase ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : str = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _snake_case : ClassVar[Features] = Features({"""image""": Image()} ) _snake_case : ClassVar[Features] = Features({"""labels""": ClassLabel} ) _snake_case : str = "image" _snake_case : str = "labels" def __a ( self :Any , lowerCamelCase__ :Dict ): if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCamelCase__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) UpperCamelCase__ :Union[str, Any] = copy.deepcopy(self ) UpperCamelCase__ :Any = self.label_schema.copy() UpperCamelCase__ :int = features[self.label_column] UpperCamelCase__ :Optional[Any] = label_schema return task_template @property def __a ( self :List[Any] ): return { self.image_column: "image", self.label_column: "labels", }
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def A ( lowercase__ : Union[str, Any] , lowercase__ : List[str]=False ) -> Dict: UpperCamelCase__ :Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ :Optional[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def A ( lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : Any=False ) -> List[Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ :Dict = """""" else: UpperCamelCase__ :str = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ :List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCamelCase__ :Any = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ :List[str] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ :List[str] = in_proj_bias[: config.hidden_size] UpperCamelCase__ :Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ :Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ :Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ :Union[str, Any] = in_proj_bias[-config.hidden_size :] def A ( lowercase__ : Any ) -> Optional[Any]: UpperCamelCase__ :Optional[Any] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def A ( lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = dct.pop(lowercase__ ) UpperCamelCase__ :Tuple = val def A ( ) -> Any: UpperCamelCase__ :List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase__ :Union[str, Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def A ( lowercase__ : Any , lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Optional[int] = ViTConfig() UpperCamelCase__ :List[Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :int = int(vit_name[-12:-10] ) UpperCamelCase__ :Any = int(vit_name[-9:-6] ) else: UpperCamelCase__ :Optional[Any] = 1000 UpperCamelCase__ :int = """huggingface/label-files""" UpperCamelCase__ :Any = """imagenet-1k-id2label.json""" UpperCamelCase__ :int = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase__ :List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} UpperCamelCase__ :Union[str, Any] = idalabel UpperCamelCase__ :Optional[int] = {v: k for k, v in idalabel.items()} UpperCamelCase__ :Optional[Any] = int(vit_name[-6:-4] ) UpperCamelCase__ :Optional[int] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): UpperCamelCase__ :Optional[int] = 192 UpperCamelCase__ :Tuple = 768 UpperCamelCase__ :List[Any] = 12 UpperCamelCase__ :Optional[Any] = 3 elif vit_name[9:].startswith("""small""" ): UpperCamelCase__ :int = 384 UpperCamelCase__ :Optional[int] = 1536 UpperCamelCase__ :Any = 12 UpperCamelCase__ :Optional[int] = 6 else: pass else: if vit_name[4:].startswith("""small""" ): UpperCamelCase__ :Optional[int] = 768 UpperCamelCase__ :Union[str, Any] = 2304 UpperCamelCase__ :Optional[Any] = 8 UpperCamelCase__ :int = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): UpperCamelCase__ :List[str] = 1024 UpperCamelCase__ :Optional[int] = 4096 UpperCamelCase__ :Union[str, Any] = 24 UpperCamelCase__ :List[Any] = 16 elif vit_name[4:].startswith("""huge""" ): UpperCamelCase__ :int = 1280 UpperCamelCase__ :Union[str, Any] = 5120 UpperCamelCase__ :Tuple = 32 UpperCamelCase__ :Optional[Any] = 16 # load original model from timm UpperCamelCase__ :Optional[int] = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ :Any = timm_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) UpperCamelCase__ :Optional[int] = create_rename_keys(lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if vit_name[-5:] == "in21k": UpperCamelCase__ :int = ViTModel(lowercase__ ).eval() else: UpperCamelCase__ :List[str] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: UpperCamelCase__ :List[str] = DeiTImageProcessor(size=config.image_size ) else: UpperCamelCase__ :str = ViTImageProcessor(size=config.image_size ) UpperCamelCase__ :List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCamelCase__ :Union[str, Any] = encoding["""pixel_values"""] UpperCamelCase__ :Union[str, Any] = model(lowercase__ ) if base_model: UpperCamelCase__ :str = timm_model.forward_features(lowercase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase__ , outputs.pooler_output , atol=1E-3 ) else: UpperCamelCase__ :int = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
45
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
1
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Tuple = 2 UpperCamelCase__ :Dict = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowercase__ ) if n > 1: factors.append(lowercase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
45
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
1
UpperCamelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCamelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCamelCase = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def A ( lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> str: assert len(str(lowercase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase__ :List[Any] = year // 100 UpperCamelCase__ :Optional[int] = (5 * (century % 4) + 2) % 7 UpperCamelCase__ :int = year % 100 UpperCamelCase__ :List[Any] = centurian % 12 UpperCamelCase__ :List[str] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase__ :Tuple = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase__ :Optional[int] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def A ( lowercase__ : int ) -> Optional[int]: UpperCamelCase__ :Dict = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCamelCase__ :str = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCamelCase__ :List[str] = 0.01 with locka.acquire(): with pytest.raises(lowercase__ ): UpperCamelCase__ :Optional[Any] = time.time() locka.acquire(lowercase__ ) assert time.time() - _start > timeout def A ( lowercase__ : str ) -> int: UpperCamelCase__ :str = """a""" * 1000 + """.lock""" UpperCamelCase__ :str = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowercase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCamelCase__ :List[Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase__ ): locka.acquire(0 )
45
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
1
from __future__ import annotations from PIL import Image # Define glider example UpperCamelCase = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCamelCase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def A ( lowercase__ : list[list[int]] ) -> list[list[int]]: UpperCamelCase__ :List[str] = [] for i in range(len(lowercase__ ) ): UpperCamelCase__ :Optional[int] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCamelCase__ :Union[str, Any] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowercase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowercase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowercase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCamelCase__ :List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowercase__ ) return next_generation def A ( lowercase__ : list[list[int]] , lowercase__ : int ) -> list[Image.Image]: UpperCamelCase__ :Tuple = [] for _ in range(lowercase__ ): # Create output image UpperCamelCase__ :str = Image.new("""RGB""" , (len(cells[0] ), len(lowercase__ )) ) UpperCamelCase__ :Any = img.load() # Save cells to image for x in range(len(lowercase__ ) ): for y in range(len(cells[0] ) ): UpperCamelCase__ :Dict = 255 - cells[y][x] * 255 UpperCamelCase__ :Union[str, Any] = (colour, colour, colour) # Save image images.append(lowercase__ ) UpperCamelCase__ :Union[str, Any] = new_generation(lowercase__ ) return images if __name__ == "__main__": UpperCamelCase = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
45
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
1
from __future__ import annotations import math from collections.abc import Callable def A ( lowercase__ : Callable[[int | float], int | float] , lowercase__ : int | float , lowercase__ : int | float , lowercase__ : int = 100 , ) -> float: UpperCamelCase__ :int = x_start UpperCamelCase__ :List[Any] = fnc(lowercase__ ) UpperCamelCase__ :List[Any] = 0.0 for _ in range(lowercase__ ): # Approximates curve as a sequence of linear lines and sums their length UpperCamelCase__ :Optional[int] = (x_end - x_start) / steps + xa UpperCamelCase__ :List[Any] = fnc(lowercase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCamelCase__ :Dict = xa UpperCamelCase__ :List[str] = fxa return length if __name__ == "__main__": def A ( lowercase__ : Dict ) -> List[str]: return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") UpperCamelCase = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
45
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :Collection[float] | None = None ): if components is None: UpperCamelCase__ :Tuple = [] UpperCamelCase__ :Optional[Any] = list(lowerCamelCase__ ) def __len__( self :List[Any] ): return len(self.__components ) def __str__( self :List[Any] ): return "(" + ",".join(map(lowerCamelCase__ , self.__components ) ) + ")" def __add__( self :List[Any] , lowerCamelCase__ :Vector ): UpperCamelCase__ :Optional[int] = len(self ) if size == len(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = [self.__components[i] + other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self :Any , lowerCamelCase__ :Vector ): UpperCamelCase__ :List[Any] = len(self ) if size == len(lowerCamelCase__ ): UpperCamelCase__ :Dict = [self.__components[i] - other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self :str , lowerCamelCase__ :float ): ... @overload def __mul__( self :Union[str, Any] , lowerCamelCase__ :Vector ): ... def __mul__( self :List[Any] , lowerCamelCase__ :float | Vector ): if isinstance(lowerCamelCase__ , (float, int) ): UpperCamelCase__ :int = [c * other for c in self.__components] return Vector(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(self ) == len(lowerCamelCase__ ): UpperCamelCase__ :Tuple = len(self ) UpperCamelCase__ :List[str] = [self.__components[i] * other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return sum(lowerCamelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __a ( self :Dict ): return Vector(self.__components ) def __a ( self :Optional[Any] , lowerCamelCase__ :int ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __a ( self :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :float ): assert -len(self.__components ) <= pos < len(self.__components ) UpperCamelCase__ :List[Any] = value def __a ( self :Optional[Any] ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) UpperCamelCase__ :List[Any] = [c**2 for c in self.__components] return math.sqrt(sum(lowerCamelCase__ ) ) def __a ( self :Any , lowerCamelCase__ :Vector , lowerCamelCase__ :bool = False ): UpperCamelCase__ :Tuple = self * other UpperCamelCase__ :Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def A ( lowercase__ : int ) -> Vector: assert isinstance(lowercase__ , lowercase__ ) return Vector([0] * dimension ) def A ( lowercase__ : int , lowercase__ : int ) -> Vector: assert isinstance(lowercase__ , lowercase__ ) and (isinstance(lowercase__ , lowercase__ )) UpperCamelCase__ :List[Any] = [0] * dimension UpperCamelCase__ :int = 1 return Vector(lowercase__ ) def A ( lowercase__ : float , lowercase__ : Vector , lowercase__ : Vector ) -> Vector: assert ( isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) and (isinstance(lowercase__ , (int, float) )) ) return x * scalar + y def A ( lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> Vector: random.seed(lowercase__ ) UpperCamelCase__ :Tuple = [random.randint(lowercase__ , lowercase__ ) for _ in range(lowercase__ )] return Vector(lowercase__ ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[str] , lowerCamelCase__ :list[list[float]] , lowerCamelCase__ :int , lowerCamelCase__ :int ): UpperCamelCase__ :List[Any] = matrix UpperCamelCase__ :Dict = w UpperCamelCase__ :int = h def __str__( self :Tuple ): UpperCamelCase__ :Tuple = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self :List[str] , lowerCamelCase__ :Matrix ): if self.__width == other.width() and self.__height == other.height(): UpperCamelCase__ :Any = [] for i in range(self.__height ): UpperCamelCase__ :Dict = [ self.__matrix[i][j] + other.component(lowerCamelCase__ , lowerCamelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCamelCase__ ) return Matrix(lowerCamelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self :List[Any] , lowerCamelCase__ :Matrix ): if self.__width == other.width() and self.__height == other.height(): UpperCamelCase__ :List[Any] = [] for i in range(self.__height ): UpperCamelCase__ :Optional[int] = [ self.__matrix[i][j] - other.component(lowerCamelCase__ , lowerCamelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCamelCase__ ) return Matrix(lowerCamelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self :Dict , lowerCamelCase__ :float ): ... @overload def __mul__( self :Optional[int] , lowerCamelCase__ :Vector ): ... def __mul__( self :Optional[Any] , lowerCamelCase__ :float | Vector ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # matrix-vector if len(lowerCamelCase__ ) == self.__width: UpperCamelCase__ :List[Any] = zero_vector(self.__height ) for i in range(self.__height ): UpperCamelCase__ :Union[str, Any] = [ self.__matrix[i][j] * other.component(lowerCamelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCamelCase__ , sum(lowerCamelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCamelCase__ , (int, float) ): # matrix-scalar UpperCamelCase__ :str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCamelCase__ , self.__width , self.__height ) return None def __a ( self :Dict ): return self.__height def __a ( self :int ): return self.__width def __a ( self :List[str] , lowerCamelCase__ :int , lowerCamelCase__ :int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __a ( self :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :float ): if 0 <= x < self.__height and 0 <= y < self.__width: UpperCamelCase__ :List[str] = value else: raise Exception("""change_component: indices out of bounds""" ) def __a ( self :int , lowerCamelCase__ :int , lowerCamelCase__ :int ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) UpperCamelCase__ :Any = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCamelCase__ ) ): UpperCamelCase__ :Any = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __a ( self :str , lowerCamelCase__ :int , lowerCamelCase__ :int ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCamelCase__ , lowerCamelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __a ( self :int ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCamelCase__ :str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCamelCase__ ) for y in range(self.__width ) ] return sum(lowerCamelCase__ ) def A ( lowercase__ : int ) -> Matrix: UpperCamelCase__ :list[list[float]] = [[0] * n for _ in range(lowercase__ )] return Matrix(lowercase__ , lowercase__ , lowercase__ ) def A ( lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> Matrix: random.seed(lowercase__ ) UpperCamelCase__ :list[list[float]] = [ [random.randint(lowercase__ , lowercase__ ) for _ in range(lowercase__ )] for _ in range(lowercase__ ) ] return Matrix(lowercase__ , lowercase__ , lowercase__ )
45
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = torch.device("cpu") def A ( ) -> Dict: UpperCamelCase__ :Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase__ :Union[str, Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im def A ( lowercase__ : Tuple ) -> Any: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def A ( lowercase__ : Dict , lowercase__ : int , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :Tuple = dct.pop(lowercase__ ) UpperCamelCase__ :Any = val def A ( lowercase__ : Union[str, Any] ) -> int: UpperCamelCase__ :int = [] for k in state_dict.keys(): UpperCamelCase__ :Dict = k if ".pwconv" in k: UpperCamelCase__ :Any = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCamelCase__ :str = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCamelCase__ :Union[str, Any] = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCamelCase__ :int = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCamelCase__ :Union[str, Any] = k_new.split(""".""" ) if ls[2].isdigit(): UpperCamelCase__ :List[str] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCamelCase__ :List[Any] = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def A ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : List[Any] ) -> List[Any]: UpperCamelCase__ :str = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase__ :Any = 1000 UpperCamelCase__ :int = """huggingface/label-files""" UpperCamelCase__ :Dict = """imagenet-1k-id2label.json""" UpperCamelCase__ :Dict = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase__ :str = {int(lowercase__ ): v for k, v in idalabel.items()} UpperCamelCase__ :Optional[int] = idalabel UpperCamelCase__ :str = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCamelCase__ :Optional[int] = [3, 3, 6, 4] UpperCamelCase__ :Dict = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCamelCase__ :Tuple = [3, 3, 9, 6] UpperCamelCase__ :Tuple = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCamelCase__ :int = [4, 3, 10, 5] UpperCamelCase__ :Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCamelCase__ :Any = [4, 4, 12, 6] UpperCamelCase__ :Union[str, Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCamelCase__ :Any = torch.hub.load_state_dict_from_url(lowercase__ , map_location="""cpu""" , check_hash=lowercase__ ) else: UpperCamelCase__ :str = torch.load(lowercase__ , map_location="""cpu""" ) UpperCamelCase__ :Optional[Any] = checkpoint UpperCamelCase__ :Optional[int] = create_rename_keys(lowercase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model UpperCamelCase__ :Optional[int] = SwiftFormerForImageClassification(lowercase__ ).eval() hf_model.load_state_dict(lowercase__ ) # prepare test inputs UpperCamelCase__ :Dict = prepare_img() UpperCamelCase__ :int = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCamelCase__ :Union[str, Any] = processor(images=lowercase__ , return_tensors="""pt""" ) # compare outputs from both models UpperCamelCase__ :int = get_expected_output(lowercase__ ) UpperCamelCase__ :Dict = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase__ , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
45
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
1
def A ( lowercase__ : Union[str, Any] ) -> List[Any]: UpperCamelCase__ :Dict = [] UpperCamelCase__ :List[str] = [] UpperCamelCase__ :Optional[Any] = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator UpperCamelCase__ :Union[str, Any] = len(lowercase__ ) if (len(lowercase__ ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(lowercase__ ) , """Postfix""".center(lowercase__ ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowercase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowercase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowercase__ ) == 0: stack.append(lowercase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowercase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowercase__ ) # push x to stack print( x.center(8 ) , ("""""".join(lowercase__ )).ljust(lowercase__ ) , ("""""".join(lowercase__ )).ljust(lowercase__ ) , sep=""" | """ , ) # Output in tabular format while len(lowercase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(lowercase__ )).ljust(lowercase__ ) , ("""""".join(lowercase__ )).ljust(lowercase__ ) , sep=""" | """ , ) # Output in tabular format return "".join(lowercase__ ) # return Postfix as str def A ( lowercase__ : int ) -> int: UpperCamelCase__ :str = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowercase__ ) ): if infix[i] == "(": UpperCamelCase__ :Any = """)""" # change "(" to ")" elif infix[i] == ")": UpperCamelCase__ :int = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(lowercase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": UpperCamelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation UpperCamelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1