code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
__UpperCAmelCase = {
'''169M''': 12,
'''430M''': 24,
'''1B5''': 24,
'''3B''': 32,
'''7B''': 32,
'''14B''': 40,
}
__UpperCAmelCase = {
'''169M''': 768,
'''430M''': 1_024,
'''1B5''': 2_048,
'''3B''': 2_560,
'''7B''': 4_096,
'''14B''': 5_120,
}
def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Tuple:
UpperCamelCase : Union[str, Any] = list(state_dict.keys() )
for name in state_dict_keys:
UpperCamelCase : Optional[Any] = state_dict.pop(snake_case__ )
# emb -> embedding
if name.startswith('emb.' ):
UpperCamelCase : Optional[Any] = name.replace('emb.' , 'embeddings.' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0' ):
UpperCamelCase : Optional[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' )
# att -> attention
UpperCamelCase : Optional[int] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , snake_case__ )
# ffn -> feed_forward
UpperCamelCase : Dict = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , snake_case__ )
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k' ):
UpperCamelCase : Tuple = name.replace('.time_mix_k' , '.time_mix_key' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v' ):
UpperCamelCase : int = name.replace('.time_mix_v' , '.time_mix_value' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r' ):
UpperCamelCase : Any = name.replace('.time_mix_r' , '.time_mix_receptance' )
if name != "head.weight":
UpperCamelCase : Tuple = 'rwkv.' + name
UpperCamelCase : Dict = weight
return state_dict
def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Tuple=None , snake_case__ : Dict=None , snake_case__ : List[str]=False , snake_case__ : Union[str, Any]=None ) -> str:
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.' )
UpperCamelCase : Tuple = 50277
UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' )
else:
UpperCamelCase : List[Any] = PreTrainedTokenizerFast(tokenizer_file=snake_case__ )
UpperCamelCase : Tuple = len(snake_case__ )
tokenizer.save_pretrained(snake_case__ )
# 2. Build the config
UpperCamelCase : Optional[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
UpperCamelCase : Union[str, Any] = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.' )
if size not in possible_sizes:
raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" )
UpperCamelCase : Optional[int] = RwkvConfig(
vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(snake_case__ )
# 3. Download model file then convert state_dict
UpperCamelCase : Optional[int] = hf_hub_download(snake_case__ , snake_case__ )
UpperCamelCase : Optional[Any] = torch.load(snake_case__ , map_location='cpu' )
UpperCamelCase : List[str] = convert_state_dict(snake_case__ )
# 4. Split in shards and save
UpperCamelCase , UpperCamelCase : Tuple = shard_checkpoint(snake_case__ )
for shard_file, shard in shards.items():
torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
if index is not None:
UpperCamelCase : List[Any] = os.path.join(snake_case__ , snake_case__ )
# Save the index as well
with open(snake_case__ , 'w' , encoding='utf-8' ) as f:
UpperCamelCase : str = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '\n'
f.write(snake_case__ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' )
UpperCamelCase : List[Any] = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
UpperCamelCase : int = torch.load(os.path.join(snake_case__ , snake_case__ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.' )
UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained(snake_case__ )
model.push_to_hub(snake_case__ , max_shard_size='2GB' )
tokenizer.push_to_hub(snake_case__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.'''
)
parser.add_argument(
'''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.'''
)
parser.add_argument(
'''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.'''
)
parser.add_argument(
'''--tokenizer_file''',
default=None,
type=str,
help='''Path to the tokenizer file to use (if not provided, only the model is converted).''',
)
parser.add_argument(
'''--size''',
default=None,
type=str,
help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Push to the Hub the converted model.''',
)
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help='''Name of the pushed model on the Hub, including the username / organization.''',
)
__UpperCAmelCase = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 40 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
_lowerCAmelCase : str = '''
Examples:
```py
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/frog.png"
... )
>>> image = pipe(
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save("red_frog.png")
```
'''
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : int = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
_lowerCamelCase : Optional[Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int:
'''simple docstring'''
_lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
_lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) )
_lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1
_lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] )
_lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 )
return image
class A_ ( _a ):
def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,):
'''simple docstring'''
super().__init__()
self.register_modules(
unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,)
_lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase )
_lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 )
_lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" )
_lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt
if image.shape[1] == 4:
_lowerCamelCase : List[Any] = image
else:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase )
]
_lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 )
else:
_lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase )
_lowerCamelCase : int = self.movq.config.scaling_factor * init_latents
_lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 )
_lowerCamelCase : Optional[int] = init_latents.shape
_lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase )
# get latents
_lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : str = init_latents
return latents
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
_lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" )
_lowerCamelCase : Dict = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ):
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
_lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
_lowerCamelCase : str = None
for cpu_offloaded_model in [self.unet, self.movq]:
_lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase )
# We'll offload the last model manually.
_lowerCamelCase : int = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if not hasattr(self.unet ,"_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__lowerCAmelCase ,"_hf_hook" )
and hasattr(module._hf_hook ,"execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__lowerCAmelCase )
def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self._execution_device
_lowerCamelCase : Dict = guidance_scale > 1.0
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Any = image_embeds.shape[0]
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 )
if do_classifier_free_guidance:
_lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase )
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Tuple = [image]
if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" )
_lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 )
_lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase )
_lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"]
_lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 )
self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt )
_lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor )
_lowerCamelCase : List[Any] = self.prepare_latents(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase )
for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
_lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCamelCase : List[str] = {"image_embeds": image_embeds}
_lowerCamelCase : Tuple = self.unet(
sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0]
if do_classifier_free_guidance:
_lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 )
_lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 )
_lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 )
_lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
_lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 )
if not (
hasattr(self.scheduler.config ,"variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 )
# compute the previous noisy sample x_t -> x_t-1
_lowerCamelCase : Optional[int] = self.scheduler.step(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0]
# post-processing
_lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
_lowerCamelCase : Optional[int] = image * 0.5 + 0.5
_lowerCamelCase : str = image.clamp(0 ,1 )
_lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy()
if output_type == "pil":
_lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCAmelCase )
| 46 | 0 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = (DDPMScheduler,)
def SCREAMING_SNAKE_CASE ( self : List[Any] ,**lowercase__ : int ):
__lowercase = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**lowercase__ )
return config
def SCREAMING_SNAKE_CASE ( self : Any ):
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] ,[0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=lowercase__ ,beta_end=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
self.check_over_configs(thresholding=lowercase__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowercase__ ,prediction_type=lowercase__ ,sample_max_value=lowercase__ ,)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
for t in [0, 5_0_0, 9_9_9]:
self.check_over_forward(time_step=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**lowercase__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.0_2 ) ) < 1e-5
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**lowercase__ )
__lowercase = len(lowercase__ )
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter
__lowercase = torch.manual_seed(0 )
for t in reversed(range(lowercase__ ) ):
# 1. predict noise residual
__lowercase = model(lowercase__ ,lowercase__ )
# 2. predict previous mean of sample x_t-1
__lowercase = scheduler.step(lowercase__ ,lowercase__ ,lowercase__ ,generator=lowercase__ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__lowercase = pred_prev_sample
__lowercase = torch.sum(torch.abs(lowercase__ ) )
__lowercase = torch.mean(torch.abs(lowercase__ ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config(prediction_type='''v_prediction''' )
__lowercase = scheduler_class(**lowercase__ )
__lowercase = len(lowercase__ )
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter
__lowercase = torch.manual_seed(0 )
for t in reversed(range(lowercase__ ) ):
# 1. predict noise residual
__lowercase = model(lowercase__ ,lowercase__ )
# 2. predict previous mean of sample x_t-1
__lowercase = scheduler.step(lowercase__ ,lowercase__ ,lowercase__ ,generator=lowercase__ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__lowercase = pred_prev_sample
__lowercase = torch.sum(torch.abs(lowercase__ ) )
__lowercase = torch.mean(torch.abs(lowercase__ ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**lowercase__ )
__lowercase = [1_0_0, 8_7, 5_0, 1, 0]
scheduler.set_timesteps(timesteps=lowercase__ )
__lowercase = scheduler.timesteps
for i, timestep in enumerate(lowercase__ ):
if i == len(lowercase__ ) - 1:
__lowercase = -1
else:
__lowercase = timesteps[i + 1]
__lowercase = scheduler.previous_timestep(lowercase__ )
__lowercase = prev_t.item()
self.assertEqual(lowercase__ ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**lowercase__ )
__lowercase = [1_0_0, 8_7, 5_0, 5_1, 0]
with self.assertRaises(lowercase__ ,msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**lowercase__ )
__lowercase = [1_0_0, 8_7, 5_0, 1, 0]
__lowercase = len(lowercase__ )
with self.assertRaises(lowercase__ ,msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=lowercase__ ,timesteps=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**lowercase__ )
__lowercase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowercase__ ,msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' ,):
scheduler.set_timesteps(timesteps=lowercase__ )
| 41 |
"""simple docstring"""
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def lowerCamelCase_( ) -> None:
'''simple docstring'''
print("Making key files..." )
make_key_files("rsa" , 1024 )
print("Key files generation successful." )
def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]:
'''simple docstring'''
print("Generating prime p..." )
_lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase )
print("Generating prime q..." )
_lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase )
_lowerCamelCase : Dict = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)..." )
while True:
_lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1:
break
print("Calculating d that is mod inverse of e..." )
_lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) )
_lowerCamelCase : Dict = (n, e)
_lowerCamelCase : Dict = (n, d)
return (public_key, private_key)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None:
'''simple docstring'''
if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ):
print("\nWARNING:" )
print(
F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"Use a different name or delete these files and re-run this program." )
sys.exit()
_lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase )
print(F"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(F"""{name}_pubkey.txt""" , "w" ) as out_file:
out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" )
print(F"""Writing private key to file {name}_privkey.txt...""" )
with open(F"""{name}_privkey.txt""" , "w" ) as out_file:
out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main()
| 46 | 0 |
'''simple docstring'''
def _UpperCamelCase ( __UpperCamelCase ) -> Dict:
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def _UpperCamelCase ( __UpperCamelCase ) -> list[tuple[int, int]]:
lowerCamelCase_ = 0
lowerCamelCase_ = len(__UpperCamelCase ) # No of vertices in graph
lowerCamelCase_ = [0] * n
lowerCamelCase_ = [False] * n
def dfs(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ):
lowerCamelCase_ = True
lowerCamelCase_ = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,id_ )
lowerCamelCase_ = min(low[at] ,low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
lowerCamelCase_ = min(low[at] ,low[to] )
lowerCamelCase_ = []
for i in range(__UpperCamelCase ):
if not visited[i]:
dfs(__UpperCamelCase ,-1 ,__UpperCamelCase ,id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 42 |
"""simple docstring"""
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A_ :
def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,):
'''simple docstring'''
_lowerCamelCase : Optional[int] = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Any = image_size
_lowerCamelCase : List[str] = patch_size
_lowerCamelCase : Union[str, Any] = num_channels
_lowerCamelCase : List[str] = is_training
_lowerCamelCase : str = use_labels
_lowerCamelCase : List[Any] = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Optional[Any] = intermediate_size
_lowerCamelCase : Optional[int] = hidden_act
_lowerCamelCase : Union[str, Any] = hidden_dropout_prob
_lowerCamelCase : Any = attention_probs_dropout_prob
_lowerCamelCase : str = type_sequence_label_size
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Dict = mask_ratio
_lowerCamelCase : List[Any] = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_lowerCamelCase : str = (image_size // patch_size) ** 2
_lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase : int = None
if self.use_labels:
_lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
_lowerCamelCase : str = self.get_config()
return config, pixel_values, labels
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Dict = model(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2
_lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_lowerCamelCase : str = 1
_lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase )
_lowerCamelCase : Any = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : int = self.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs
_lowerCamelCase : Dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A_ ( _a , _a , unittest.TestCase ):
lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {}
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = ViTMAEModelTester(self )
_lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 )
def _lowercase ( self: List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMAE does not use inputs_embeds" )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
_lowerCamelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Dict = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Optional[Any] = [*signature.parameters.keys()]
_lowerCamelCase : Dict = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase )
def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
np.random.seed(2 )
_lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_lowerCamelCase : Dict = pt_noise
super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
_lowerCamelCase : Any = outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase )
model.to(__lowerCAmelCase )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
# Make sure we don't have nans
_lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCAmelCase ,1e-5 )
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: str ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" )
def _lowercase ( self: int ):
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _lowercase ( self: Dict ):
'''simple docstring'''
pass
@slow
def _lowercase ( self: Dict ):
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class A_ ( unittest.TestCase ):
@cached_property
def _lowercase ( self: str ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None
@slow
def _lowercase ( self: int ):
'''simple docstring'''
np.random.seed(2 )
_lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase )
_lowerCamelCase : int = self.default_image_processor
_lowerCamelCase : int = prepare_img()
_lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_lowerCamelCase : Tuple = ViTMAEConfig()
_lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
_lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) )
# verify the logits
_lowerCamelCase : Any = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape ,__lowerCAmelCase )
_lowerCamelCase : Tuple = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
| 46 | 0 |
from collections import defaultdict
class _a :
def __init__( self: str , UpperCamelCase_: Any , UpperCamelCase_: Any ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
lowercase__ = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) )
]
lowercase__ = defaultdict(UpperCamelCase_ ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
lowercase__ = (1 << len(UpperCamelCase_ )) - 1
def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] ) -> List[str]:
"""simple docstring"""
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
lowercase__ = self.count_ways_until(UpperCamelCase_ , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
lowercase__ = total_ways_util
return self.dp[mask][task_no]
def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Optional[Any] ) -> List[str]:
"""simple docstring"""
for i in range(len(UpperCamelCase_ ) ):
for j in task_performed[i]:
self.task[j].append(UpperCamelCase_ )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
lowerCAmelCase = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
lowerCAmelCase = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 43 |
"""simple docstring"""
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
_lowerCAmelCase : List[str] = 10
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
for i in range(_lowerCamelCase , _lowerCamelCase ):
if array[i] == target:
return i
return -1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Any = len(_lowerCamelCase )
while left <= right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : str = (left + right) // 3 + 1
_lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
_lowerCamelCase : Union[str, Any] = one_third - 1
elif array[two_third] < target:
_lowerCamelCase : Any = two_third + 1
else:
_lowerCamelCase : List[str] = one_third + 1
_lowerCamelCase : int = two_third - 1
else:
return -1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if left < right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Tuple = (left + right) // 3 + 1
_lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip()
_lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
_lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip())
_lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target)
_lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f'''Iterative search: {target} found at positions: {resulta}''')
print(f'''Recursive search: {target} found at positions: {resulta}''')
else:
print('''Not found''')
| 46 | 0 |
'''simple docstring'''
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class UpperCAmelCase__ :
lowerCAmelCase_ = None
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = None
lowerCAmelCase_ = None
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = True
lowerCAmelCase_ = None
lowerCAmelCase_ = 1
lowerCAmelCase_ = None
lowerCAmelCase_ = False
lowerCAmelCase_ = None
lowerCAmelCase_ = None
def lowerCamelCase_ ( self : Any ):
return self.__class__(**{k: copy.deepcopy(__A ) for k, v in self.__dict__.items()} )
| 44 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase = 100 ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = set()
_lowerCamelCase : Optional[Any] = 0
_lowerCamelCase : Optional[int] = n + 1 # maximum limit
for a in range(2 , _lowerCamelCase ):
for b in range(2 , _lowerCamelCase ):
_lowerCamelCase : List[str] = a**b # calculates the current power
collect_powers.add(_lowerCamelCase ) # adds the result to the set
return len(_lowerCamelCase )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 46 | 0 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase_ ( lowercase ):
"""simple docstring"""
_snake_case : List[Any] = """ClapFeatureExtractor"""
_snake_case : int = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self :Optional[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[Any] ):
super().__init__(lowerCamelCase__ , lowerCamelCase__ )
def __call__( self :List[Any] , lowerCamelCase__ :List[Any]=None , lowerCamelCase__ :Optional[int]=None , lowerCamelCase__ :Dict=None , **lowerCamelCase__ :Optional[Any] ):
UpperCamelCase__ :List[str] = kwargs.pop("""sampling_rate""" , lowerCamelCase__ )
if text is None and audios is None:
raise ValueError("""You have to specify either text or audios. Both cannot be none.""" )
if text is not None:
UpperCamelCase__ :Optional[Any] = self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ )
if audios is not None:
UpperCamelCase__ :str = self.feature_extractor(
lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ )
if text is not None and audios is not None:
UpperCamelCase__ :Tuple = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowerCamelCase__ ) , tensor_type=lowerCamelCase__ )
def __a ( self :Any , *lowerCamelCase__ :List[str] , **lowerCamelCase__ :Any ):
return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ )
def __a ( self :int , *lowerCamelCase__ :Any , **lowerCamelCase__ :Optional[int] ):
return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ )
@property
def __a ( self :Tuple ):
UpperCamelCase__ :List[str] = self.tokenizer.model_input_names
UpperCamelCase__ :Tuple = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 45 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
# TODO Update this
_lowerCAmelCase : Optional[Any] = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class A_ ( _a ):
lowerCAmelCase__ = 'esm'
def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Union[str, Any] = hidden_size
_lowerCamelCase : Optional[Any] = num_hidden_layers
_lowerCamelCase : str = num_attention_heads
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Any = attention_probs_dropout_prob
_lowerCamelCase : int = max_position_embeddings
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Optional[int] = position_embedding_type
_lowerCamelCase : str = use_cache
_lowerCamelCase : Union[str, Any] = emb_layer_norm_before
_lowerCamelCase : Tuple = token_dropout
_lowerCamelCase : Dict = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("No esmfold_config supplied for folding model, using default values." )
_lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = esmfold_config
if vocab_list is None:
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" )
_lowerCamelCase : List[str] = get_default_vocab_list()
else:
_lowerCamelCase : Optional[Any] = vocab_list
else:
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = None
if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ):
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[Any] = super().to_dict()
if isinstance(self.esmfold_config ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = self.esmfold_config.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = 0
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = None
def _lowercase ( self: Dict ):
'''simple docstring'''
if self.trunk is None:
_lowerCamelCase : Optional[int] = TrunkConfig()
elif isinstance(self.trunk ,__lowerCAmelCase ):
_lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = asdict(self )
_lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = 4_8
lowerCAmelCase__ = 1_0_2_4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = False
lowerCAmelCase__ = 4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = None
def _lowercase ( self: Any ):
'''simple docstring'''
if self.structure_module is None:
_lowerCamelCase : Tuple = StructureModuleConfig()
elif isinstance(self.structure_module ,__lowerCAmelCase ):
_lowerCamelCase : str = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" )
_lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width
_lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" )
if self.dropout >= 0.4:
raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Dict = asdict(self )
_lowerCamelCase : Optional[int] = self.structure_module.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = 3_8_4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 1_6
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 1_2
lowerCAmelCase__ = 4
lowerCAmelCase__ = 8
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 1
lowerCAmelCase__ = 2
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_0
lowerCAmelCase__ = 1E-8
lowerCAmelCase__ = 1E5
def _lowercase ( self: Any ):
'''simple docstring'''
return asdict(self )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 46 | 0 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
SCREAMING_SNAKE_CASE__ = 50 # max width of layer names
SCREAMING_SNAKE_CASE__ = 70 # max width of quantizer names
def UpperCAmelCase__ ( lowerCamelCase_ : Dict ):
__a : int = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=lowerCamelCase_ , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=lowerCamelCase_ , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=lowerCamelCase_ , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=lowerCamelCase_ , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=lowerCamelCase_ , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=lowerCamelCase_ , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def UpperCAmelCase__ ( lowerCamelCase_ : Dict ):
if args.calibrator == "max":
__a : str = 'max'
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
__a : int = 'histogram'
elif args.calibrator == "mse":
__a : List[str] = 'histogram'
else:
raise ValueError(f'''Invalid calibrator {args.calibrator}''' )
__a : Optional[Any] = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCamelCase_ )
__a : Optional[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(lowerCamelCase_ )
quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Dict=False ):
logger.info('Configuring Model for Quantization' )
logger.info(f'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(lowerCamelCase_ , ['embeddings'] , which='weight' , _disabled=lowerCamelCase_ )
if args.quant_disable:
set_quantizer_by_name(lowerCamelCase_ , [''] , _disabled=lowerCamelCase_ )
if args.quant_disable_keyword:
set_quantizer_by_name(lowerCamelCase_ , args.quant_disable_keyword , _disabled=lowerCamelCase_ )
if args.quant_disable_layer_module:
set_quantizer_by_name(lowerCamelCase_ , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=lowerCamelCase_ )
if args.quant_enable_layer_module:
set_quantizer_by_name(lowerCamelCase_ , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=lowerCamelCase_ )
if args.recalibrate_weights:
recalibrate_weights(lowerCamelCase_ )
if args.fuse_qkv:
fuse_qkv(lowerCamelCase_ , lowerCamelCase_ )
if args.clip_gelu:
clip_gelu(lowerCamelCase_ , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : str ):
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f'''{name:80}: {module}''' )
def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict ):
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ):
def fusea(lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] ):
for mod in [qq, qk, qv]:
if not hasattr(lowerCamelCase_ , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
__a : Any = qq._amax.detach().item()
__a : Union[str, Any] = qk._amax.detach().item()
__a : int = qv._amax.detach().item()
__a : List[Any] = max(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
qq._amax.fill_(lowerCamelCase_ )
qk._amax.fill_(lowerCamelCase_ )
qv._amax.fill_(lowerCamelCase_ )
logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(f'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str ):
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
__a : Dict = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=lowerCamelCase_ )
__a : List[str] = mod._input_quantizer._amax.data.detach().item()
logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] ):
for name, mod in model.named_modules():
if hasattr(lowerCamelCase_ , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
__a : Optional[int] = mod.weight.shape[0]
__a : List[str] = mod._weight_quantizer._amax.detach()
__a : List[Any] = torch.ones(lowerCamelCase_ , dtype=amax.dtype , device=amax.device ) * amax
print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def UpperCAmelCase__ ( lowerCamelCase_ : Tuple ):
for name, mod in model.named_modules():
if hasattr(lowerCamelCase_ , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
__a : Tuple = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
__a : str = set(range(len(mod.weight.size() ) ) ) - axis_set
__a : Union[str, Any] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCamelCase_ , keepdims=lowerCamelCase_ ).detach()
logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
__a : Union[str, Any] = amax
def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any]=2_5 , lowerCamelCase_ : Dict=1_8_0 , lowerCamelCase_ : int=None ):
if ignore is None:
__a : Any = []
elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
__a : int = [ignore]
__a : Optional[int] = 0
for name, mod in model.named_modules():
if not hasattr(lowerCamelCase_ , 'weight' ):
continue
__a : List[str] = max(lowerCamelCase_ , len(lowerCamelCase_ ) )
for name, mod in model.named_modules():
__a : Optional[Any] = getattr(lowerCamelCase_ , '_input_quantizer' , lowerCamelCase_ )
__a : int = getattr(lowerCamelCase_ , '_weight_quantizer' , lowerCamelCase_ )
if not hasattr(lowerCamelCase_ , 'weight' ):
continue
if type(lowerCamelCase_ ) in ignore:
continue
if [True for s in ignore if type(lowerCamelCase_ ) is str and s in name]:
continue
__a : Any = f'''Act:{input_q.extra_repr()}'''
__a : str = f'''Wgt:{weight_q.extra_repr()}'''
__a : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}'''
if len(lowerCamelCase_ ) <= line_width:
logger.info(lowerCamelCase_ )
else:
logger.info(f'''{name:{name_width}} {act_str}''' )
logger.info(f'''{" ":{name_width}} {wgt_str}''' )
def UpperCAmelCase__ ( lowerCamelCase_ : List[str] ):
__a : Optional[int] = 0
for name, mod in model.named_modules():
if isinstance(lowerCamelCase_ , pytorch_quantization.nn.TensorQuantizer ):
print(f'''{name:80} {mod}''' )
count += 1
print(f'''{count} TensorQuantizers found in model''' )
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str ):
__a : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
if quantizer_mod is not None:
assert hasattr(lowerCamelCase_ , lowerCamelCase_ )
setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
else:
logger.warning(f'''{name} has no {quantizer}''' )
def UpperCAmelCase__ ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any="both" , **lowerCamelCase_ : Any ):
__a : Union[str, Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(lowerCamelCase_ , lowerCamelCase_ , '_input_quantizer' , lowerCamelCase_ , lowerCamelCase_ )
if which in ["weight", "both"]:
set_quantizer(lowerCamelCase_ , lowerCamelCase_ , '_weight_quantizer' , lowerCamelCase_ , lowerCamelCase_ )
logger.info(lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ):
for name, mod in model.named_modules():
if hasattr(lowerCamelCase_ , '_input_quantizer' ) or hasattr(lowerCamelCase_ , '_weight_quantizer' ):
for n in names:
if re.search(lowerCamelCase_ , lowerCamelCase_ ):
set_quantizers(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(lowerCamelCase_ , lowerCamelCase_ ):
__a : Dict = f'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
logger.info(lowerCamelCase_ )
| 47 |
"""simple docstring"""
import re
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError("Invalid Strand" )
return dna.translate(dna.maketrans("ATCG" , "TAGC" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 46 | 0 |
'''simple docstring'''
UpperCAmelCase__ : str = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []}
UpperCAmelCase__ : Any = ["a", "b", "c", "d", "e"]
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = start
# add current to visited
visited.append(UpperCamelCase_ )
lowerCAmelCase__ = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
lowerCAmelCase__ = topological_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# if all neighbors visited add current to sort
sort.append(UpperCamelCase_ )
# if all vertices haven't been visited select a new one to visit
if len(UpperCamelCase_ ) != len(UpperCamelCase_ ):
for vertice in vertices:
if vertice not in visited:
lowerCAmelCase__ = topological_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# return sort
return sort
if __name__ == "__main__":
UpperCAmelCase__ : Dict = topological_sort("a", [], [])
print(sort)
| 48 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : str = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_lowerCamelCase : Tuple = ""
else:
_lowerCamelCase : str = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
_lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : Tuple = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : Any = dct.pop(_lowerCamelCase )
_lowerCamelCase : Dict = val
def lowerCamelCase_( ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
_lowerCamelCase : str = 8
# set labels if required
if not base_model:
_lowerCamelCase : str = 1000
_lowerCamelCase : Any = "huggingface/label-files"
_lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
_lowerCamelCase : int = 384
_lowerCamelCase : str = 1536
_lowerCamelCase : List[str] = 12
_lowerCamelCase : Optional[int] = 6
# load original model from torch hub
_lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase )
original_model.eval()
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : List[str] = original_model.state_dict()
if base_model:
remove_classification_head_(_lowerCamelCase )
_lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# load HuggingFace model
if base_model:
_lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval()
else:
_lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval()
model.load_state_dict(_lowerCamelCase )
# Check outputs on an image, prepared by ViTImageProcessor
_lowerCamelCase : Tuple = ViTImageProcessor()
_lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
_lowerCamelCase : Dict = encoding["pixel_values"]
_lowerCamelCase : int = model(_lowerCamelCase )
if base_model:
_lowerCamelCase : List[str] = original_model(_lowerCamelCase )
assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 )
else:
_lowerCamelCase : Tuple = original_model(_lowerCamelCase )
assert logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''dino_vitb16''',
type=str,
help='''Name of the model trained with DINO you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--base_model''',
action='''store_true''',
help='''Whether to only convert the base model (no projection head weights).''',
)
parser.set_defaults(base_model=True)
_lowerCAmelCase : List[Any] = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 46 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Tuple = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ['NllbTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = ['NllbTokenizerFast']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
_lowercase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 |
"""simple docstring"""
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase )
_lowerCamelCase : Dict = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase )
class A_ ( _a ):
lowerCAmelCase__ = 'sigmoid'
lowerCAmelCase__ = 'softmax'
lowerCAmelCase__ = 'none'
@add_end_docstrings(
_a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , )
class A_ ( _a ):
lowerCAmelCase__ = False
lowerCAmelCase__ = ClassificationFunction.NONE
def __init__( self: str ,**__lowerCAmelCase: str ):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = tokenizer_kwargs
_lowerCamelCase : Optional[int] = {}
if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None:
_lowerCamelCase : Tuple = self.model.config.return_all_scores
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None:
_lowerCamelCase : List[str] = top_k
_lowerCamelCase : Union[str, Any] = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,)
if return_all_scores:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : Union[str, Any] = 1
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
_lowerCamelCase : Dict = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
_lowerCamelCase : Optional[Any] = "top_k" not in kwargs
if isinstance(args[0] ,__lowerCAmelCase ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = self.framework
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"
" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." )
return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
return self.model(**__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ):
'''simple docstring'''
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
_lowerCamelCase : Dict = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
_lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None:
_lowerCamelCase : Optional[int] = self.model.config.function_to_apply
else:
_lowerCamelCase : str = ClassificationFunction.NONE
_lowerCamelCase : List[Any] = model_outputs["logits"][0]
_lowerCamelCase : Optional[int] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
_lowerCamelCase : str = sigmoid(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.SOFTMAX:
_lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.NONE:
_lowerCamelCase : str = outputs
else:
raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
_lowerCamelCase : Optional[int] = [
{"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase )
]
if not _legacy:
dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase )
if top_k is not None:
_lowerCamelCase : Any = dict_scores[:top_k]
return dict_scores
| 46 | 0 |
'''simple docstring'''
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ):
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = np.full((len(__lowerCAmelCase ), sequence_length, 2) , __lowerCAmelCase )
else:
lowerCamelCase__ = np.full((len(__lowerCAmelCase ), sequence_length) , __lowerCAmelCase )
for i, tensor in enumerate(__lowerCAmelCase ):
if padding_side == "right":
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = tensor[:sequence_length]
else:
lowerCamelCase__ = tensor[:sequence_length]
else:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = tensor[:sequence_length]
else:
lowerCamelCase__ = tensor[:sequence_length]
return out_tensor.tolist()
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = ord(__lowerCAmelCase )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
lowerCamelCase__ = unicodedata.category(__lowerCAmelCase )
if cat.startswith("""P""" ):
return True
return False
@dataclass
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 42
_UpperCamelCase = True
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = -100
_UpperCamelCase = "pt"
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
import torch
lowerCamelCase__ = """label""" if """label""" in features[0].keys() else """labels"""
lowerCamelCase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
lowerCamelCase__ = self.tokenizer.pad(
_lowerCAmelCase ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" if labels is None else None ,)
if labels is None:
return batch
lowerCamelCase__ = torch.tensor(batch["""entity_ids"""] ).shape[1]
lowerCamelCase__ = self.tokenizer.padding_side
if padding_side == "right":
lowerCamelCase__ = [
list(_lowerCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(_lowerCAmelCase )) for label in labels
]
else:
lowerCamelCase__ = [
[self.label_pad_token_id] * (sequence_length - len(_lowerCAmelCase )) + list(_lowerCAmelCase ) for label in labels
]
lowerCamelCase__ = [feature["""ner_tags"""] for feature in features]
lowerCamelCase__ = padding_tensor(_lowerCAmelCase ,-1 ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = [feature["""original_entity_spans"""] for feature in features]
lowerCamelCase__ = padding_tensor(_lowerCAmelCase ,(-1, -1) ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = {k: torch.tensor(_lowerCAmelCase ,dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 50 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
_lowerCAmelCase : Tuple = '''\
Text data.
Second line of data.'''
_lowerCAmelCase : str = '''file'''
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd")
_lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" )
with zstd.open(_lowerCamelCase , "wb" ) as f:
f.write(_lowerCamelCase )
return path
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f:
f.write(_lowerCamelCase )
return FILE_PATH
@pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path}
_lowerCamelCase : Tuple = input_paths[compression_format]
_lowerCamelCase : int = tmp_path / "cache"
_lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase )
_lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase )
with open(_lowerCamelCase ) as f:
_lowerCamelCase : List[Any] = f.read()
with open(_lowerCamelCase ) as f:
_lowerCamelCase : int = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("default_extracted" , [True, False] )
@pytest.mark.parametrize("default_cache_dir" , [True, False] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "custom_cache"
_lowerCamelCase : List[str] = "custom_extracted_dir"
_lowerCamelCase : str = tmp_path / "custom_extracted_path"
if default_extracted:
_lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted")
else:
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) )
_lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_lowerCamelCase : int = xz_file
_lowerCamelCase : List[Any] = (
DownloadConfig(extract_compressed_file=_lowerCamelCase )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase )
)
_lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase )
assert Path(_lowerCamelCase ).parent.parts[-2:] == expected
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() )
assert cached_path(_lowerCamelCase ) == text_file
# relative path
_lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_lowerCamelCase ) == text_file
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" )
with pytest.raises(_lowerCamelCase ):
cached_path(_lowerCamelCase )
# relative path
_lowerCamelCase : List[Any] = "./__missing_file__.txt"
with pytest.raises(_lowerCamelCase ):
cached_path(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" )
with open(_lowerCamelCase ) as f:
_lowerCamelCase : Tuple = f.read()
assert output_file_content == FILE_CONTENT
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
with pytest.raises(_lowerCamelCase ):
cached_path("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
http_get("https://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
http_head("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
ftp_head("ftp://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
fsspec_head("s3://huggingface.co" )
| 46 | 0 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None ) -> Union[str, Any]:
"""simple docstring"""
if subparsers is not None:
UpperCAmelCase = subparsers.add_parser('''test''' )
else:
UpperCAmelCase = argparse.ArgumentParser('''Accelerate test command''' )
parser.add_argument(
'''--config_file''' , default=SCREAMING_SNAKE_CASE_ , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=SCREAMING_SNAKE_CASE_ )
return parser
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] )
if args.config_file is None:
UpperCAmelCase = script_name
else:
UpperCAmelCase = f"--config_file={args.config_file} {script_name}"
UpperCAmelCase = ['''accelerate-launch'''] + test_args.split()
UpperCAmelCase = execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
if result.returncode == 0:
print('''Test is a success! You are ready for your distributed training!''' )
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = test_command_parser()
UpperCAmelCase = parser.parse_args()
test_command(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main()
| 51 |
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None:
'''simple docstring'''
_lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(_lowerCamelCase , torch.Tensor ):
raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" )
_lowerCamelCase : List[str] = v.half()
if save_path is None: # overwrite src_path
_lowerCamelCase : Union[str, Any] = src_path
torch.save(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 46 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
A = logging.get_logger(__name__)
A = ['''model.decoder.embed_positions.weights''']
def __A ( a_ :int) -> Optional[int]:
if "emb" in name:
__a : Union[str, Any] = name.replace('''emb''' , '''model.decoder.embed_tokens''')
if "transformer" in name:
__a : Optional[Any] = name.replace('''transformer''' , '''model.decoder''')
if "cross_attention" in name:
__a : Tuple = name.replace('''cross_attention''' , '''encoder_attn''')
if "linear1" in name:
__a : Any = name.replace('''linear1''' , '''fc1''')
if "linear2" in name:
__a : Any = name.replace('''linear2''' , '''fc2''')
if "norm1" in name:
__a : Union[str, Any] = name.replace('''norm1''' , '''self_attn_layer_norm''')
if "norm_cross" in name:
__a : int = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''')
if "norm2" in name:
__a : str = name.replace('''norm2''' , '''final_layer_norm''')
if "out_norm" in name:
__a : Dict = name.replace('''out_norm''' , '''model.decoder.layer_norm''')
if "linears" in name:
__a : List[str] = name.replace('''linears''' , '''lm_heads''')
if "condition_provider.conditioners.description.output_proj" in name:
__a : str = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''')
return name
def __A ( a_ :OrderedDict , a_ :int) -> Tuple[Dict, Dict]:
__a : Optional[int] = list(state_dict.keys())
__a : Any = {}
for key in keys:
__a : Any = state_dict.pop(a_)
__a : List[Any] = rename_keys(a_)
if "in_proj_weight" in key:
# split fused qkv proj
__a : List[str] = val[:hidden_size, :]
__a : List[str] = val[hidden_size : 2 * hidden_size, :]
__a : int = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__a : int = val
else:
__a : Dict = val
return state_dict, enc_dec_proj_state_dict
def __A ( a_ :str) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
__a : Optional[Any] = 10_24
__a : Tuple = 24
__a : Union[str, Any] = 16
elif checkpoint == "medium":
__a : int = 15_36
__a : List[str] = 48
__a : List[str] = 24
elif checkpoint == "large":
__a : int = 20_48
__a : Tuple = 48
__a : Optional[Any] = 32
else:
raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""")
__a : Tuple = MusicgenDecoderConfig(
hidden_size=a_ , ffn_dim=hidden_size * 4 , num_hidden_layers=a_ , num_attention_heads=a_ , )
return config
@torch.no_grad()
def __A ( a_ :Any , a_ :List[Any]=None , a_ :List[Any]=None , a_ :Optional[Any]="cpu") -> str:
__a : Dict = MusicGen.get_pretrained(a_ , device=a_)
__a : str = decoder_config_from_checkpoint(a_)
__a : List[str] = fairseq_model.lm.state_dict()
__a , __a : str = rename_state_dict(
a_ , hidden_size=decoder_config.hidden_size)
__a : Dict = TaEncoderModel.from_pretrained('''t5-base''')
__a : Optional[Any] = EncodecModel.from_pretrained('''facebook/encodec_32khz''')
__a : Any = MusicgenForCausalLM(a_).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__a , __a : Optional[Any] = decoder.load_state_dict(a_ , strict=a_)
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''')) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(a_)
if len(a_) > 0:
raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""")
if len(a_) > 0:
raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""")
# init the composite model
__a : int = MusicgenForConditionalGeneration(text_encoder=a_ , audio_encoder=a_ , decoder=a_)
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(a_)
# check we can do a forward pass
__a : Optional[int] = torch.arange(0 , 8 , dtype=torch.long).reshape(2 , -1)
__a : Optional[int] = input_ids.reshape(2 * 4 , -1)
with torch.no_grad():
__a : List[str] = model(input_ids=a_ , decoder_input_ids=a_).logits
if logits.shape != (8, 1, 20_48):
raise ValueError('''Incorrect shape for logits''')
# now construct the processor
__a : Optional[int] = AutoTokenizer.from_pretrained('''t5-base''')
__a : Optional[int] = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''')
__a : Optional[Any] = MusicgenProcessor(feature_extractor=a_ , tokenizer=a_)
# set the appropriate bos/pad token ids
__a : Any = 20_48
__a : Optional[int] = 20_48
# set other default generation config params
__a : str = int(30 * audio_encoder.config.frame_rate)
__a : Tuple = True
__a : List[Any] = 3.0
if pytorch_dump_folder is not None:
Path(a_).mkdir(exist_ok=a_)
logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""")
model.save_pretrained(a_)
processor.save_pretrained(a_)
if repo_id:
logger.info(F"""Pushing model {checkpoint} to {repo_id}""")
model.push_to_hub(a_)
processor.push_to_hub(a_)
if __name__ == "__main__":
A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint''',
default='''small''',
type=str,
help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''',
)
parser.add_argument(
'''--pytorch_dump_folder''',
required=True,
default=None,
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
parser.add_argument(
'''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.'''
)
A = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 52 |
"""simple docstring"""
import importlib
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
import transformers.models.auto
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
_lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''')
class A_ ( unittest.TestCase ):
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertIsNotNone(transformers.models.auto.__spec__ )
self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
# This model name contains bert and roberta, but roberta ends up being picked.
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" )
os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f:
f.write(json.dumps({} ) )
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
try:
AutoConfig.register("custom" ,__lowerCAmelCase )
# Wrong model type will raise an error
with self.assertRaises(__lowerCAmelCase ):
AutoConfig.register("model" ,__lowerCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCAmelCase ):
AutoConfig.register("bert" ,__lowerCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
_lowerCamelCase : Any = CustomConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
def _lowercase ( self: Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ):
_lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" )
def _lowercase ( self: Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
_lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" )
def _lowercase ( self: Tuple ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,):
_lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
with self.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfig" )
# Test config can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" )
def _lowercase ( self: Dict ):
'''simple docstring'''
class A_ ( _a ):
lowerCAmelCase__ = 'new-model'
try:
AutoConfig.register("new-model" ,__lowerCAmelCase )
# If remote code is not set, the default is to use local
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" )
# If remote code is disabled, we load the local one.
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" )
# If remote is enabled, we load from the Hub
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfig" )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
| 46 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_snake_case : List[str] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : int = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
_snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 53 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCAmelCase : str = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
_lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 46 | 0 |
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class A ( nn.Module ):
def __init__( self: Dict , _lowerCAmelCase: int = 16 , _lowerCAmelCase: int = 88 , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 32 , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: str = "geglu" , _lowerCAmelCase: Optional[int] = None , ) -> str:
'''simple docstring'''
super().__init__()
UpperCAmelCase_ =nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , in_channels=_lowerCAmelCase , num_layers=_lowerCAmelCase , dropout=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , cross_attention_dim=_lowerCAmelCase , attention_bias=_lowerCAmelCase , sample_size=_lowerCAmelCase , num_vector_embeds=_lowerCAmelCase , activation_fn=_lowerCAmelCase , num_embeds_ada_norm=_lowerCAmelCase , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCAmelCase_ =0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCAmelCase_ =[77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCAmelCase_ =[1, 0]
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: Optional[int]=None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: bool = True , ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =hidden_states
UpperCAmelCase_ =[]
UpperCAmelCase_ =0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCAmelCase_ =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCAmelCase_ =self.transformer_index_for_condition[i]
UpperCAmelCase_ =self.transformers[transformer_index](
_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , timestep=_lowerCAmelCase , cross_attention_kwargs=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCAmelCase_ =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCAmelCase_ =output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=_lowerCAmelCase )
| 54 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : Tuple = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int:
'''simple docstring'''
_lowerCamelCase : Any = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"),
(
"text_embeddings.position_embeddings.weight",
"vilt.embeddings.text_embeddings.position_embeddings.weight",
),
("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"),
(
"text_embeddings.token_type_embeddings.weight",
"vilt.embeddings.text_embeddings.token_type_embeddings.weight",
),
("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"),
("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"),
# patch embeddings
("transformer.cls_token", "vilt.embeddings.cls_token"),
("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"),
("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"),
("transformer.pos_embed", "vilt.embeddings.position_embeddings"),
# token type embeddings
("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"),
] )
# final layernorm + pooler
rename_keys.extend(
[
("transformer.norm.weight", "vilt.layernorm.weight"),
("transformer.norm.bias", "vilt.layernorm.bias"),
("pooler.dense.weight", "vilt.pooler.dense.weight"),
("pooler.dense.bias", "vilt.pooler.dense.bias"),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
("vqa_classifier.0.weight", "classifier.0.weight"),
("vqa_classifier.0.bias", "classifier.0.bias"),
("vqa_classifier.1.weight", "classifier.1.weight"),
("vqa_classifier.1.bias", "classifier.1.bias"),
("vqa_classifier.3.weight", "classifier.3.weight"),
("vqa_classifier.3.bias", "classifier.3.bias"),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
("nlvr2_classifier.0.weight", "classifier.0.weight"),
("nlvr2_classifier.0.bias", "classifier.0.bias"),
("nlvr2_classifier.1.weight", "classifier.1.weight"),
("nlvr2_classifier.1.bias", "classifier.1.bias"),
("nlvr2_classifier.3.weight", "classifier.3.weight"),
("nlvr2_classifier.3.bias", "classifier.3.bias"),
] )
else:
pass
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
_lowerCamelCase : Tuple = "vilt."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" )
_lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : str = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : Any = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Optional[int] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase )
_lowerCamelCase : Optional[int] = val
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase )
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Tuple = False
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : str = False
if "vqa" in checkpoint_url:
_lowerCamelCase : str = True
_lowerCamelCase : Union[str, Any] = 3129
_lowerCamelCase : str = "huggingface/label-files"
_lowerCamelCase : Optional[Any] = "vqa2-id2label.json"
_lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[int] = idalabel
_lowerCamelCase : int = {v: k for k, v in idalabel.items()}
_lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase )
elif "nlvr" in checkpoint_url:
_lowerCamelCase : Tuple = True
_lowerCamelCase : List[str] = 2
_lowerCamelCase : Optional[Any] = {0: "False", 1: "True"}
_lowerCamelCase : int = {v: k for k, v in config.idalabel.items()}
_lowerCamelCase : Optional[Any] = 3
_lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase )
elif "irtr" in checkpoint_url:
_lowerCamelCase : Tuple = True
_lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase )
elif "mlm_itm" in checkpoint_url:
_lowerCamelCase : Dict = True
_lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase )
else:
raise ValueError("Unknown model type" )
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"]
_lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase )
if mlm_model or irtr_model:
_lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
_lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(_lowerCamelCase )
# Define processor
_lowerCamelCase : int = ViltImageProcessor(size=384 )
_lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" )
_lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase )
# Forward pass on example inputs (image + text)
if nlvr_model:
_lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw )
_lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw )
_lowerCamelCase : str = (
"The left image contains twice the number of dogs as the right image, and at least two dogs in total are"
" standing."
)
_lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : int = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
_lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw )
if mlm_model:
_lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]."
else:
_lowerCamelCase : List[str] = "How many cats are there?"
_lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase )
# Verify outputs
if mlm_model:
_lowerCamelCase : List[str] = torch.Size([1, 11, 30522] )
_lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 )
# verify masked token prediction equals "cats"
_lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
_lowerCamelCase : List[str] = torch.Size([1, 3129] )
_lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] )
assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 )
# verify vqa prediction equals "2"
_lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
_lowerCamelCase : List[str] = torch.Size([1, 2] )
_lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
_lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 46 | 0 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = list(_lowerCamelCase )
_lowerCamelCase : Any = list(_lowerCamelCase )
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
if lista[i] != lista[i]:
count += 1
_lowerCamelCase : List[str] = "_"
if count > 1:
return False
else:
return "".join(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : List[str] = []
while True:
_lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase )
_lowerCamelCase : str = []
for i in range(len(_lowerCamelCase ) ):
for j in range(i + 1 , len(_lowerCamelCase ) ):
_lowerCamelCase : Dict = compare_string(binary[i] , binary[j] )
if k is False:
_lowerCamelCase : Any = "*"
_lowerCamelCase : Optional[int] = "*"
temp.append("X" )
for i in range(len(_lowerCamelCase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_lowerCamelCase ) == 0:
return pi
_lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = []
for minterm in minterms:
_lowerCamelCase : List[Any] = ""
for _ in range(_lowerCamelCase ):
_lowerCamelCase : List[str] = str(minterm % 2 ) + string
minterm //= 2
temp.append(_lowerCamelCase )
return temp
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = list(_lowerCamelCase )
_lowerCamelCase : Optional[int] = list(_lowerCamelCase )
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : Dict = []
_lowerCamelCase : Dict = [0] * len(_lowerCamelCase )
for i in range(len(chart[0] ) ):
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = -1
for j in range(len(_lowerCamelCase ) ):
if chart[j][i] == 1:
count += 1
_lowerCamelCase : Any = j
if count == 1:
_lowerCamelCase : Union[str, Any] = 1
for i in range(len(_lowerCamelCase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Optional[int] = 0
temp.append(prime_implicants[i] )
while True:
_lowerCamelCase : str = 0
_lowerCamelCase : int = -1
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Optional[int] = chart[i].count(1 )
if count_n > max_n:
_lowerCamelCase : Any = count_n
_lowerCamelCase : Union[str, Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Any = 0
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]:
'''simple docstring'''
_lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )]
for i in range(len(_lowerCamelCase ) ):
_lowerCamelCase : List[Any] = prime_implicants[i].count("_" )
for j in range(len(_lowerCamelCase ) ):
if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ):
_lowerCamelCase : Optional[Any] = 1
return chart
def lowerCamelCase_( ) -> None:
'''simple docstring'''
_lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) )
_lowerCamelCase : str = [
float(_lowerCamelCase )
for x in input(
"Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split()
]
_lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : str = check(_lowerCamelCase )
print("Prime Implicants are:" )
print(_lowerCamelCase )
_lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase )
print("Essential Prime Implicants are:" )
print(_lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 46 | 0 |
'''simple docstring'''
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class _lowercase ( __lowercase , __lowercase , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL
_SCREAMING_SNAKE_CASE : Union[str, Any] = "sample"
_SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2
@property
def a ( self : List[str] ) -> Optional[int]:
__snake_case = 4
__snake_case = 3
__snake_case = (32, 32)
__snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ )
return {"sample": image}
@property
def a ( self : List[Any] ) -> List[Any]:
return (3, 32, 32)
@property
def a ( self : int ) -> int:
return (3, 32, 32)
def a ( self : Tuple ) -> Union[str, Any]:
__snake_case = {
'block_out_channels': [32, 64],
'in_channels': 3,
'out_channels': 3,
'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'],
'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'],
'latent_channels': 4,
}
__snake_case = self.dummy_input
return init_dict, inputs_dict
def a ( self : Optional[Any] ) -> Any:
pass
def a ( self : Tuple ) -> List[Any]:
pass
@unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' )
def a ( self : List[str] ) -> int:
# enable deterministic behavior for gradient checkpointing
__snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common()
__snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
assert not model.is_gradient_checkpointing and model.training
__snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
__snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ )
__snake_case = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
__snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(SCREAMING_SNAKE_CASE_ )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
__snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
__snake_case = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
__snake_case = dict(model.named_parameters() )
__snake_case = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) )
def a ( self : int ) -> int:
__snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(SCREAMING_SNAKE_CASE_ )
__snake_case = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def a ( self : Optional[int] ) -> List[str]:
__snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' )
__snake_case = model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
if torch_device == "mps":
__snake_case = torch.manual_seed(0 )
else:
__snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
__snake_case = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
__snake_case = image.to(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample
__snake_case = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
__snake_case = torch.tensor(
[
-4.0_078e-01,
-3.8_323e-04,
-1.2_681e-01,
-1.1_462e-01,
2.0_095e-01,
1.0_893e-01,
-8.8_247e-02,
-3.0_361e-01,
-9.8_644e-03,
] )
elif torch_device == "cpu":
__snake_case = torch.tensor(
[-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] )
else:
__snake_case = torch.tensor(
[-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] )
self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) )
@slow
class _lowercase ( unittest.TestCase ):
def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]:
return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy'
def a ( self : Optional[Any] ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int:
__snake_case = torch.floataa if fpaa else torch.floataa
__snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
return image
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]:
__snake_case = 'fp16' if fpaa else None
__snake_case = torch.floataa if fpaa else torch.floataa
__snake_case = AutoencoderKL.from_pretrained(
SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , )
model.to(SCREAMING_SNAKE_CASE_ ).eval()
return model
def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]:
if torch_device == "mps":
return torch.manual_seed(SCREAMING_SNAKE_CASE_ )
return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
__snake_case = self.get_sd_vae_model()
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample
assert sample.shape == image.shape
__snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice )
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]],
[47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]],
# fmt: on
] )
@require_torch_gpu
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]:
__snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample
assert sample.shape == image.shape
__snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ )
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]:
__snake_case = self.get_sd_vae_model()
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model(SCREAMING_SNAKE_CASE_ ).sample
assert sample.shape == image.shape
__snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice )
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]],
[37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]],
# fmt: on
] )
@require_torch_gpu
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int:
__snake_case = self.get_sd_vae_model()
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) )
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
__snake_case = sample[-1, -2:, :2, -2:].flatten().cpu()
__snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ )
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]],
[16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]],
# fmt: on
] )
@require_torch_gpu
def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str:
__snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
__snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ )
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' )
def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple:
__snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' )
def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str:
__snake_case = self.get_sd_vae_model()
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) )
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]],
[47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]],
# fmt: on
] )
def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]:
__snake_case = self.get_sd_vae_model()
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist
__snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
__snake_case = sample[0, -1, -3:, -3:].flatten().cpu()
__snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ )
__snake_case = 3e-3 if torch_device != 'mps' else 1e-2
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
| 56 |
"""simple docstring"""
from __future__ import annotations
from random import random
class A_ :
def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ):
'''simple docstring'''
_lowerCamelCase : Any = value
_lowerCamelCase : Optional[int] = random()
_lowerCamelCase : Node | None = None
_lowerCamelCase : Node | None = None
def __repr__( self: Tuple ):
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return F"""'{self.value}: {self.prior:.5}'"""
else:
return pformat(
{F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 )
def __str__( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Tuple = str(self.value ) + " "
_lowerCamelCase : Optional[Any] = str(self.left or "" )
_lowerCamelCase : int = str(self.right or "" )
return value + left + right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]:
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
_lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase )
return left, root
else:
_lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase )
return root, right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
_lowerCamelCase : Any = merge(left.right , _lowerCamelCase )
return left
else:
_lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left )
return right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
_lowerCamelCase : int = Node(_lowerCamelCase )
_lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase )
return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 )
_lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase )
return merge(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> None:
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value , end="," )
inorder(root.right )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
_lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) )
elif arg[0] == "-":
_lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) )
else:
print("Unknown command" )
return root
def lowerCamelCase_( ) -> None:
'''simple docstring'''
_lowerCamelCase : List[Any] = None
print(
"enter numbers to create a tree, + value to add value into treap, "
"- value to erase all nodes with value. 'q' to quit. " )
_lowerCamelCase : int = input()
while args != "q":
_lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase )
print(_lowerCamelCase )
_lowerCamelCase : Tuple = input()
print("good by!" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 46 | 0 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Dict = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_lowerCamelCase , 'tf_padding' ) )
self.parent.assertTrue(hasattr(_lowerCamelCase , 'depth_multiplier' ) )
class _lowerCAmelCase:
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3 , _lowerCamelCase=3_2 , _lowerCamelCase=0.2_5 , _lowerCamelCase=8 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=3_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu6" , _lowerCamelCase=1_2_8_0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=None , ):
UpperCamelCase_: List[Any] = parent
UpperCamelCase_: List[str] = batch_size
UpperCamelCase_: int = num_channels
UpperCamelCase_: Union[str, Any] = image_size
UpperCamelCase_: int = depth_multiplier
UpperCamelCase_: Optional[int] = depth_divisible_by
UpperCamelCase_: Optional[int] = min_depth
UpperCamelCase_: List[Any] = expand_ratio
UpperCamelCase_: List[Any] = tf_padding
UpperCamelCase_: str = output_stride
UpperCamelCase_: Any = first_layer_is_expansion
UpperCamelCase_: Optional[int] = finegrained_output
UpperCamelCase_: Optional[int] = hidden_act
UpperCamelCase_: Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
UpperCamelCase_: Optional[int] = classifier_dropout_prob
UpperCamelCase_: Optional[Any] = use_labels
UpperCamelCase_: Optional[Any] = is_training
UpperCamelCase_: Optional[Any] = num_labels
UpperCamelCase_: List[str] = initializer_range
UpperCamelCase_: Union[str, Any] = scope
def _a ( self ):
UpperCamelCase_: Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase_: Optional[Any] = None
UpperCamelCase_: str = None
if self.use_labels:
UpperCamelCase_: List[str] = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase_: List[Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def _a ( self ):
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Any = MobileNetVaModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: List[Any] = model(_lowerCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
self.parent.assertEqual(
result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Optional[int] = self.num_labels
UpperCamelCase_: Dict = MobileNetVaForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[int] = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: List[str] = self.num_labels
UpperCamelCase_: Union[str, Any] = MobileNetVaForSemanticSegmentation(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[Any] = model(_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
UpperCamelCase_: Dict = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def _a ( self ):
UpperCamelCase_: Dict = self.prepare_config_and_inputs()
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Any = config_and_inputs
UpperCamelCase_: Dict = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : List[str] =(
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
a : Dict =(
{
'''feature-extraction''': MobileNetVaModel,
'''image-classification''': MobileNetVaForImageClassification,
'''image-segmentation''': MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a : List[str] =False
a : Tuple =False
a : List[Any] =False
a : List[str] =False
def _a ( self ):
UpperCamelCase_: Any = MobileNetVaModelTester(self )
UpperCamelCase_: Tuple = MobileNetVaConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase )
def _a ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileNetV2 does not use inputs_embeds' )
def _a ( self ):
pass
@unittest.skip(reason='MobileNetV2 does not support input and output embeddings' )
def _a ( self ):
pass
@unittest.skip(reason='MobileNetV2 does not output attentions' )
def _a ( self ):
pass
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_: Any = model_class(_lowerCamelCase )
UpperCamelCase_: List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_: str = [*signature.parameters.keys()]
UpperCamelCase_: Union[str, Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def _a ( self ):
def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
UpperCamelCase_: List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
UpperCamelCase_: Tuple = outputs.hidden_states
UpperCamelCase_: Union[str, Any] = 1_6
self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_: List[str] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_: List[str] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase )
@slow
def _a ( self ):
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase_: int = MobileNetVaModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def snake_case () -> List[str]:
UpperCamelCase_: int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _a ( self ):
return (
MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None
)
@slow
def _a ( self ):
UpperCamelCase_: Optional[Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_lowerCamelCase )
UpperCamelCase_: Any = self.default_image_processor
UpperCamelCase_: Optional[int] = prepare_img()
UpperCamelCase_: int = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCamelCase_: Tuple = model(**_lowerCamelCase )
# verify the logits
UpperCamelCase_: Any = torch.Size((1, 1_0_0_1) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
UpperCamelCase_: Dict = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
@slow
def _a ( self ):
UpperCamelCase_: Optional[Any] = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' )
UpperCamelCase_: List[Any] = model.to(_lowerCamelCase )
UpperCamelCase_: int = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' )
UpperCamelCase_: List[Any] = prepare_img()
UpperCamelCase_: Dict = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCamelCase_: Dict = model(**_lowerCamelCase )
UpperCamelCase_: Optional[Any] = outputs.logits
# verify the logits
UpperCamelCase_: Optional[int] = torch.Size((1, 2_1, 6_5, 6_5) )
self.assertEqual(logits.shape , _lowerCamelCase )
UpperCamelCase_: int = torch.tensor(
[
[[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]],
[[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]],
[[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]],
] , device=_lowerCamelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
| 57 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = SpeechTaTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = True
def _lowercase ( self: List[Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase )
_lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token} )
tokenizer.add_tokens(["<ctc_blank>"] )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self: List[str] ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = "this is a test"
_lowerCamelCase : Optional[Any] = "this is a test"
return input_text, output_text
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase )
return text, ids
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "<pad>"
_lowerCamelCase : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"<s>" )
self.assertEqual(vocab_keys[1] ,"<pad>" )
self.assertEqual(vocab_keys[-4] ,"œ" )
self.assertEqual(vocab_keys[-2] ,"<mask>" )
self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" )
self.assertEqual(len(__lowerCAmelCase ) ,81 )
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,79 )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase : Tuple = tokenizer.vocab_size
_lowerCamelCase : Optional[Any] = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"]
_lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.vocab_size
_lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) )
self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) )
_lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase )
self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
_lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
_lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase )
_lowerCamelCase : int = tokenizer.vocab_size
_lowerCamelCase : str = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) )
self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) )
_lowerCamelCase : Optional[int] = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase )
self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] ,tokens[1] )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokens[-4] )
self.assertEqual(tokens[0] ,tokenizer.eos_token_id )
self.assertEqual(tokens[-3] ,tokenizer.pad_token_id )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.get_tokenizer()
_lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" )
# fmt: off
self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,)
_lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
_lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
# fmt: off
self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
@slow
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = [
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
"general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
"Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained "
"models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.",
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
"conditioning on both left and right context in all layers.",
"The quick brown fox jumps over the lazy dog.",
]
# fmt: off
_lowerCamelCase : Tuple = {
"input_ids": [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
| 46 | 0 |
"""simple docstring"""
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
__lowerCAmelCase : Dict = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class _lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowercase ) -> int:
'''simple docstring'''
super().__init__()
snake_case_ : int = torchvision.models.resnetaaa(pretrained=_lowercase )
snake_case_ : Tuple = list(model.children() )[:-2]
snake_case_ : str = nn.Sequential(*_lowercase )
snake_case_ : Union[str, Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def UpperCAmelCase__ ( self , _lowercase ) -> str:
'''simple docstring'''
snake_case_ : List[str] = self.pool(self.model(_lowercase ) )
snake_case_ : Any = torch.flatten(_lowercase , start_dim=2 )
snake_case_ : str = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
'''simple docstring'''
snake_case_ : Any = [json.loads(_lowercase ) for l in open(_lowercase )]
snake_case_ : List[str] = os.path.dirname(_lowercase )
snake_case_ : str = tokenizer
snake_case_ : Dict = labels
snake_case_ : Optional[int] = len(_lowercase )
snake_case_ : Any = max_seq_length
snake_case_ : Union[str, Any] = transforms
def __len__( self ) -> Union[str, Any]:
'''simple docstring'''
return len(self.data )
def __getitem__( self , _lowercase ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=_lowercase ) )
snake_case_ , snake_case_ , snake_case_ : List[str] = sentence[0], sentence[1:-1], sentence[-1]
snake_case_ : Any = sentence[: self.max_seq_length]
snake_case_ : Dict = torch.zeros(self.n_classes )
snake_case_ : Dict = 1
snake_case_ : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" )
snake_case_ : str = self.transforms(_lowercase )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[Any] = Counter()
for row in self.data:
label_freqs.update(row["""label"""] )
return label_freqs
def __lowerCAmelCase ( __UpperCamelCase : int ):
'''simple docstring'''
snake_case_ : Tuple = [len(row["""sentence"""] ) for row in batch]
snake_case_ , snake_case_ : str = len(__UpperCamelCase ), max(__UpperCamelCase )
snake_case_ : Optional[int] = torch.zeros(__UpperCamelCase , __UpperCamelCase , dtype=torch.long )
snake_case_ : Any = torch.zeros(__UpperCamelCase , __UpperCamelCase , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ):
snake_case_ : Optional[int] = input_row["""sentence"""]
snake_case_ : Any = 1
snake_case_ : str = torch.stack([row["""image"""] for row in batch] )
snake_case_ : List[Any] = torch.stack([row["""label"""] for row in batch] )
snake_case_ : Dict = torch.stack([row["""image_start_token"""] for row in batch] )
snake_case_ : Optional[Any] = torch.stack([row["""image_end_token"""] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def __lowerCAmelCase ( ):
'''simple docstring'''
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def __lowerCAmelCase ( ):
'''simple docstring'''
return transforms.Compose(
[
transforms.Resize(2_5_6 ),
transforms.CenterCrop(2_2_4 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ),
] )
| 58 |
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 46 | 0 |
from __future__ import annotations
import requests
__A = set(
"approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split()
)
def lowerCAmelCase_ ( __a , __a = 1 , __a = "new" , __a = None ) -> dict:
"""simple docstring"""
lowerCamelCase__: Optional[int] =wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__a ) - valid_terms ) ):
lowerCamelCase__: int =F"""Invalid search term: {invalid_search_terms}"""
raise ValueError(__a )
lowerCamelCase__: List[str] =requests.get(
F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"User-agent": "A random string"} , )
if response.status_code == 429:
raise requests.HTTPError
lowerCamelCase__: Tuple =response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__a )}
lowerCamelCase__: Dict ={}
for id_ in range(__a ):
lowerCamelCase__: Dict ={
item: data["data"]["children"][id_]["data"][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
| 59 |
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A_ ( _a ):
lowerCAmelCase__ = (DDIMParallelScheduler,)
lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0))
def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = {
"num_train_timesteps": 1_000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**__lowerCAmelCase )
return config
def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase )
_lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0
_lowerCamelCase : List[Any] = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
scheduler.set_timesteps(__lowerCAmelCase )
for t in scheduler.timesteps:
_lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample
return sample
def _lowercase ( self: List[str] ):
'''simple docstring'''
for timesteps in [100, 500, 1_000]:
self.check_over_configs(num_train_timesteps=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 )
_lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) )
def _lowercase ( self: Any ):
'''simple docstring'''
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__lowerCAmelCase )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
self.check_over_configs(thresholding=__lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,)
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
for t in [1, 10, 49]:
self.check_over_forward(time_step=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ):
self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : Union[str, Any] = self.get_scheduler_config()
_lowerCamelCase : str = scheduler_class(**__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0
scheduler.set_timesteps(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = self.dummy_model()
_lowerCamelCase : Optional[int] = self.dummy_sample_deter
_lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1
_lowerCamelCase : Dict = self.dummy_sample_deter - 0.1
_lowerCamelCase : Union[str, Any] = samplea.shape[0]
_lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 )
_lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase )
_lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) )
_lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase )
_lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2
assert abs(result_mean.item() - 0.49_82 ) < 1e-3
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Any = self.full_loop()
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" )
_lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 52.53_02 ) < 1e-2
assert abs(result_mean.item() - 0.06_84 ) < 1e-3
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 )
_lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2
assert abs(result_mean.item() - 0.19_51 ) < 1e-3
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 )
_lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2
assert abs(result_mean.item() - 0.19_41 ) < 1e-3
| 46 | 0 |
def lowerCamelCase_ ( _UpperCamelCase = 1_000_000 ) -> int:
"""simple docstring"""
snake_case_ : Dict = 1
snake_case_ : Dict = 1
snake_case_ : List[str] = {1: 1}
for inputa in range(2 , _UpperCamelCase ):
snake_case_ : Dict = 0
snake_case_ : List[Any] = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
snake_case_ : Dict = (3 * number) + 1
counter += 1
if inputa not in counters:
snake_case_ : Tuple = counter
if counter > pre_counter:
snake_case_ : int = inputa
snake_case_ : Dict = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 60 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : int = {
'''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''',
}
class A_ ( _a , _a ):
lowerCAmelCase__ = 'bit'
lowerCAmelCase__ = ['preactivation', 'bottleneck']
lowerCAmelCase__ = ['SAME', 'VALID']
def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
if layer_type not in self.layer_types:
raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
_lowerCamelCase : List[Any] = global_padding.upper()
else:
raise ValueError(F"""Padding strategy {global_padding} not supported""" )
_lowerCamelCase : str = num_channels
_lowerCamelCase : str = embedding_size
_lowerCamelCase : Dict = hidden_sizes
_lowerCamelCase : str = depths
_lowerCamelCase : Any = layer_type
_lowerCamelCase : Any = hidden_act
_lowerCamelCase : List[str] = global_padding
_lowerCamelCase : Tuple = num_groups
_lowerCamelCase : Optional[int] = drop_path_rate
_lowerCamelCase : List[Any] = embedding_dynamic_padding
_lowerCamelCase : Any = output_stride
_lowerCamelCase : List[str] = width_factor
_lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )]
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices(
out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
| 46 | 0 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
snake_case__ = "mctct"
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=8_065 , SCREAMING_SNAKE_CASE__ : Tuple=1_536 , SCREAMING_SNAKE_CASE__ : int=36 , SCREAMING_SNAKE_CASE__ : List[Any]=6_144 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=384 , SCREAMING_SNAKE_CASE__ : Optional[Any]=920 , SCREAMING_SNAKE_CASE__ : Optional[int]=1e-5 , SCREAMING_SNAKE_CASE__ : str=0.3 , SCREAMING_SNAKE_CASE__ : Optional[Any]="relu" , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : str=0.3 , SCREAMING_SNAKE_CASE__ : List[Any]=0.3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : Any=0.3 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : Tuple=(7,) , SCREAMING_SNAKE_CASE__ : List[str]=(3,) , SCREAMING_SNAKE_CASE__ : Union[str, Any]=80 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : str="sum" , SCREAMING_SNAKE_CASE__ : Dict=False , **SCREAMING_SNAKE_CASE__ : str , ) -> int:
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = attention_head_dim
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = layerdrop
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = eos_token_id
lowerCAmelCase__ = conv_glu_dim
lowerCAmelCase__ = conv_dropout
lowerCAmelCase__ = num_conv_layers
lowerCAmelCase__ = input_feat_per_channel
lowerCAmelCase__ = input_channels
lowerCAmelCase__ = conv_channels
lowerCAmelCase__ = ctc_loss_reduction
lowerCAmelCase__ = ctc_zero_infinity
# prevents config testing fail with exporting to json
lowerCAmelCase__ = list(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = list(SCREAMING_SNAKE_CASE__ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.conv_kernel)` == `config.num_conv_layers` "
f'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '
f'`config.num_conv_layers = {self.num_conv_layers}`.' )
| 61 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
'''google/vivit-b-16x2-kinetics400''': (
'''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'''
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class A_ ( _a ):
lowerCAmelCase__ = 'vivit'
def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,):
'''simple docstring'''
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Union[str, Any] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Optional[Any] = attention_probs_dropout_prob
_lowerCamelCase : List[Any] = initializer_range
_lowerCamelCase : int = layer_norm_eps
_lowerCamelCase : Tuple = image_size
_lowerCamelCase : Dict = num_frames
_lowerCamelCase : Optional[int] = tubelet_size
_lowerCamelCase : int = num_channels
_lowerCamelCase : List[str] = qkv_bias
super().__init__(**__lowerCAmelCase )
| 46 | 0 |
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
snake_case = (
"""https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py"""
)
snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
def lowerCamelCase__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = "https://pypi.org/pypi/diffusers/json"
SCREAMING_SNAKE_CASE : List[str] = json.loads(request.urlopen(lowercase ).read() )["releases"].keys()
return sorted(lowercase , key=lambda lowercase : version.Version(lowercase ) )
def lowerCamelCase__ ( ):
"""simple docstring"""
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(lowercase )
os.makedirs(lowercase , exist_ok=lowercase )
SCREAMING_SNAKE_CASE : List[str] = Path(lowercase ) / "__init__.py"
if not init_path.exists():
init_path.touch()
def lowerCamelCase__ ( lowercase ):
"""simple docstring"""
init_hf_modules()
SCREAMING_SNAKE_CASE : Optional[Any] = Path(lowercase ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(lowercase , exist_ok=lowercase )
SCREAMING_SNAKE_CASE : Any = dynamic_module_path / "__init__.py"
if not init_path.exists():
init_path.touch()
def lowerCamelCase__ ( lowercase ):
"""simple docstring"""
with open(lowercase , "r" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE : Dict = f.read()
# Imports of the form `import .xxx`
SCREAMING_SNAKE_CASE : int = re.findall("^\s*import\s+\.(\S+)\s*$" , lowercase , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , lowercase , flags=re.MULTILINE )
# Unique-ify
return list(set(lowercase ) )
def lowerCamelCase__ ( lowercase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = False
SCREAMING_SNAKE_CASE : List[str] = [module_file]
SCREAMING_SNAKE_CASE : Dict = []
# Let's recurse through all relative imports
while not no_change:
SCREAMING_SNAKE_CASE : Optional[Any] = []
for f in files_to_check:
new_imports.extend(get_relative_imports(lowercase ) )
SCREAMING_SNAKE_CASE : str = Path(lowercase ).parent
SCREAMING_SNAKE_CASE : int = [str(module_path / m ) for m in new_imports]
SCREAMING_SNAKE_CASE : List[str] = [f for f in new_import_files if f not in all_relative_imports]
SCREAMING_SNAKE_CASE : Dict = [F'''{f}.py''' for f in new_import_files]
SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) == 0
all_relative_imports.extend(lowercase )
return all_relative_imports
def lowerCamelCase__ ( lowercase ):
"""simple docstring"""
with open(lowercase , "r" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE : Optional[Any] = f.read()
# Imports of the form `import xxx`
SCREAMING_SNAKE_CASE : int = re.findall("^\s*import\s+(\S+)\s*$" , lowercase , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall("^\s*from\s+(\S+)\s+import" , lowercase , flags=re.MULTILINE )
# Only keep the top-level module
SCREAMING_SNAKE_CASE : List[Any] = [imp.split("." )[0] for imp in imports if not imp.startswith("." )]
# Unique-ify and test we got them all
SCREAMING_SNAKE_CASE : Tuple = list(set(lowercase ) )
SCREAMING_SNAKE_CASE : Any = []
for imp in imports:
try:
importlib.import_module(lowercase )
except ImportError:
missing_packages.append(lowercase )
if len(lowercase ) > 0:
raise ImportError(
"This modeling file requires the following packages that were not found in your environment: "
F'''{', '.join(lowercase )}. Run `pip install {' '.join(lowercase )}`''' )
return get_relative_imports(lowercase )
def lowerCamelCase__ ( lowercase , lowercase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = module_path.replace(os.path.sep , "." )
SCREAMING_SNAKE_CASE : Optional[Any] = importlib.import_module(lowercase )
if class_name is None:
return find_pipeline_class(lowercase )
return getattr(lowercase , lowercase )
def lowerCamelCase__ ( lowercase ):
"""simple docstring"""
from ..pipelines import DiffusionPipeline
SCREAMING_SNAKE_CASE : Union[str, Any] = dict(inspect.getmembers(lowercase , inspect.isclass ) )
SCREAMING_SNAKE_CASE : Tuple = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , lowercase )
and cls.__module__.split("." )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:'''
F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in'''
F''' {loaded_module}.''' )
SCREAMING_SNAKE_CASE : Optional[int] = cls
return pipeline_class
def lowerCamelCase__ ( lowercase , lowercase , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = False , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = str(lowercase )
SCREAMING_SNAKE_CASE : Dict = os.path.join(lowercase , lowercase )
if os.path.isfile(lowercase ):
SCREAMING_SNAKE_CASE : Any = module_file_or_url
SCREAMING_SNAKE_CASE : Any = "local"
elif pretrained_model_name_or_path.count("/" ) == 0:
SCREAMING_SNAKE_CASE : int = get_diffusers_versions()
# cut ".dev0"
SCREAMING_SNAKE_CASE : int = "v" + ".".join(__version__.split("." )[:3] )
# retrieve github version that matches
if revision is None:
SCREAMING_SNAKE_CASE : str = latest_version if latest_version[1:] in available_versions else "main"
logger.info(F'''Defaulting to latest_version: {revision}.''' )
elif revision in available_versions:
SCREAMING_SNAKE_CASE : Tuple = F'''v{revision}'''
elif revision == "main":
SCREAMING_SNAKE_CASE : Optional[Any] = revision
else:
raise ValueError(
F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of'''
F''' {', '.join(available_versions + ['main'] )}.''' )
# community pipeline on GitHub
SCREAMING_SNAKE_CASE : Optional[Any] = COMMUNITY_PIPELINES_URL.format(revision=lowercase , pipeline=lowercase )
try:
SCREAMING_SNAKE_CASE : Optional[int] = cached_download(
lowercase , cache_dir=lowercase , force_download=lowercase , proxies=lowercase , resume_download=lowercase , local_files_only=lowercase , use_auth_token=lowercase , )
SCREAMING_SNAKE_CASE : str = "git"
SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_name_or_path + ".py"
except EnvironmentError:
logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' )
raise
else:
try:
# Load from URL or cache if already cached
SCREAMING_SNAKE_CASE : Optional[Any] = hf_hub_download(
lowercase , lowercase , cache_dir=lowercase , force_download=lowercase , proxies=lowercase , resume_download=lowercase , local_files_only=lowercase , use_auth_token=lowercase , )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) )
except EnvironmentError:
logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' )
raise
# Check we have all the requirements in our environment
SCREAMING_SNAKE_CASE : Optional[int] = check_imports(lowercase )
# Now we move the module inside our cached dynamic modules.
SCREAMING_SNAKE_CASE : str = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(lowercase )
SCREAMING_SNAKE_CASE : Any = Path(lowercase ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(lowercase , submodule_path / module_file )
for module_needed in modules_needed:
SCREAMING_SNAKE_CASE : Dict = F'''{module_needed}.py'''
shutil.copy(os.path.join(lowercase , lowercase ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(lowercase , lowercase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = use_auth_token
elif use_auth_token is True:
SCREAMING_SNAKE_CASE : List[Any] = HfFolder.get_token()
else:
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Any = model_info(lowercase , revision=lowercase , token=lowercase ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
SCREAMING_SNAKE_CASE : str = submodule_path / commit_hash
SCREAMING_SNAKE_CASE : Union[str, Any] = full_submodule + os.path.sep + commit_hash
create_dynamic_module(lowercase )
if not (submodule_path / module_file).exists():
shutil.copy(lowercase , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
lowercase , F'''{module_needed}.py''' , cache_dir=lowercase , force_download=lowercase , resume_download=lowercase , proxies=lowercase , use_auth_token=lowercase , revision=lowercase , local_files_only=lowercase , )
return os.path.join(lowercase , lowercase )
def lowerCamelCase__ ( lowercase , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = False , **lowercase , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = get_cached_module_file(
lowercase , lowercase , cache_dir=lowercase , force_download=lowercase , resume_download=lowercase , proxies=lowercase , use_auth_token=lowercase , revision=lowercase , local_files_only=lowercase , )
return get_class_in_module(lowercase , final_module.replace(".py" , "" ) )
| 62 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = MgpstrTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = {}
lowerCAmelCase__ = False
def _lowercase ( self: int ):
'''simple docstring'''
super().setUp()
# fmt: off
_lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
_lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) )
_lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = "tester"
_lowerCamelCase : Optional[Any] = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
_lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase )
self.assertEqual(len(__lowerCAmelCase ) ,1 )
_lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase )
self.assertTrue(special_token not in decoded )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase )
_lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
_lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertNotEqual(len(__lowerCAmelCase ) ,0 )
_lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _lowercase ( self: str ):
'''simple docstring'''
pass
| 46 | 0 |
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a ( lowercase__ , unittest.TestCase ):
"""simple docstring"""
a : List[Any] = AudioLDMPipeline
a : Optional[Any] = TEXT_TO_AUDIO_PARAMS
a : Dict = TEXT_TO_AUDIO_BATCH_PARAMS
a : Optional[int] = frozenset(
[
'num_inference_steps',
'num_waveforms_per_prompt',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
def UpperCAmelCase ( self : Any ) -> List[str]:
torch.manual_seed(0 )
__UpperCAmelCase : List[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__lowercase , )
__UpperCAmelCase : Optional[int] = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowercase , set_alpha_to_one=__lowercase , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
__UpperCAmelCase : Optional[int] = ClapTextModelWithProjection(__lowercase )
__UpperCAmelCase : str = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 )
__UpperCAmelCase : Dict = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__lowercase , )
__UpperCAmelCase : int = SpeechTaHifiGan(__lowercase )
__UpperCAmelCase : Tuple = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""vocoder""": vocoder,
}
return components
def UpperCAmelCase ( self : Optional[int] , __lowercase : Any , __lowercase : str=0 ) -> List[str]:
if str(__lowercase ).startswith("""mps""" ):
__UpperCAmelCase : Dict = torch.manual_seed(__lowercase )
else:
__UpperCAmelCase : Tuple = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A hammer hitting a wooden surface""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
}
return inputs
def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
__UpperCAmelCase : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : List[Any] = AudioLDMPipeline(**__lowercase )
__UpperCAmelCase : Tuple = audioldm_pipe.to(__lowercase )
audioldm_pipe.set_progress_bar_config(disable=__lowercase )
__UpperCAmelCase : List[Any] = self.get_dummy_inputs(__lowercase )
__UpperCAmelCase : Union[str, Any] = audioldm_pipe(**__lowercase )
__UpperCAmelCase : Union[str, Any] = output.audios[0]
assert audio.ndim == 1
assert len(__lowercase ) == 256
__UpperCAmelCase : str = audio[:10]
__UpperCAmelCase : List[Any] = np.array(
[-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def UpperCAmelCase ( self : Tuple ) -> Optional[int]:
__UpperCAmelCase : List[str] = self.get_dummy_components()
__UpperCAmelCase : Any = AudioLDMPipeline(**__lowercase )
__UpperCAmelCase : Tuple = audioldm_pipe.to(__lowercase )
__UpperCAmelCase : str = audioldm_pipe.to(__lowercase )
audioldm_pipe.set_progress_bar_config(disable=__lowercase )
__UpperCAmelCase : Tuple = self.get_dummy_inputs(__lowercase )
__UpperCAmelCase : Dict = 3 * [inputs["""prompt"""]]
# forward
__UpperCAmelCase : Union[str, Any] = audioldm_pipe(**__lowercase )
__UpperCAmelCase : int = output.audios[0]
__UpperCAmelCase : List[str] = self.get_dummy_inputs(__lowercase )
__UpperCAmelCase : Any = 3 * [inputs.pop("""prompt""" )]
__UpperCAmelCase : Tuple = audioldm_pipe.tokenizer(
__lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowercase , return_tensors="""pt""" , )
__UpperCAmelCase : Optional[Any] = text_inputs["""input_ids"""].to(__lowercase )
__UpperCAmelCase : int = audioldm_pipe.text_encoder(
__lowercase , )
__UpperCAmelCase : Dict = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
__UpperCAmelCase : Tuple = F.normalize(__lowercase , dim=-1 )
__UpperCAmelCase : Tuple = prompt_embeds
# forward
__UpperCAmelCase : Dict = audioldm_pipe(**__lowercase )
__UpperCAmelCase : str = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def UpperCAmelCase ( self : Union[str, Any] ) -> str:
__UpperCAmelCase : Tuple = self.get_dummy_components()
__UpperCAmelCase : Any = AudioLDMPipeline(**__lowercase )
__UpperCAmelCase : Dict = audioldm_pipe.to(__lowercase )
__UpperCAmelCase : int = audioldm_pipe.to(__lowercase )
audioldm_pipe.set_progress_bar_config(disable=__lowercase )
__UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__lowercase )
__UpperCAmelCase : Optional[Any] = 3 * ["""this is a negative prompt"""]
__UpperCAmelCase : Optional[Any] = negative_prompt
__UpperCAmelCase : Tuple = 3 * [inputs["""prompt"""]]
# forward
__UpperCAmelCase : int = audioldm_pipe(**__lowercase )
__UpperCAmelCase : Any = output.audios[0]
__UpperCAmelCase : List[Any] = self.get_dummy_inputs(__lowercase )
__UpperCAmelCase : Tuple = 3 * [inputs.pop("""prompt""" )]
__UpperCAmelCase : List[Any] = []
for p in [prompt, negative_prompt]:
__UpperCAmelCase : List[str] = audioldm_pipe.tokenizer(
__lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowercase , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = text_inputs["""input_ids"""].to(__lowercase )
__UpperCAmelCase : Optional[Any] = audioldm_pipe.text_encoder(
__lowercase , )
__UpperCAmelCase : Tuple = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
__UpperCAmelCase : Any = F.normalize(__lowercase , dim=-1 )
embeds.append(__lowercase )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = embeds
# forward
__UpperCAmelCase : str = audioldm_pipe(**__lowercase )
__UpperCAmelCase : str = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def UpperCAmelCase ( self : Dict ) -> Tuple:
__UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : List[Any] = self.get_dummy_components()
__UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=__lowercase )
__UpperCAmelCase : Tuple = AudioLDMPipeline(**__lowercase )
__UpperCAmelCase : str = audioldm_pipe.to(__lowercase )
audioldm_pipe.set_progress_bar_config(disable=__lowercase )
__UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__lowercase )
__UpperCAmelCase : Optional[Any] = """egg cracking"""
__UpperCAmelCase : Optional[Any] = audioldm_pipe(**__lowercase , negative_prompt=__lowercase )
__UpperCAmelCase : Tuple = output.audios[0]
assert audio.ndim == 1
assert len(__lowercase ) == 256
__UpperCAmelCase : Union[str, Any] = audio[:10]
__UpperCAmelCase : int = np.array(
[-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def UpperCAmelCase ( self : str ) -> Any:
__UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : List[Any] = self.get_dummy_components()
__UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=__lowercase )
__UpperCAmelCase : Tuple = AudioLDMPipeline(**__lowercase )
__UpperCAmelCase : Tuple = audioldm_pipe.to(__lowercase )
audioldm_pipe.set_progress_bar_config(disable=__lowercase )
__UpperCAmelCase : str = """A hammer hitting a wooden surface"""
# test num_waveforms_per_prompt=1 (default)
__UpperCAmelCase : Union[str, Any] = audioldm_pipe(__lowercase , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : int = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
__UpperCAmelCase : int = 2
__UpperCAmelCase : str = audioldm_pipe(__lowercase , num_inference_steps=2 , num_waveforms_per_prompt=__lowercase ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
__UpperCAmelCase : Any = 2
__UpperCAmelCase : Tuple = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__lowercase ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def UpperCAmelCase ( self : List[str] ) -> str:
__UpperCAmelCase : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Tuple = self.get_dummy_components()
__UpperCAmelCase : int = AudioLDMPipeline(**__lowercase )
__UpperCAmelCase : Dict = audioldm_pipe.to(__lowercase )
audioldm_pipe.set_progress_bar_config(disable=__lowercase )
__UpperCAmelCase : List[str] = audioldm_pipe.vocoder.config.sampling_rate
__UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__lowercase )
__UpperCAmelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.016 , **__lowercase )
__UpperCAmelCase : Tuple = output.audios[0]
assert audio.ndim == 1
assert len(__lowercase ) / vocoder_sampling_rate == 0.016
__UpperCAmelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **__lowercase )
__UpperCAmelCase : Dict = output.audios[0]
assert audio.ndim == 1
assert len(__lowercase ) / vocoder_sampling_rate == 0.032
def UpperCAmelCase ( self : Any ) -> List[Any]:
__UpperCAmelCase : List[Any] = self.get_dummy_components()
__UpperCAmelCase : Any = AudioLDMPipeline(**__lowercase )
__UpperCAmelCase : Dict = audioldm_pipe.to(__lowercase )
audioldm_pipe.set_progress_bar_config(disable=__lowercase )
__UpperCAmelCase : List[str] = ["""hey"""]
__UpperCAmelCase : Dict = audioldm_pipe(__lowercase , num_inference_steps=1 )
__UpperCAmelCase : Tuple = output.audios.shape
assert audio_shape == (1, 256)
__UpperCAmelCase : Optional[Any] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
__UpperCAmelCase : List[Any] = SpeechTaHifiGan(__lowercase ).to(__lowercase )
__UpperCAmelCase : Dict = audioldm_pipe(__lowercase , num_inference_steps=1 )
__UpperCAmelCase : int = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def UpperCAmelCase ( self : Dict ) -> Optional[int]:
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowercase )
def UpperCAmelCase ( self : str ) -> Any:
self._test_inference_batch_single_identical(test_mean_pixel_difference=__lowercase )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowercase )
@slow
class a ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self : Dict ) -> Tuple:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self : Optional[Any] , __lowercase : Optional[int] , __lowercase : int="cpu" , __lowercase : List[Any]=torch.floataa , __lowercase : Tuple=0 ) -> Dict:
__UpperCAmelCase : int = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__UpperCAmelCase : Dict = np.random.RandomState(__lowercase ).standard_normal((1, 8, 128, 16) )
__UpperCAmelCase : Optional[Any] = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase )
__UpperCAmelCase : int = {
"""prompt""": """A hammer hitting a wooden surface""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 2.5,
}
return inputs
def UpperCAmelCase ( self : int ) -> List[str]:
__UpperCAmelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
__UpperCAmelCase : Union[str, Any] = audioldm_pipe.to(__lowercase )
audioldm_pipe.set_progress_bar_config(disable=__lowercase )
__UpperCAmelCase : Tuple = self.get_inputs(__lowercase )
__UpperCAmelCase : str = 25
__UpperCAmelCase : Optional[int] = audioldm_pipe(**__lowercase ).audios[0]
assert audio.ndim == 1
assert len(__lowercase ) == 81920
__UpperCAmelCase : Dict = audio[77230:77240]
__UpperCAmelCase : Optional[Any] = np.array(
[-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] )
__UpperCAmelCase : Optional[Any] = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def UpperCAmelCase ( self : str ) -> Tuple:
__UpperCAmelCase : Optional[Any] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
__UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
__UpperCAmelCase : int = audioldm_pipe.to(__lowercase )
audioldm_pipe.set_progress_bar_config(disable=__lowercase )
__UpperCAmelCase : List[Any] = self.get_inputs(__lowercase )
__UpperCAmelCase : Optional[int] = audioldm_pipe(**__lowercase ).audios[0]
assert audio.ndim == 1
assert len(__lowercase ) == 81920
__UpperCAmelCase : int = audio[27780:27790]
__UpperCAmelCase : Optional[Any] = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] )
__UpperCAmelCase : Dict = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 63 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
_lowerCAmelCase : str = '''
Examples:
```py
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/frog.png"
... )
>>> image = pipe(
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save("red_frog.png")
```
'''
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : int = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
_lowerCamelCase : Optional[Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int:
'''simple docstring'''
_lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
_lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) )
_lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1
_lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] )
_lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 )
return image
class A_ ( _a ):
def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,):
'''simple docstring'''
super().__init__()
self.register_modules(
unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,)
_lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase )
_lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 )
_lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" )
_lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt
if image.shape[1] == 4:
_lowerCamelCase : List[Any] = image
else:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase )
]
_lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 )
else:
_lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase )
_lowerCamelCase : int = self.movq.config.scaling_factor * init_latents
_lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 )
_lowerCamelCase : Optional[int] = init_latents.shape
_lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase )
# get latents
_lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : str = init_latents
return latents
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
_lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" )
_lowerCamelCase : Dict = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ):
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
_lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
_lowerCamelCase : str = None
for cpu_offloaded_model in [self.unet, self.movq]:
_lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase )
# We'll offload the last model manually.
_lowerCamelCase : int = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if not hasattr(self.unet ,"_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__lowerCAmelCase ,"_hf_hook" )
and hasattr(module._hf_hook ,"execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__lowerCAmelCase )
def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self._execution_device
_lowerCamelCase : Dict = guidance_scale > 1.0
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Any = image_embeds.shape[0]
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 )
if do_classifier_free_guidance:
_lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase )
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Tuple = [image]
if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" )
_lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 )
_lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase )
_lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"]
_lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 )
self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt )
_lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor )
_lowerCamelCase : List[Any] = self.prepare_latents(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase )
for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
_lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCamelCase : List[str] = {"image_embeds": image_embeds}
_lowerCamelCase : Tuple = self.unet(
sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0]
if do_classifier_free_guidance:
_lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 )
_lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 )
_lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 )
_lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
_lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 )
if not (
hasattr(self.scheduler.config ,"variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 )
# compute the previous noisy sample x_t -> x_t-1
_lowerCamelCase : Optional[int] = self.scheduler.step(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0]
# post-processing
_lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
_lowerCamelCase : Optional[int] = image * 0.5 + 0.5
_lowerCamelCase : str = image.clamp(0 ,1 )
_lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy()
if output_type == "pil":
_lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCAmelCase )
| 46 | 0 |
import os
import pytest
from attr import dataclass
lowercase_ : Optional[Any] = 'us-east-1' # defaults region
@dataclass
class _lowerCamelCase :
__a = 42
__a = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
__a = {
"task_name": "mnli",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"do_train": True,
"do_eval": True,
"do_predict": True,
"output_dir": "/opt/ml/model",
"overwrite_output_dir": True,
"max_steps": 500,
"save_steps": 5500,
}
__a = {**hyperparameters, "max_steps": 1000}
@property
def UpperCamelCase_ ( self ) -> str:
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def UpperCamelCase_ ( self ) -> str:
return f'{self.framework}-transfromers-test'
@property
def UpperCamelCase_ ( self ) -> str:
return f'./tests/sagemaker/scripts/{self.framework}'
@property
def UpperCamelCase_ ( self ) -> str:
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='''class''' )
def A__ ( snake_case_ : Union[str, Any] ):
SCREAMING_SNAKE_CASE__: Dict= SageMakerTestEnvironment(framework=request.cls.framework )
| 64 |
"""simple docstring"""
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def lowerCamelCase_( ) -> None:
'''simple docstring'''
print("Making key files..." )
make_key_files("rsa" , 1024 )
print("Key files generation successful." )
def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]:
'''simple docstring'''
print("Generating prime p..." )
_lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase )
print("Generating prime q..." )
_lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase )
_lowerCamelCase : Dict = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)..." )
while True:
_lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1:
break
print("Calculating d that is mod inverse of e..." )
_lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) )
_lowerCamelCase : Dict = (n, e)
_lowerCamelCase : Dict = (n, d)
return (public_key, private_key)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None:
'''simple docstring'''
if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ):
print("\nWARNING:" )
print(
F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"Use a different name or delete these files and re-run this program." )
sys.exit()
_lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase )
print(F"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(F"""{name}_pubkey.txt""" , "w" ) as out_file:
out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" )
print(F"""Writing private key to file {name}_privkey.txt...""" )
with open(F"""{name}_privkey.txt""" , "w" ) as out_file:
out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main()
| 46 | 0 |
"""simple docstring"""
__UpperCAmelCase = {
'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.',
'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.',
'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-',
'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----',
'2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...',
'8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.',
':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.',
'?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-',
'(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/'
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
__UpperCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()}
def lowerCAmelCase ( __UpperCamelCase ):
'''simple docstring'''
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def lowerCAmelCase ( __UpperCamelCase ):
'''simple docstring'''
return "".join(REVERSE_DICT[char] for char in message.split() )
def lowerCAmelCase ( ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = """Morse code here!"""
print(__UpperCamelCase )
UpperCAmelCase__ : List[str] = encrypt(__UpperCamelCase )
print(__UpperCamelCase )
UpperCAmelCase__ : int = decrypt(__UpperCamelCase )
print(__UpperCamelCase )
if __name__ == "__main__":
main()
| 65 |
"""simple docstring"""
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A_ :
def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,):
'''simple docstring'''
_lowerCamelCase : Optional[int] = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Any = image_size
_lowerCamelCase : List[str] = patch_size
_lowerCamelCase : Union[str, Any] = num_channels
_lowerCamelCase : List[str] = is_training
_lowerCamelCase : str = use_labels
_lowerCamelCase : List[Any] = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Optional[Any] = intermediate_size
_lowerCamelCase : Optional[int] = hidden_act
_lowerCamelCase : Union[str, Any] = hidden_dropout_prob
_lowerCamelCase : Any = attention_probs_dropout_prob
_lowerCamelCase : str = type_sequence_label_size
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Dict = mask_ratio
_lowerCamelCase : List[Any] = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_lowerCamelCase : str = (image_size // patch_size) ** 2
_lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase : int = None
if self.use_labels:
_lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
_lowerCamelCase : str = self.get_config()
return config, pixel_values, labels
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Dict = model(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2
_lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_lowerCamelCase : str = 1
_lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase )
_lowerCamelCase : Any = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : int = self.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs
_lowerCamelCase : Dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A_ ( _a , _a , unittest.TestCase ):
lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {}
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = ViTMAEModelTester(self )
_lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 )
def _lowercase ( self: List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMAE does not use inputs_embeds" )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
_lowerCamelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Dict = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Optional[Any] = [*signature.parameters.keys()]
_lowerCamelCase : Dict = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase )
def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
np.random.seed(2 )
_lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_lowerCamelCase : Dict = pt_noise
super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
_lowerCamelCase : Any = outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase )
model.to(__lowerCAmelCase )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
# Make sure we don't have nans
_lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCAmelCase ,1e-5 )
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: str ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" )
def _lowercase ( self: int ):
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _lowercase ( self: Dict ):
'''simple docstring'''
pass
@slow
def _lowercase ( self: Dict ):
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class A_ ( unittest.TestCase ):
@cached_property
def _lowercase ( self: str ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None
@slow
def _lowercase ( self: int ):
'''simple docstring'''
np.random.seed(2 )
_lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase )
_lowerCamelCase : int = self.default_image_processor
_lowerCamelCase : int = prepare_img()
_lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_lowerCamelCase : Tuple = ViTMAEConfig()
_lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
_lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) )
# verify the logits
_lowerCamelCase : Any = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape ,__lowerCAmelCase )
_lowerCamelCase : Tuple = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
| 46 | 0 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
UpperCamelCase = ["bert-base-uncased", "bert-base-cased"]
UpperCamelCase = "hf-internal-testing/tiny-bert-tf-only"
if is_tf_available():
class lowerCAmelCase_ ( tf.keras.Model ):
def __init__( self , _lowerCAmelCase ):
super().__init__()
_lowercase : Optional[int] = tokenizer
_lowercase : Dict = AutoConfig.from_pretrained(_lowerCAmelCase )
_lowercase : Any = TFAutoModel.from_config(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase ):
_lowercase : int = self.tokenizer(_lowerCAmelCase )
_lowercase : int = self.bert(**_lowerCAmelCase )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
super().setUp()
_lowercase : int = [
BertTokenizer.from_pretrained(_lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
_lowercase : Optional[int] = [TFBertTokenizer.from_pretrained(_lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(_lowerCAmelCase , use_fast_bert_tokenizer=_lowerCAmelCase )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
_lowercase : Any = [
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: 一 二 三 一二三',
'And some much more rare Chinese: 齉 堃 齉堃',
'Je vais aussi écrire en français pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ',
]
_lowercase : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def __a ( self ):
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
_lowercase : str = tokenizer(_lowerCAmelCase , return_tensors='tf' , padding='longest' )
_lowercase : int = tf_tokenizer(_lowerCAmelCase )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def __a ( self ):
for tf_tokenizer in self.tf_tokenizers:
_lowercase : Union[str, Any] = tf_tokenizer(self.paired_sentences )
_lowercase : Any = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def __a ( self ):
for tf_tokenizer in self.tf_tokenizers:
_lowercase : Dict = tf.function(_lowerCAmelCase )
for test_inputs in (self.test_sentences, self.paired_sentences):
_lowercase : List[str] = tf.constant(_lowerCAmelCase )
_lowercase : Union[str, Any] = compiled_tokenizer(_lowerCAmelCase )
_lowercase : Any = tf_tokenizer(_lowerCAmelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def __a ( self ):
for tf_tokenizer in self.tf_tokenizers:
_lowercase : Dict = ModelToSave(tokenizer=_lowerCAmelCase )
_lowercase : Any = tf.convert_to_tensor(self.test_sentences )
_lowercase : List[Any] = model(_lowerCAmelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
_lowercase : int = Path(_lowerCAmelCase ) / 'saved.model'
model.save(_lowerCAmelCase )
_lowercase : Any = tf.keras.models.load_model(_lowerCAmelCase )
_lowercase : List[Any] = loaded_model(_lowerCAmelCase )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
| 66 |
"""simple docstring"""
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
_lowerCAmelCase : List[str] = 10
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
for i in range(_lowerCamelCase , _lowerCamelCase ):
if array[i] == target:
return i
return -1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Any = len(_lowerCamelCase )
while left <= right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : str = (left + right) // 3 + 1
_lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
_lowerCamelCase : Union[str, Any] = one_third - 1
elif array[two_third] < target:
_lowerCamelCase : Any = two_third + 1
else:
_lowerCamelCase : List[str] = one_third + 1
_lowerCamelCase : int = two_third - 1
else:
return -1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if left < right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Tuple = (left + right) // 3 + 1
_lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip()
_lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
_lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip())
_lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target)
_lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f'''Iterative search: {target} found at positions: {resulta}''')
print(f'''Recursive search: {target} found at positions: {resulta}''')
else:
print('''Not found''')
| 46 | 0 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
snake_case = logging.get_logger(__name__)
snake_case = OrderedDict(
[
("""align""", """EfficientNetImageProcessor"""),
("""beit""", """BeitImageProcessor"""),
("""bit""", """BitImageProcessor"""),
("""blip""", """BlipImageProcessor"""),
("""blip-2""", """BlipImageProcessor"""),
("""bridgetower""", """BridgeTowerImageProcessor"""),
("""chinese_clip""", """ChineseCLIPImageProcessor"""),
("""clip""", """CLIPImageProcessor"""),
("""clipseg""", """ViTImageProcessor"""),
("""conditional_detr""", """ConditionalDetrImageProcessor"""),
("""convnext""", """ConvNextImageProcessor"""),
("""convnextv2""", """ConvNextImageProcessor"""),
("""cvt""", """ConvNextImageProcessor"""),
("""data2vec-vision""", """BeitImageProcessor"""),
("""deformable_detr""", """DeformableDetrImageProcessor"""),
("""deit""", """DeiTImageProcessor"""),
("""deta""", """DetaImageProcessor"""),
("""detr""", """DetrImageProcessor"""),
("""dinat""", """ViTImageProcessor"""),
("""donut-swin""", """DonutImageProcessor"""),
("""dpt""", """DPTImageProcessor"""),
("""efficientformer""", """EfficientFormerImageProcessor"""),
("""efficientnet""", """EfficientNetImageProcessor"""),
("""flava""", """FlavaImageProcessor"""),
("""focalnet""", """BitImageProcessor"""),
("""git""", """CLIPImageProcessor"""),
("""glpn""", """GLPNImageProcessor"""),
("""groupvit""", """CLIPImageProcessor"""),
("""imagegpt""", """ImageGPTImageProcessor"""),
("""instructblip""", """BlipImageProcessor"""),
("""layoutlmv2""", """LayoutLMv2ImageProcessor"""),
("""layoutlmv3""", """LayoutLMv3ImageProcessor"""),
("""levit""", """LevitImageProcessor"""),
("""mask2former""", """Mask2FormerImageProcessor"""),
("""maskformer""", """MaskFormerImageProcessor"""),
("""mgp-str""", """ViTImageProcessor"""),
("""mobilenet_v1""", """MobileNetV1ImageProcessor"""),
("""mobilenet_v2""", """MobileNetV2ImageProcessor"""),
("""mobilevit""", """MobileViTImageProcessor"""),
("""mobilevit""", """MobileViTImageProcessor"""),
("""mobilevitv2""", """MobileViTImageProcessor"""),
("""nat""", """ViTImageProcessor"""),
("""oneformer""", """OneFormerImageProcessor"""),
("""owlvit""", """OwlViTImageProcessor"""),
("""perceiver""", """PerceiverImageProcessor"""),
("""pix2struct""", """Pix2StructImageProcessor"""),
("""poolformer""", """PoolFormerImageProcessor"""),
("""regnet""", """ConvNextImageProcessor"""),
("""resnet""", """ConvNextImageProcessor"""),
("""sam""", """SamImageProcessor"""),
("""segformer""", """SegformerImageProcessor"""),
("""swiftformer""", """ViTImageProcessor"""),
("""swin""", """ViTImageProcessor"""),
("""swin2sr""", """Swin2SRImageProcessor"""),
("""swinv2""", """ViTImageProcessor"""),
("""table-transformer""", """DetrImageProcessor"""),
("""timesformer""", """VideoMAEImageProcessor"""),
("""tvlt""", """TvltImageProcessor"""),
("""upernet""", """SegformerImageProcessor"""),
("""van""", """ConvNextImageProcessor"""),
("""videomae""", """VideoMAEImageProcessor"""),
("""vilt""", """ViltImageProcessor"""),
("""vit""", """ViTImageProcessor"""),
("""vit_hybrid""", """ViTHybridImageProcessor"""),
("""vit_mae""", """ViTImageProcessor"""),
("""vit_msn""", """ViTImageProcessor"""),
("""xclip""", """CLIPImageProcessor"""),
("""yolos""", """YolosImageProcessor"""),
]
)
snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Optional[int]:
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
_lowercase = model_type_to_module_name(snake_case__ )
_lowercase = importlib.import_module(F""".{module_name}""" , 'transformers.models' )
try:
return getattr(snake_case__ , snake_case__ )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(snake_case__ , '__name__' , snake_case__ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_lowercase = importlib.import_module('transformers' )
if hasattr(snake_case__ , snake_case__ ):
return getattr(snake_case__ , snake_case__ )
return None
def SCREAMING_SNAKE_CASE__ ( snake_case__ :Union[str, os.PathLike] , snake_case__ :Optional[Union[str, os.PathLike]] = None , snake_case__ :bool = False , snake_case__ :bool = False , snake_case__ :Optional[Dict[str, str]] = None , snake_case__ :Optional[Union[bool, str]] = None , snake_case__ :Optional[str] = None , snake_case__ :bool = False , **snake_case__ :Any , ) -> Tuple:
_lowercase = get_file_from_repo(
snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , )
if resolved_config_file is None:
logger.info(
'Could not locate the image processor configuration file, will try to use the model config instead.' )
return {}
with open(snake_case__ , encoding='utf-8' ) as reader:
return json.load(snake_case__ )
class A_ :
"""simple docstring"""
def __init__( self : Any ) -> Tuple:
raise EnvironmentError(
'AutoImageProcessor is designed to be instantiated '
'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' )
@classmethod
@replace_list_option_in_docstrings(__A )
def __UpperCAmelCase ( cls : str ,__A : Union[str, Any] ,**__A : List[Any] ) -> List[Any]:
_lowercase = kwargs.pop('config' ,__A )
_lowercase = kwargs.pop('trust_remote_code' ,__A )
_lowercase = True
_lowercase , _lowercase = ImageProcessingMixin.get_image_processor_dict(__A ,**__A )
_lowercase = config_dict.get('image_processor_type' ,__A )
_lowercase = None
if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ):
_lowercase = config_dict['auto_map']['AutoImageProcessor']
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
_lowercase = config_dict.pop('feature_extractor_type' ,__A )
if feature_extractor_class is not None:
logger.warning(
'Could not find image processor class in the image processor config or the model config. Loading'
' based on pattern matching with the model\'s feature extractor configuration.' )
_lowercase = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' )
if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ):
_lowercase = config_dict['auto_map']['AutoFeatureExtractor']
_lowercase = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' )
logger.warning(
'Could not find image processor auto map in the image processor config or the model config.'
' Loading based on pattern matching with the model\'s feature extractor configuration.' )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(__A ,__A ):
_lowercase = AutoConfig.from_pretrained(__A ,**__A )
# It could be in `config.image_processor_type``
_lowercase = getattr(__A ,'image_processor_type' ,__A )
if hasattr(__A ,'auto_map' ) and "AutoImageProcessor" in config.auto_map:
_lowercase = config.auto_map['AutoImageProcessor']
if image_processor_class is not None:
_lowercase = image_processor_class_from_name(__A )
_lowercase = image_processor_auto_map is not None
_lowercase = image_processor_class is not None or type(__A ) in IMAGE_PROCESSOR_MAPPING
_lowercase = resolve_trust_remote_code(
__A ,__A ,__A ,__A )
if has_remote_code and trust_remote_code:
_lowercase = get_class_from_dynamic_module(
__A ,__A ,**__A )
_lowercase = kwargs.pop('code_revision' ,__A )
if os.path.isdir(__A ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(__A ,**__A )
elif image_processor_class is not None:
return image_processor_class.from_dict(__A ,**__A )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(__A ) in IMAGE_PROCESSOR_MAPPING:
_lowercase = IMAGE_PROCESSOR_MAPPING[type(__A )]
return image_processor_class.from_dict(__A ,**__A )
raise ValueError(
F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """
F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def __UpperCAmelCase ( __A : Any ,__A : int ) -> Union[str, Any]:
IMAGE_PROCESSOR_MAPPING.register(__A ,__A )
| 67 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase = 100 ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = set()
_lowerCamelCase : Optional[Any] = 0
_lowerCamelCase : Optional[int] = n + 1 # maximum limit
for a in range(2 , _lowerCamelCase ):
for b in range(2 , _lowerCamelCase ):
_lowerCamelCase : List[str] = a**b # calculates the current power
collect_powers.add(_lowerCamelCase ) # adds the result to the set
return len(_lowerCamelCase )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 46 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
def lowercase__ ( A_: int ) -> Optional[Any]:
"""simple docstring"""
if "resnet-50" in model_name:
__UpperCAmelCase =ResNetConfig.from_pretrained("""microsoft/resnet-50""" )
elif "resnet-101" in model_name:
__UpperCAmelCase =ResNetConfig.from_pretrained("""microsoft/resnet-101""" )
else:
raise ValueError("""Model name should include either resnet50 or resnet101""" )
__UpperCAmelCase =DetrConfig(use_timm_backbone=A_ , backbone_config=A_ )
# set label attributes
__UpperCAmelCase ="""panoptic""" in model_name
if is_panoptic:
__UpperCAmelCase =250
else:
__UpperCAmelCase =91
__UpperCAmelCase ="""huggingface/label-files"""
__UpperCAmelCase ="""coco-detection-id2label.json"""
__UpperCAmelCase =json.load(open(hf_hub_download(A_ , A_ , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase ={int(A_ ): v for k, v in idalabel.items()}
__UpperCAmelCase =idalabel
__UpperCAmelCase ={v: k for k, v in idalabel.items()}
return config, is_panoptic
def lowercase__ ( A_: int ) -> Tuple:
"""simple docstring"""
__UpperCAmelCase =[]
# stem
# fmt: off
rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") )
rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") )
rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") )
rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") )
rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") )
# stages
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
# shortcut
if layer_idx == 0:
rename_keys.append(
(
F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''',
F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''',
) )
rename_keys.append(
(
F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''',
F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''',
) )
rename_keys.append(
(
F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''',
F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''',
) )
rename_keys.append(
(
F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''',
F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''',
) )
rename_keys.append(
(
F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''',
F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''',
) )
# 3 convs
for i in range(3 ):
rename_keys.append(
(
F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''',
F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''',
) )
rename_keys.append(
(
F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''',
F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''',
) )
rename_keys.append(
(
F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''',
F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''',
) )
rename_keys.append(
(
F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''',
F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''',
) )
rename_keys.append(
(
F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''',
F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''',
) )
# fmt: on
for i in range(config.encoder_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(
F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''',
F'''encoder.layers.{i}.self_attn.out_proj.weight''',
) )
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') )
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') )
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') )
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') )
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''',
F'''decoder.layers.{i}.self_attn.out_proj.weight''',
) )
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') )
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
) )
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
) )
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') )
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') )
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') )
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') )
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') )
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') )
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
] )
return rename_keys
def lowercase__ ( A_: Dict , A_: str , A_: str ) -> Tuple:
"""simple docstring"""
__UpperCAmelCase =state_dict.pop(A_ )
__UpperCAmelCase =val
def lowercase__ ( A_: Union[str, Any] , A_: List[str]=False ) -> Optional[int]:
"""simple docstring"""
__UpperCAmelCase =""""""
if is_panoptic:
__UpperCAmelCase ="""detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
__UpperCAmelCase =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
__UpperCAmelCase =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase =in_proj_weight[:256, :]
__UpperCAmelCase =in_proj_bias[:256]
__UpperCAmelCase =in_proj_weight[256:512, :]
__UpperCAmelCase =in_proj_bias[256:512]
__UpperCAmelCase =in_proj_weight[-256:, :]
__UpperCAmelCase =in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
__UpperCAmelCase =state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' )
__UpperCAmelCase =state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase =in_proj_weight[:256, :]
__UpperCAmelCase =in_proj_bias[:256]
__UpperCAmelCase =in_proj_weight[256:512, :]
__UpperCAmelCase =in_proj_bias[256:512]
__UpperCAmelCase =in_proj_weight[-256:, :]
__UpperCAmelCase =in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
__UpperCAmelCase =state_dict.pop(
F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' )
__UpperCAmelCase =state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) of cross-attention to the state dict
__UpperCAmelCase =in_proj_weight_cross_attn[:256, :]
__UpperCAmelCase =in_proj_bias_cross_attn[:256]
__UpperCAmelCase =in_proj_weight_cross_attn[256:512, :]
__UpperCAmelCase =in_proj_bias_cross_attn[256:512]
__UpperCAmelCase =in_proj_weight_cross_attn[-256:, :]
__UpperCAmelCase =in_proj_bias_cross_attn[-256:]
def lowercase__ ( ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCAmelCase =Image.open(requests.get(A_ , stream=A_ ).raw )
return im
@torch.no_grad()
def lowercase__ ( A_: List[str] , A_: Dict=None , A_: Optional[int]=False ) -> int:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase =get_detr_config(A_ )
# load original model from torch hub
__UpperCAmelCase ={
"""detr-resnet-50""": """detr_resnet50""",
"""detr-resnet-101""": """detr_resnet101""",
}
logger.info(F'''Converting model {model_name}...''' )
__UpperCAmelCase =torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=A_ ).eval()
__UpperCAmelCase =detr.state_dict()
# rename keys
for src, dest in create_rename_keys(A_ ):
if is_panoptic:
__UpperCAmelCase ="""detr.""" + src
rename_key(A_ , A_ , A_ )
# query, key and value matrices need special treatment
read_in_q_k_v(A_ , is_panoptic=A_ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
__UpperCAmelCase ="""detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
__UpperCAmelCase =state_dict.pop(A_ )
__UpperCAmelCase =val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
__UpperCAmelCase =state_dict.pop(A_ )
__UpperCAmelCase =val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
__UpperCAmelCase =state_dict.pop(A_ )
__UpperCAmelCase =val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
__UpperCAmelCase =state_dict.pop(A_ )
__UpperCAmelCase =val
# finally, create HuggingFace model and load state dict
__UpperCAmelCase =DetrForSegmentation(A_ ) if is_panoptic else DetrForObjectDetection(A_ )
model.load_state_dict(A_ )
model.eval()
# verify our conversion on an image
__UpperCAmelCase ="""coco_panoptic""" if is_panoptic else """coco_detection"""
__UpperCAmelCase =DetrImageProcessor(format=A_ )
__UpperCAmelCase =processor(images=prepare_img() , return_tensors="""pt""" )
__UpperCAmelCase =encoding["""pixel_values"""]
__UpperCAmelCase =detr(A_ )
__UpperCAmelCase =model(A_ )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(A_ ).mkdir(exist_ok=A_ )
model.save_pretrained(A_ )
processor.save_pretrained(A_ )
if push_to_hub:
# Upload model and image processor to the hub
logger.info("""Uploading PyTorch model and image processor to the hub...""" )
model.push_to_hub(F'''nielsr/{model_name}''' )
processor.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="detr-resnet-50",
type=str,
choices=["detr-resnet-50", "detr-resnet-101"],
help="Name of the DETR model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.")
__A = parser.parse_args()
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 68 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
# TODO Update this
_lowerCAmelCase : Optional[Any] = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class A_ ( _a ):
lowerCAmelCase__ = 'esm'
def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Union[str, Any] = hidden_size
_lowerCamelCase : Optional[Any] = num_hidden_layers
_lowerCamelCase : str = num_attention_heads
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Any = attention_probs_dropout_prob
_lowerCamelCase : int = max_position_embeddings
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Optional[int] = position_embedding_type
_lowerCamelCase : str = use_cache
_lowerCamelCase : Union[str, Any] = emb_layer_norm_before
_lowerCamelCase : Tuple = token_dropout
_lowerCamelCase : Dict = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("No esmfold_config supplied for folding model, using default values." )
_lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = esmfold_config
if vocab_list is None:
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" )
_lowerCamelCase : List[str] = get_default_vocab_list()
else:
_lowerCamelCase : Optional[Any] = vocab_list
else:
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = None
if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ):
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[Any] = super().to_dict()
if isinstance(self.esmfold_config ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = self.esmfold_config.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = 0
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = None
def _lowercase ( self: Dict ):
'''simple docstring'''
if self.trunk is None:
_lowerCamelCase : Optional[int] = TrunkConfig()
elif isinstance(self.trunk ,__lowerCAmelCase ):
_lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = asdict(self )
_lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = 4_8
lowerCAmelCase__ = 1_0_2_4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = False
lowerCAmelCase__ = 4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = None
def _lowercase ( self: Any ):
'''simple docstring'''
if self.structure_module is None:
_lowerCamelCase : Tuple = StructureModuleConfig()
elif isinstance(self.structure_module ,__lowerCAmelCase ):
_lowerCamelCase : str = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" )
_lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width
_lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" )
if self.dropout >= 0.4:
raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Dict = asdict(self )
_lowerCamelCase : Optional[int] = self.structure_module.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = 3_8_4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 1_6
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 1_2
lowerCAmelCase__ = 4
lowerCAmelCase__ = 8
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 1
lowerCAmelCase__ = 2
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_0
lowerCAmelCase__ = 1E-8
lowerCAmelCase__ = 1E5
def _lowercase ( self: Any ):
'''simple docstring'''
return asdict(self )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 46 | 0 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
a : Optional[Any] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''')
a : Optional[Any] = get_tests_dir('''fixtures/vocab.json''')
a : Optional[int] = get_tests_dir('''fixtures''')
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
__SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
def A ( self : Dict ):
"""simple docstring"""
__snake_case = 0
def A ( self : Optional[int] ):
"""simple docstring"""
__snake_case = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" )
self.assertIsInstance(a_ , a_ )
def A ( self : Optional[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case = WavaVecaConfig()
__snake_case = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" )
# save in new folder
model_config.save_pretrained(a_ )
processor.save_pretrained(a_ )
__snake_case = AutoProcessor.from_pretrained(a_ )
self.assertIsInstance(a_ , a_ )
def A ( self : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(a_ , os.path.join(a_ , a_ ) )
copyfile(a_ , os.path.join(a_ , "vocab.json" ) )
__snake_case = AutoProcessor.from_pretrained(a_ )
self.assertIsInstance(a_ , a_ )
def A ( self : List[str] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case = WavaVecaFeatureExtractor()
__snake_case = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" )
__snake_case = WavaVecaProcessor(a_ , a_ )
# save in new folder
processor.save_pretrained(a_ )
# drop `processor_class` in tokenizer
with open(os.path.join(a_ , a_ ) , "r" ) as f:
__snake_case = json.load(a_ )
config_dict.pop("processor_class" )
with open(os.path.join(a_ , a_ ) , "w" ) as f:
f.write(json.dumps(a_ ) )
__snake_case = AutoProcessor.from_pretrained(a_ )
self.assertIsInstance(a_ , a_ )
def A ( self : Optional[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case = WavaVecaFeatureExtractor()
__snake_case = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" )
__snake_case = WavaVecaProcessor(a_ , a_ )
# save in new folder
processor.save_pretrained(a_ )
# drop `processor_class` in feature extractor
with open(os.path.join(a_ , a_ ) , "r" ) as f:
__snake_case = json.load(a_ )
config_dict.pop("processor_class" )
with open(os.path.join(a_ , a_ ) , "w" ) as f:
f.write(json.dumps(a_ ) )
__snake_case = AutoProcessor.from_pretrained(a_ )
self.assertIsInstance(a_ , a_ )
def A ( self : Optional[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case = WavaVecaConfig(processor_class="Wav2Vec2Processor" )
model_config.save_pretrained(a_ )
# copy relevant files
copyfile(a_ , os.path.join(a_ , "vocab.json" ) )
# create emtpy sample processor
with open(os.path.join(a_ , a_ ) , "w" ) as f:
f.write("{}" )
__snake_case = AutoProcessor.from_pretrained(a_ )
self.assertIsInstance(a_ , a_ )
def A ( self : List[Any] ):
"""simple docstring"""
with self.assertRaises(a_ ):
__snake_case = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(a_ ):
__snake_case = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=a_ )
__snake_case = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=a_ )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , "NewProcessor" )
__snake_case = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
__snake_case = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
# Test we can also load the slow version
__snake_case = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=a_ , use_fast=a_ )
__snake_case = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" )
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
def A ( self : List[str] ):
"""simple docstring"""
try:
AutoConfig.register("custom" , a_ )
AutoFeatureExtractor.register(a_ , a_ )
AutoTokenizer.register(a_ , slow_tokenizer_class=a_ )
AutoProcessor.register(a_ , a_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(a_ ):
AutoProcessor.register(a_ , a_ )
# Now that the config is registered, it can be used as any other config with the auto-API
__snake_case = CustomFeatureExtractor.from_pretrained(a_ )
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case = os.path.join(a_ , "vocab.txt" )
with open(a_ , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
__snake_case = CustomTokenizer(a_ )
__snake_case = CustomProcessor(a_ , a_ )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(a_ )
__snake_case = AutoProcessor.from_pretrained(a_ )
self.assertIsInstance(a_ , a_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def A ( self : Union[str, Any] ):
"""simple docstring"""
class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ):
__SCREAMING_SNAKE_CASE = False
class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ):
__SCREAMING_SNAKE_CASE = False
class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ):
__SCREAMING_SNAKE_CASE = """AutoFeatureExtractor"""
__SCREAMING_SNAKE_CASE = """AutoTokenizer"""
__SCREAMING_SNAKE_CASE = False
try:
AutoConfig.register("custom" , a_ )
AutoFeatureExtractor.register(a_ , a_ )
AutoTokenizer.register(a_ , slow_tokenizer_class=a_ )
AutoProcessor.register(a_ , a_ )
# If remote code is not set, the default is to use local classes.
__snake_case = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" )
self.assertEqual(processor.__class__.__name__ , "NewProcessor" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
__snake_case = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=a_ )
self.assertEqual(processor.__class__.__name__ , "NewProcessor" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
__snake_case = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=a_ )
self.assertEqual(processor.__class__.__name__ , "NewProcessor" )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def A ( self : Union[str, Any] ):
"""simple docstring"""
__snake_case = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" )
self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" )
def A ( self : str ):
"""simple docstring"""
__snake_case = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" )
self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" )
@is_staging_test
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
__SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
@classmethod
def A ( cls : Optional[Any] ):
"""simple docstring"""
__snake_case = TOKEN
HfFolder.save_token(a_ )
@classmethod
def A ( cls : str ):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id="test-processor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-processor" )
except HTTPError:
pass
def A ( self : List[str] ):
"""simple docstring"""
__snake_case = WavaVecaProcessor.from_pretrained(a_ )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(a_ , "test-processor" ) , push_to_hub=a_ , use_auth_token=self._token )
__snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(a_ , getattr(new_processor.feature_extractor , a_ ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def A ( self : Tuple ):
"""simple docstring"""
__snake_case = WavaVecaProcessor.from_pretrained(a_ )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(a_ , "test-processor-org" ) , push_to_hub=a_ , use_auth_token=self._token , organization="valid_org" , )
__snake_case = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(a_ , getattr(new_processor.feature_extractor , a_ ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def A ( self : Any ):
"""simple docstring"""
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
__snake_case = CustomFeatureExtractor.from_pretrained(a_ )
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case = os.path.join(a_ , "vocab.txt" )
with open(a_ , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
__snake_case = CustomTokenizer(a_ )
__snake_case = CustomProcessor(a_ , a_ )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token )
__snake_case = Repository(a_ , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token )
processor.save_pretrained(a_ )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor",
"AutoProcessor": "custom_processing.CustomProcessor",
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(a_ , "tokenizer_config.json" ) ) as f:
__snake_case = json.load(a_ )
self.assertDictEqual(
tokenizer_config["auto_map"] , {
"AutoTokenizer": ["custom_tokenization.CustomTokenizer", None],
"AutoProcessor": "custom_processing.CustomProcessor",
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(a_ , "custom_feature_extraction.py" ) ) )
self.assertTrue(os.path.isfile(os.path.join(a_ , "custom_tokenization.py" ) ) )
self.assertTrue(os.path.isfile(os.path.join(a_ , "custom_processing.py" ) ) )
repo.push_to_hub()
__snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=a_ )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
| 69 |
"""simple docstring"""
import re
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError("Invalid Strand" )
return dna.translate(dna.maketrans("ATCG" , "TAGC" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 46 | 0 |
from __future__ import annotations
def _SCREAMING_SNAKE_CASE ( lowercase : int ):
'''simple docstring'''
lowerCamelCase_ = str(lowercase )
return len(lowercase ) == 9 and set(lowercase ) == set('123456789' )
def _SCREAMING_SNAKE_CASE ( ):
'''simple docstring'''
for base_num in range(99_99 , 49_99 , -1 ):
lowerCamelCase_ = 10_00_02 * base_num
if is_9_pandigital(lowercase ):
return candidate
for base_num in range(3_33 , 99 , -1 ):
lowerCamelCase_ = 1_00_20_03 * base_num
if is_9_pandigital(lowercase ):
return candidate
return None
if __name__ == "__main__":
print(F"""{solution() = }""")
| 70 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : str = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_lowerCamelCase : Tuple = ""
else:
_lowerCamelCase : str = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
_lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : Tuple = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : Any = dct.pop(_lowerCamelCase )
_lowerCamelCase : Dict = val
def lowerCamelCase_( ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
_lowerCamelCase : str = 8
# set labels if required
if not base_model:
_lowerCamelCase : str = 1000
_lowerCamelCase : Any = "huggingface/label-files"
_lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
_lowerCamelCase : int = 384
_lowerCamelCase : str = 1536
_lowerCamelCase : List[str] = 12
_lowerCamelCase : Optional[int] = 6
# load original model from torch hub
_lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase )
original_model.eval()
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : List[str] = original_model.state_dict()
if base_model:
remove_classification_head_(_lowerCamelCase )
_lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# load HuggingFace model
if base_model:
_lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval()
else:
_lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval()
model.load_state_dict(_lowerCamelCase )
# Check outputs on an image, prepared by ViTImageProcessor
_lowerCamelCase : Tuple = ViTImageProcessor()
_lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
_lowerCamelCase : Dict = encoding["pixel_values"]
_lowerCamelCase : int = model(_lowerCamelCase )
if base_model:
_lowerCamelCase : List[str] = original_model(_lowerCamelCase )
assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 )
else:
_lowerCamelCase : Tuple = original_model(_lowerCamelCase )
assert logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''dino_vitb16''',
type=str,
help='''Name of the model trained with DINO you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--base_model''',
action='''store_true''',
help='''Whether to only convert the base model (no projection head weights).''',
)
parser.set_defaults(base_model=True)
_lowerCAmelCase : List[Any] = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 46 | 0 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
_lowerCamelCase = pytest.mark.integration
@pytest.mark.parametrize("path" , ["paws", "csv"] )
def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ) -> Tuple:
"""simple docstring"""
inspect_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[Any] = path + ".py"
assert script_name in os.listdir(_SCREAMING_SNAKE_CASE )
assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE )
@pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.parametrize("path" , ["accuracy"] )
def a__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
"""simple docstring"""
inspect_metric(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[Any] = path + ".py"
assert script_name in os.listdir(_SCREAMING_SNAKE_CASE )
assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"path, config_name, expected_splits" , [
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
] , )
def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"path, config_name, expected_exception" , [
("paws", None, ValueError),
] , )
def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ) -> str:
"""simple docstring"""
with pytest.raises(_SCREAMING_SNAKE_CASE ):
get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"path, expected" , [
("squad", "plain_text"),
("acronym_identification", "default"),
("lhoestq/squad", "plain_text"),
("lhoestq/test", "default"),
("lhoestq/demo1", "lhoestq--demo1"),
("dalle-mini/wit", "dalle-mini--wit"),
] , )
def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_dataset_config_names(_SCREAMING_SNAKE_CASE )
assert expected in config_names
@pytest.mark.parametrize(
"path, expected_configs, expected_splits_in_first_config" , [
("squad", ["plain_text"], ["train", "validation"]),
("dalle-mini/wit", ["dalle-mini--wit"], ["train"]),
("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]),
] , )
def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Any = get_dataset_infos(_SCREAMING_SNAKE_CASE )
assert list(infos.keys() ) == expected_configs
UpperCAmelCase_ : Optional[Any] = expected_configs[0]
assert expected_config in infos
UpperCAmelCase_ : Dict = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"path, expected_config, expected_splits" , [
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
] , )
def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_dataset_infos(_SCREAMING_SNAKE_CASE )
assert expected_config in infos
UpperCAmelCase_ : Dict = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"path, config_name, expected_exception" , [
("paws", None, ValueError),
] , )
def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str ) -> Any:
"""simple docstring"""
with pytest.raises(_SCREAMING_SNAKE_CASE ):
get_dataset_split_names(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE )
| 71 |
"""simple docstring"""
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase )
_lowerCamelCase : Dict = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase )
class A_ ( _a ):
lowerCAmelCase__ = 'sigmoid'
lowerCAmelCase__ = 'softmax'
lowerCAmelCase__ = 'none'
@add_end_docstrings(
_a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , )
class A_ ( _a ):
lowerCAmelCase__ = False
lowerCAmelCase__ = ClassificationFunction.NONE
def __init__( self: str ,**__lowerCAmelCase: str ):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = tokenizer_kwargs
_lowerCamelCase : Optional[int] = {}
if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None:
_lowerCamelCase : Tuple = self.model.config.return_all_scores
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None:
_lowerCamelCase : List[str] = top_k
_lowerCamelCase : Union[str, Any] = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,)
if return_all_scores:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : Union[str, Any] = 1
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
_lowerCamelCase : Dict = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
_lowerCamelCase : Optional[Any] = "top_k" not in kwargs
if isinstance(args[0] ,__lowerCAmelCase ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = self.framework
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"
" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." )
return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
return self.model(**__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ):
'''simple docstring'''
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
_lowerCamelCase : Dict = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
_lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None:
_lowerCamelCase : Optional[int] = self.model.config.function_to_apply
else:
_lowerCamelCase : str = ClassificationFunction.NONE
_lowerCamelCase : List[Any] = model_outputs["logits"][0]
_lowerCamelCase : Optional[int] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
_lowerCamelCase : str = sigmoid(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.SOFTMAX:
_lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.NONE:
_lowerCamelCase : str = outputs
else:
raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
_lowerCamelCase : Optional[int] = [
{"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase )
]
if not _legacy:
dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase )
if top_k is not None:
_lowerCamelCase : Any = dict_scores[:top_k]
return dict_scores
| 46 | 0 |
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class __magic_name__ ( __SCREAMING_SNAKE_CASE ):
@staticmethod
@abstractmethod
def _A( snake_case_ ):
raise NotImplementedError()
@abstractmethod
def _A( self ):
raise NotImplementedError()
| 72 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
_lowerCAmelCase : Tuple = '''\
Text data.
Second line of data.'''
_lowerCAmelCase : str = '''file'''
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd")
_lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" )
with zstd.open(_lowerCamelCase , "wb" ) as f:
f.write(_lowerCamelCase )
return path
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f:
f.write(_lowerCamelCase )
return FILE_PATH
@pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path}
_lowerCamelCase : Tuple = input_paths[compression_format]
_lowerCamelCase : int = tmp_path / "cache"
_lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase )
_lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase )
with open(_lowerCamelCase ) as f:
_lowerCamelCase : List[Any] = f.read()
with open(_lowerCamelCase ) as f:
_lowerCamelCase : int = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("default_extracted" , [True, False] )
@pytest.mark.parametrize("default_cache_dir" , [True, False] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "custom_cache"
_lowerCamelCase : List[str] = "custom_extracted_dir"
_lowerCamelCase : str = tmp_path / "custom_extracted_path"
if default_extracted:
_lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted")
else:
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) )
_lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_lowerCamelCase : int = xz_file
_lowerCamelCase : List[Any] = (
DownloadConfig(extract_compressed_file=_lowerCamelCase )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase )
)
_lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase )
assert Path(_lowerCamelCase ).parent.parts[-2:] == expected
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() )
assert cached_path(_lowerCamelCase ) == text_file
# relative path
_lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_lowerCamelCase ) == text_file
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" )
with pytest.raises(_lowerCamelCase ):
cached_path(_lowerCamelCase )
# relative path
_lowerCamelCase : List[Any] = "./__missing_file__.txt"
with pytest.raises(_lowerCamelCase ):
cached_path(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" )
with open(_lowerCamelCase ) as f:
_lowerCamelCase : Tuple = f.read()
assert output_file_content == FILE_CONTENT
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
with pytest.raises(_lowerCamelCase ):
cached_path("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
http_get("https://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
http_head("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
ftp_head("ftp://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
fsspec_head("s3://huggingface.co" )
| 46 | 0 |
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = ['a', 'b', 'c']
# Defaults to last layer if both are None
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(a , a , a)
self.assertEqual(a , ['c'])
self.assertEqual(a , [2])
# Out indices set to match out features
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(['a', 'c'] , a , a)
self.assertEqual(a , ['a', 'c'])
self.assertEqual(a , [0, 2])
# Out features set to match out indices
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(a , [0, 2] , a)
self.assertEqual(a , ['a', 'c'])
self.assertEqual(a , [0, 2])
# Out features selected from negative indices
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(a , [-3, -1] , a)
self.assertEqual(a , ['a', 'c'])
self.assertEqual(a , [-3, -1])
def SCREAMING_SNAKE_CASE__ ( self) -> int:
# Stage names must be set
with self.assertRaises(a):
verify_out_features_out_indices(['a', 'b'] , (0, 1) , a)
# Out features must be a list
with self.assertRaises(a):
verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'])
# Out features must be a subset of stage names
with self.assertRaises(a):
verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'])
# Out indices must be a list or tuple
with self.assertRaises(a):
verify_out_features_out_indices(a , 0 , ['a', 'b'])
# Out indices must be a subset of stage names
with self.assertRaises(a):
verify_out_features_out_indices(a , (0, 1) , ['a'])
# Out features and out indices must be the same length
with self.assertRaises(a):
verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'])
# Out features should match out indices
with self.assertRaises(a):
verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'])
# Out features and out indices should be in order
with self.assertRaises(a):
verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'])
# Check passes with valid inputs
verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'])
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = BackboneMixin()
SCREAMING_SNAKE_CASE = ['a', 'b', 'c']
SCREAMING_SNAKE_CASE = ['a', 'c']
SCREAMING_SNAKE_CASE = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ['a', 'c'])
self.assertEqual(backbone.out_indices , [0, 2])
# Check out features and indices are updated correctly
SCREAMING_SNAKE_CASE = ['a', 'b']
self.assertEqual(backbone.out_features , ['a', 'b'])
self.assertEqual(backbone.out_indices , [0, 1])
SCREAMING_SNAKE_CASE = [-3, -1]
self.assertEqual(backbone.out_features , ['a', 'c'])
self.assertEqual(backbone.out_indices , [-3, -1])
| 73 |
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None:
'''simple docstring'''
_lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(_lowerCamelCase , torch.Tensor ):
raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" )
_lowerCamelCase : List[str] = v.half()
if save_path is None: # overwrite src_path
_lowerCamelCase : Union[str, Any] = src_path
torch.save(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 46 | 0 |
def a__ ( snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = []
if len(snake_case ) == 1:
return [nums.copy()]
for _ in range(len(snake_case ) ):
__SCREAMING_SNAKE_CASE : Optional[int] = nums.pop(0 )
__SCREAMING_SNAKE_CASE : int = permute(snake_case )
for perm in permutations:
perm.append(snake_case )
result.extend(snake_case )
nums.append(snake_case )
return result
def a__ ( snake_case ):
"""simple docstring"""
def backtrack(snake_case ):
if start == len(snake_case ) - 1:
output.append(nums[:] )
else:
for i in range(snake_case , len(snake_case ) ):
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = nums[i], nums[start]
backtrack(start + 1 )
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = nums[i], nums[start] # backtrack
__SCREAMING_SNAKE_CASE : Optional[Any] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
lowercase_ = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 74 |
"""simple docstring"""
import importlib
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
import transformers.models.auto
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
_lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''')
class A_ ( unittest.TestCase ):
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertIsNotNone(transformers.models.auto.__spec__ )
self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
# This model name contains bert and roberta, but roberta ends up being picked.
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" )
os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f:
f.write(json.dumps({} ) )
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
try:
AutoConfig.register("custom" ,__lowerCAmelCase )
# Wrong model type will raise an error
with self.assertRaises(__lowerCAmelCase ):
AutoConfig.register("model" ,__lowerCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCAmelCase ):
AutoConfig.register("bert" ,__lowerCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
_lowerCamelCase : Any = CustomConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
def _lowercase ( self: Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ):
_lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" )
def _lowercase ( self: Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
_lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" )
def _lowercase ( self: Tuple ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,):
_lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
with self.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfig" )
# Test config can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" )
def _lowercase ( self: Dict ):
'''simple docstring'''
class A_ ( _a ):
lowerCAmelCase__ = 'new-model'
try:
AutoConfig.register("new-model" ,__lowerCAmelCase )
# If remote code is not set, the default is to use local
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" )
# If remote code is disabled, we load the local one.
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" )
# If remote is enabled, we load from the Hub
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfig" )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
| 46 | 0 |
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCamelCase__ = logging.get_logger(__name__)
class lowerCamelCase_ ( __a ):
lowerCAmelCase__ = ['pixel_values']
def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_A : int , ):
'''simple docstring'''
super().__init__(**_A )
UpperCAmelCase__ : Dict = size if size is not None else {'''shortest_edge''': 224}
UpperCAmelCase__ : int = get_size_dict(_A , default_to_square=_A )
UpperCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase__ : List[str] = get_size_dict(_A , param_name='''crop_size''' )
UpperCAmelCase__ : str = do_resize
UpperCAmelCase__ : List[Any] = size
UpperCAmelCase__ : int = resample
UpperCAmelCase__ : int = do_center_crop
UpperCAmelCase__ : List[str] = crop_size
UpperCAmelCase__ : Union[str, Any] = do_rescale
UpperCAmelCase__ : Optional[int] = rescale_factor
UpperCAmelCase__ : List[Any] = do_normalize
UpperCAmelCase__ : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
UpperCAmelCase__ : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def lowercase_ ( self : str , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = get_size_dict(_A , default_to_square=_A )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
UpperCAmelCase__ : Tuple = int((256 / 224) * size['''shortest_edge'''] )
UpperCAmelCase__ : Tuple = get_resize_output_image_size(_A , size=_A , default_to_square=_A )
UpperCAmelCase__ : Dict = {'''height''': output_size[0], '''width''': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" )
return resize(
_A , size=(size_dict['''height'''], size_dict['''width''']) , resample=_A , data_format=_A , **_A )
def lowercase_ ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A )
def lowercase_ ( self : List[str] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Dict , ):
'''simple docstring'''
return rescale(_A , scale=_A , data_format=_A , **_A )
def lowercase_ ( self : Dict , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ):
'''simple docstring'''
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def lowercase_ ( self : Optional[Any] , _A : ImageInput , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = None , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[TensorType] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ):
'''simple docstring'''
UpperCAmelCase__ : str = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase__ : Optional[int] = resample if resample is not None else self.resample
UpperCAmelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase__ : List[str] = image_std if image_std is not None else self.image_std
UpperCAmelCase__ : Tuple = size if size is not None else self.size
UpperCAmelCase__ : int = get_size_dict(_A , default_to_square=_A )
UpperCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase__ : int = get_size_dict(_A , param_name='''crop_size''' )
UpperCAmelCase__ : Union[str, Any] = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase__ : int = [to_numpy_array(_A ) for image in images]
if do_resize:
UpperCAmelCase__ : str = [self.resize(_A , _A , _A ) for image in images]
if do_center_crop:
UpperCAmelCase__ : Tuple = [self.center_crop(_A , _A ) for image in images]
if do_rescale:
UpperCAmelCase__ : Optional[int] = [self.rescale(_A , _A ) for image in images]
if do_normalize:
UpperCAmelCase__ : Any = [self.normalize(_A , _A , _A ) for image in images]
UpperCAmelCase__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images]
UpperCAmelCase__ : Dict = {'''pixel_values''': images}
return BatchFeature(data=_A , tensor_type=_A )
| 75 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCAmelCase : str = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
_lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 46 | 0 |
"""simple docstring"""
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
a_ = False
class UpperCAmelCase_ ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class UpperCAmelCase_ ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> int:
__lowercase : Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowercase : Optional[int] = '''A painting of a squirrel eating a burger '''
__lowercase : Optional[int] = torch.manual_seed(0 )
__lowercase : Any = pipe(
prompt=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(UpperCamelCase_ )
__lowercase : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowercase : Union[str, Any] = generator.manual_seed(0 )
__lowercase : List[Any] = pipe(
prompt=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def _lowerCamelCase ( self ) -> Optional[int]:
__lowercase : str = VersatileDiffusionTextToImagePipeline.from_pretrained(
'''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowercase : str = '''A painting of a squirrel eating a burger '''
__lowercase : Any = torch.manual_seed(0 )
__lowercase : str = pipe(
prompt=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
__lowercase : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowercase : Union[str, Any] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 76 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : Tuple = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int:
'''simple docstring'''
_lowerCamelCase : Any = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"),
(
"text_embeddings.position_embeddings.weight",
"vilt.embeddings.text_embeddings.position_embeddings.weight",
),
("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"),
(
"text_embeddings.token_type_embeddings.weight",
"vilt.embeddings.text_embeddings.token_type_embeddings.weight",
),
("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"),
("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"),
# patch embeddings
("transformer.cls_token", "vilt.embeddings.cls_token"),
("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"),
("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"),
("transformer.pos_embed", "vilt.embeddings.position_embeddings"),
# token type embeddings
("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"),
] )
# final layernorm + pooler
rename_keys.extend(
[
("transformer.norm.weight", "vilt.layernorm.weight"),
("transformer.norm.bias", "vilt.layernorm.bias"),
("pooler.dense.weight", "vilt.pooler.dense.weight"),
("pooler.dense.bias", "vilt.pooler.dense.bias"),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
("vqa_classifier.0.weight", "classifier.0.weight"),
("vqa_classifier.0.bias", "classifier.0.bias"),
("vqa_classifier.1.weight", "classifier.1.weight"),
("vqa_classifier.1.bias", "classifier.1.bias"),
("vqa_classifier.3.weight", "classifier.3.weight"),
("vqa_classifier.3.bias", "classifier.3.bias"),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
("nlvr2_classifier.0.weight", "classifier.0.weight"),
("nlvr2_classifier.0.bias", "classifier.0.bias"),
("nlvr2_classifier.1.weight", "classifier.1.weight"),
("nlvr2_classifier.1.bias", "classifier.1.bias"),
("nlvr2_classifier.3.weight", "classifier.3.weight"),
("nlvr2_classifier.3.bias", "classifier.3.bias"),
] )
else:
pass
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
_lowerCamelCase : Tuple = "vilt."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" )
_lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : str = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : Any = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Optional[int] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase )
_lowerCamelCase : Optional[int] = val
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase )
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Tuple = False
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : str = False
if "vqa" in checkpoint_url:
_lowerCamelCase : str = True
_lowerCamelCase : Union[str, Any] = 3129
_lowerCamelCase : str = "huggingface/label-files"
_lowerCamelCase : Optional[Any] = "vqa2-id2label.json"
_lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[int] = idalabel
_lowerCamelCase : int = {v: k for k, v in idalabel.items()}
_lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase )
elif "nlvr" in checkpoint_url:
_lowerCamelCase : Tuple = True
_lowerCamelCase : List[str] = 2
_lowerCamelCase : Optional[Any] = {0: "False", 1: "True"}
_lowerCamelCase : int = {v: k for k, v in config.idalabel.items()}
_lowerCamelCase : Optional[Any] = 3
_lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase )
elif "irtr" in checkpoint_url:
_lowerCamelCase : Tuple = True
_lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase )
elif "mlm_itm" in checkpoint_url:
_lowerCamelCase : Dict = True
_lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase )
else:
raise ValueError("Unknown model type" )
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"]
_lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase )
if mlm_model or irtr_model:
_lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
_lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(_lowerCamelCase )
# Define processor
_lowerCamelCase : int = ViltImageProcessor(size=384 )
_lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" )
_lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase )
# Forward pass on example inputs (image + text)
if nlvr_model:
_lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw )
_lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw )
_lowerCamelCase : str = (
"The left image contains twice the number of dogs as the right image, and at least two dogs in total are"
" standing."
)
_lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : int = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
_lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw )
if mlm_model:
_lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]."
else:
_lowerCamelCase : List[str] = "How many cats are there?"
_lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase )
# Verify outputs
if mlm_model:
_lowerCamelCase : List[str] = torch.Size([1, 11, 30522] )
_lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 )
# verify masked token prediction equals "cats"
_lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
_lowerCamelCase : List[str] = torch.Size([1, 3129] )
_lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] )
assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 )
# verify vqa prediction equals "2"
_lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
_lowerCamelCase : List[str] = torch.Size([1, 2] )
_lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
_lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 46 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
A = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 77 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = list(_lowerCamelCase )
_lowerCamelCase : Any = list(_lowerCamelCase )
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
if lista[i] != lista[i]:
count += 1
_lowerCamelCase : List[str] = "_"
if count > 1:
return False
else:
return "".join(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : List[str] = []
while True:
_lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase )
_lowerCamelCase : str = []
for i in range(len(_lowerCamelCase ) ):
for j in range(i + 1 , len(_lowerCamelCase ) ):
_lowerCamelCase : Dict = compare_string(binary[i] , binary[j] )
if k is False:
_lowerCamelCase : Any = "*"
_lowerCamelCase : Optional[int] = "*"
temp.append("X" )
for i in range(len(_lowerCamelCase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_lowerCamelCase ) == 0:
return pi
_lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = []
for minterm in minterms:
_lowerCamelCase : List[Any] = ""
for _ in range(_lowerCamelCase ):
_lowerCamelCase : List[str] = str(minterm % 2 ) + string
minterm //= 2
temp.append(_lowerCamelCase )
return temp
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = list(_lowerCamelCase )
_lowerCamelCase : Optional[int] = list(_lowerCamelCase )
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : Dict = []
_lowerCamelCase : Dict = [0] * len(_lowerCamelCase )
for i in range(len(chart[0] ) ):
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = -1
for j in range(len(_lowerCamelCase ) ):
if chart[j][i] == 1:
count += 1
_lowerCamelCase : Any = j
if count == 1:
_lowerCamelCase : Union[str, Any] = 1
for i in range(len(_lowerCamelCase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Optional[int] = 0
temp.append(prime_implicants[i] )
while True:
_lowerCamelCase : str = 0
_lowerCamelCase : int = -1
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Optional[int] = chart[i].count(1 )
if count_n > max_n:
_lowerCamelCase : Any = count_n
_lowerCamelCase : Union[str, Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Any = 0
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]:
'''simple docstring'''
_lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )]
for i in range(len(_lowerCamelCase ) ):
_lowerCamelCase : List[Any] = prime_implicants[i].count("_" )
for j in range(len(_lowerCamelCase ) ):
if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ):
_lowerCamelCase : Optional[Any] = 1
return chart
def lowerCamelCase_( ) -> None:
'''simple docstring'''
_lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) )
_lowerCamelCase : str = [
float(_lowerCamelCase )
for x in input(
"Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split()
]
_lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : str = check(_lowerCamelCase )
print("Prime Implicants are:" )
print(_lowerCamelCase )
_lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase )
print("Essential Prime Implicants are:" )
print(_lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 46 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Optional[Any] ) -> int:
'''simple docstring'''
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(snake_case_ , n - 1 , snake_case_ ) * a) % mod
else:
UpperCAmelCase_ = binary_exponentiation(snake_case_ , n / 2 , snake_case_ )
return (b * b) % mod
# a prime number
SCREAMING_SNAKE_CASE_: Optional[int] =7_01
SCREAMING_SNAKE_CASE_: Any =10_00_00_00_00
SCREAMING_SNAKE_CASE_: Optional[Any] =10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 78 |
"""simple docstring"""
from __future__ import annotations
from random import random
class A_ :
def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ):
'''simple docstring'''
_lowerCamelCase : Any = value
_lowerCamelCase : Optional[int] = random()
_lowerCamelCase : Node | None = None
_lowerCamelCase : Node | None = None
def __repr__( self: Tuple ):
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return F"""'{self.value}: {self.prior:.5}'"""
else:
return pformat(
{F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 )
def __str__( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Tuple = str(self.value ) + " "
_lowerCamelCase : Optional[Any] = str(self.left or "" )
_lowerCamelCase : int = str(self.right or "" )
return value + left + right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]:
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
_lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase )
return left, root
else:
_lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase )
return root, right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
_lowerCamelCase : Any = merge(left.right , _lowerCamelCase )
return left
else:
_lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left )
return right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
_lowerCamelCase : int = Node(_lowerCamelCase )
_lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase )
return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 )
_lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase )
return merge(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> None:
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value , end="," )
inorder(root.right )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
_lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) )
elif arg[0] == "-":
_lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) )
else:
print("Unknown command" )
return root
def lowerCamelCase_( ) -> None:
'''simple docstring'''
_lowerCamelCase : List[Any] = None
print(
"enter numbers to create a tree, + value to add value into treap, "
"- value to erase all nodes with value. 'q' to quit. " )
_lowerCamelCase : int = input()
while args != "q":
_lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase )
print(_lowerCamelCase )
_lowerCamelCase : Tuple = input()
print("good by!" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 46 | 0 |
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class UpperCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=64 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
UpperCAmelCase__ : Optional[Any] = parent
UpperCAmelCase__ : int = batch_size
UpperCAmelCase__ : Optional[int] = seq_length
UpperCAmelCase__ : str = is_training
UpperCAmelCase__ : int = use_input_mask
UpperCAmelCase__ : List[str] = use_token_type_ids
UpperCAmelCase__ : int = use_labels
UpperCAmelCase__ : List[Any] = vocab_size
UpperCAmelCase__ : str = hidden_size
UpperCAmelCase__ : Tuple = num_hidden_layers
UpperCAmelCase__ : Tuple = num_attention_heads
UpperCAmelCase__ : List[str] = intermediate_size
UpperCAmelCase__ : Union[str, Any] = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase__ : str = max_position_embeddings
UpperCAmelCase__ : Dict = type_vocab_size
UpperCAmelCase__ : Tuple = type_sequence_label_size
UpperCAmelCase__ : Optional[Any] = initializer_range
UpperCAmelCase__ : Optional[int] = num_labels
UpperCAmelCase__ : int = num_choices
UpperCAmelCase__ : Optional[Any] = scope
UpperCAmelCase__ : Tuple = vocab_size - 1
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ : Tuple = None
if self.use_input_mask:
UpperCAmelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ : int = None
if self.use_labels:
UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def __UpperCAmelCase ( self ):
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = self.prepare_config_and_inputs()
UpperCAmelCase__ : Union[str, Any] = True
return config, input_ids, input_mask, token_labels
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : List[str] = GPTNeoXModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
UpperCAmelCase__ : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )
UpperCAmelCase__ : Tuple = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : List[Any] = True
UpperCAmelCase__ : Dict = GPTNeoXModel(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
UpperCAmelCase__ : str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : List[str] = GPTNeoXForCausalLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
UpperCAmelCase__ : Tuple = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : int = self.num_labels
UpperCAmelCase__ : Tuple = GPTNeoXForQuestionAnswering(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
UpperCAmelCase__ : Tuple = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : List[str] = self.num_labels
UpperCAmelCase__ : Optional[int] = GPTNeoXForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : Any = self.num_labels
UpperCAmelCase__ : Optional[Any] = GPTNeoXForTokenClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
UpperCAmelCase__ : Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : Optional[int] = True
UpperCAmelCase__ : Any = GPTNeoXForCausalLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
# first forward pass
UpperCAmelCase__ : Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase )
UpperCAmelCase__ : Optional[Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase__ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase__ : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase__ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase__ : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase )
UpperCAmelCase__ : str = output_from_no_past["""hidden_states"""][0]
UpperCAmelCase__ : List[Any] = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["""hidden_states"""][0]
# select random slice
UpperCAmelCase__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase__ : int = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase__ : List[str] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs
UpperCAmelCase__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
__lowerCamelCase = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
__lowerCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else ()
__lowerCamelCase = (
{
'feature-extraction': GPTNeoXModel,
'question-answering': GPTNeoXForQuestionAnswering,
'text-classification': GPTNeoXForSequenceClassification,
'text-generation': GPTNeoXForCausalLM,
'token-classification': GPTNeoXForTokenClassification,
'zero-shot': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : str = GPTNeoXModelTester(self )
UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=64 , num_attention_heads=8 )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __UpperCAmelCase ( self ):
# This regression test was failing with PyTorch < 1.3
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
UpperCAmelCase__ : int = None
self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*_lowerCAmelCase )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
@unittest.skip(reason="""Feed forward chunking is not implemented""" )
def __UpperCAmelCase ( self ):
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __UpperCAmelCase ( self , _lowerCAmelCase ):
UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : List[str] = ids_tensor([1, 10] , config.vocab_size )
UpperCAmelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase__ : Optional[Any] = GPTNeoXModel(_lowerCAmelCase )
original_model.to(_lowerCAmelCase )
original_model.eval()
UpperCAmelCase__ : List[str] = original_model(_lowerCAmelCase ).last_hidden_state
UpperCAmelCase__ : Union[str, Any] = original_model(_lowerCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase__ : Any = {"""type""": scaling_type, """factor""": 1_0.0}
UpperCAmelCase__ : int = GPTNeoXModel(_lowerCAmelCase )
scaled_model.to(_lowerCAmelCase )
scaled_model.eval()
UpperCAmelCase__ : List[Any] = scaled_model(_lowerCAmelCase ).last_hidden_state
UpperCAmelCase__ : Optional[Any] = scaled_model(_lowerCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) )
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
for checkpointing in [True, False]:
UpperCAmelCase__ : Optional[int] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(_lowerCAmelCase )
UpperCAmelCase__ : Union[str, Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_lowerCAmelCase )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
UpperCAmelCase__ : List[Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure"""
UpperCAmelCase__ : str = model.generate(**_lowerCAmelCase , do_sample=_lowerCAmelCase , max_new_tokens=20 )
UpperCAmelCase__ : Tuple = tokenizer.batch_decode(_lowerCAmelCase )[0]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
| 79 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = SpeechTaTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = True
def _lowercase ( self: List[Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase )
_lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token} )
tokenizer.add_tokens(["<ctc_blank>"] )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self: List[str] ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = "this is a test"
_lowerCamelCase : Optional[Any] = "this is a test"
return input_text, output_text
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase )
return text, ids
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "<pad>"
_lowerCamelCase : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"<s>" )
self.assertEqual(vocab_keys[1] ,"<pad>" )
self.assertEqual(vocab_keys[-4] ,"œ" )
self.assertEqual(vocab_keys[-2] ,"<mask>" )
self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" )
self.assertEqual(len(__lowerCAmelCase ) ,81 )
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,79 )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase : Tuple = tokenizer.vocab_size
_lowerCamelCase : Optional[Any] = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"]
_lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.vocab_size
_lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) )
self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) )
_lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase )
self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
_lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
_lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase )
_lowerCamelCase : int = tokenizer.vocab_size
_lowerCamelCase : str = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) )
self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) )
_lowerCamelCase : Optional[int] = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase )
self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] ,tokens[1] )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokens[-4] )
self.assertEqual(tokens[0] ,tokenizer.eos_token_id )
self.assertEqual(tokens[-3] ,tokenizer.pad_token_id )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.get_tokenizer()
_lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" )
# fmt: off
self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,)
_lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
_lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
# fmt: off
self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
@slow
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = [
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
"general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
"Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained "
"models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.",
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
"conditioning on both left and right context in all layers.",
"The quick brown fox jumps over the lazy dog.",
]
# fmt: off
_lowerCamelCase : Tuple = {
"input_ids": [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
| 46 | 0 |
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __UpperCamelCase :
def __init__( self : List[str] , _lowerCAmelCase : str = None , _lowerCAmelCase : uuid.UUID = None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Optional[Any]=None ) -> List[str]:
"""simple docstring"""
if not conversation_id:
__lowercase = uuid.uuida()
if past_user_inputs is None:
__lowercase = []
if generated_responses is None:
__lowercase = []
__lowercase = conversation_id
__lowercase = past_user_inputs
__lowercase = generated_responses
__lowercase = text
def __eq__( self : List[str] , _lowerCAmelCase : str ) -> List[str]:
"""simple docstring"""
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def _a ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> Tuple:
"""simple docstring"""
if self.new_user_input:
if overwrite:
logger.warning(
F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '
F'with: "{text}".' )
__lowercase = text
else:
logger.warning(
F'User input added while unprocessed input was existing: "{self.new_user_input}" new input '
F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' )
else:
__lowercase = text
def _a ( self : Tuple ) -> str:
"""simple docstring"""
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
__lowercase = None
def _a ( self : Dict , _lowerCAmelCase : str ) -> List[Any]:
"""simple docstring"""
self.generated_responses.append(_lowerCAmelCase )
def _a ( self : Optional[int] ) -> Any:
"""simple docstring"""
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self : Dict ) -> Any:
"""simple docstring"""
__lowercase = F'Conversation id: {self.uuid} \n'
for is_user, text in self.iter_texts():
__lowercase = """user""" if is_user else """bot"""
output += F'{name} >> {text} \n'
return output
@add_end_docstrings(
_lowerCAmelCase , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , )
class __UpperCamelCase ( _lowerCAmelCase ):
def __init__( self : List[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Optional[Any] ) -> str:
"""simple docstring"""
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
if self.tokenizer.pad_token_id is None:
__lowercase = self.tokenizer.eos_token
def _a ( self : Tuple , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = {}
__lowercase = {}
__lowercase = {}
if min_length_for_response is not None:
__lowercase = min_length_for_response
if minimum_tokens is not None:
__lowercase = minimum_tokens
if "max_length" in generate_kwargs:
__lowercase = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
__lowercase = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(_lowerCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__( self : Tuple , _lowerCAmelCase : Union[Conversation, List[Conversation]] , _lowerCAmelCase : str=0 , **_lowerCAmelCase : Dict ) -> Optional[int]:
"""simple docstring"""
__lowercase = super().__call__(_lowerCAmelCase , num_workers=_lowerCAmelCase , **_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1:
return outputs[0]
return outputs
def _a ( self : List[str] , _lowerCAmelCase : Conversation , _lowerCAmelCase : Optional[int]=32 ) -> Dict[str, Any]:
"""simple docstring"""
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
__lowercase = self.tokenizer._build_conversation_input_ids(_lowerCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
__lowercase = self._legacy_parse_and_tokenize(_lowerCAmelCase )
if self.framework == "pt":
__lowercase = torch.LongTensor([input_ids] )
elif self.framework == "tf":
__lowercase = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any]=10 , **_lowerCAmelCase : int ) -> Dict:
"""simple docstring"""
__lowercase = generate_kwargs.get("""max_length""" , self.model.config.max_length )
__lowercase = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' )
__lowercase = max_length - minimum_tokens
__lowercase = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
__lowercase = model_inputs["""attention_mask"""][:, -trim:]
__lowercase = model_inputs.pop("""conversation""" )
__lowercase = max_length
__lowercase = self.model.generate(**_lowerCAmelCase , **_lowerCAmelCase )
if self.model.config.is_encoder_decoder:
__lowercase = 1
else:
__lowercase = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=True ) -> List[Any]:
"""simple docstring"""
__lowercase = model_outputs["""output_ids"""]
__lowercase = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , )
__lowercase = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(_lowerCAmelCase )
return conversation
def _a ( self : Optional[int] , _lowerCAmelCase : Conversation ) -> Dict:
"""simple docstring"""
__lowercase = self.tokenizer.eos_token_id
__lowercase = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) )
if len(_lowerCAmelCase ) > self.tokenizer.model_max_length:
__lowercase = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 80 |
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 46 | 0 |
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case : int = logging.get_logger(__name__)
# TODO Update this
_snake_case : Tuple = {
"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class a (_lowerCAmelCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = "esm"
def __init__( self : Dict , lowerCamelCase : Dict=None , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Optional[int]=768 , lowerCamelCase : Dict=12 , lowerCamelCase : str=12 , lowerCamelCase : List[Any]=3072 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : str=0.1 , lowerCamelCase : Dict=1026 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : Optional[Any]=1E-12 , lowerCamelCase : Optional[int]="absolute" , lowerCamelCase : str=True , lowerCamelCase : Any=None , lowerCamelCase : List[Any]=False , lowerCamelCase : int=False , lowerCamelCase : Dict=None , lowerCamelCase : Any=None , **lowerCamelCase : Any , ) -> int:
super().__init__(pad_token_id=lowerCamelCase , mask_token_id=lowerCamelCase , **lowerCamelCase )
__snake_case : Optional[int] = vocab_size
__snake_case : Union[str, Any] = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : int = num_attention_heads
__snake_case : str = intermediate_size
__snake_case : Dict = hidden_dropout_prob
__snake_case : Tuple = attention_probs_dropout_prob
__snake_case : Dict = max_position_embeddings
__snake_case : Any = initializer_range
__snake_case : int = layer_norm_eps
__snake_case : str = position_embedding_type
__snake_case : List[str] = use_cache
__snake_case : Tuple = emb_layer_norm_before
__snake_case : str = token_dropout
__snake_case : Any = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("No esmfold_config supplied for folding model, using default values." )
__snake_case : int = EsmFoldConfig()
elif isinstance(lowerCamelCase , lowerCamelCase ):
__snake_case : Union[str, Any] = EsmFoldConfig(**lowerCamelCase )
__snake_case : List[str] = esmfold_config
if vocab_list is None:
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" )
__snake_case : int = get_default_vocab_list()
else:
__snake_case : int = vocab_list
else:
__snake_case : List[Any] = None
__snake_case : List[str] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , lowerCamelCase ):
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" )
def __snake_case ( self : Dict ) -> List[Any]:
__snake_case : Any = super().to_dict()
if isinstance(self.esmfold_config , lowerCamelCase ):
__snake_case : int = self.esmfold_config.to_dict()
return output
@dataclass
class a :
"""simple docstring"""
__UpperCAmelCase : str = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = False
__UpperCAmelCase : float = 0
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : int = 128
__UpperCAmelCase : "TrunkConfig" = None
def __snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
if self.trunk is None:
__snake_case : Optional[Any] = TrunkConfig()
elif isinstance(self.trunk , lowerCamelCase ):
__snake_case : Any = TrunkConfig(**self.trunk )
def __snake_case ( self : Optional[Any] ) -> Optional[Any]:
__snake_case : Optional[Any] = asdict(self )
__snake_case : Tuple = self.trunk.to_dict()
return output
@dataclass
class a :
"""simple docstring"""
__UpperCAmelCase : int = 48
__UpperCAmelCase : int = 1024
__UpperCAmelCase : int = 128
__UpperCAmelCase : int = 32
__UpperCAmelCase : int = 32
__UpperCAmelCase : int = 32
__UpperCAmelCase : float = 0
__UpperCAmelCase : float = 0
__UpperCAmelCase : bool = False
__UpperCAmelCase : int = 4
__UpperCAmelCase : Optional[int] = 128
__UpperCAmelCase : "StructureModuleConfig" = None
def __snake_case ( self : List[Any] ) -> Any:
if self.structure_module is None:
__snake_case : Union[str, Any] = StructureModuleConfig()
elif isinstance(self.structure_module , lowerCamelCase ):
__snake_case : str = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
F' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
__snake_case : List[Any] = self.sequence_state_dim // self.sequence_head_width
__snake_case : int = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def __snake_case ( self : int ) -> Dict:
__snake_case : str = asdict(self )
__snake_case : Any = self.structure_module.to_dict()
return output
@dataclass
class a :
"""simple docstring"""
__UpperCAmelCase : int = 384
__UpperCAmelCase : int = 128
__UpperCAmelCase : int = 16
__UpperCAmelCase : int = 128
__UpperCAmelCase : int = 12
__UpperCAmelCase : int = 4
__UpperCAmelCase : int = 8
__UpperCAmelCase : float = 0.1
__UpperCAmelCase : int = 8
__UpperCAmelCase : int = 1
__UpperCAmelCase : int = 2
__UpperCAmelCase : int = 7
__UpperCAmelCase : int = 10
__UpperCAmelCase : float = 1e-8
__UpperCAmelCase : float = 1e5
def __snake_case ( self : Dict ) -> Any:
return asdict(self )
def lowerCAmelCase_ ( ):
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 81 |
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A_ ( _a ):
lowerCAmelCase__ = (DDIMParallelScheduler,)
lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0))
def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = {
"num_train_timesteps": 1_000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**__lowerCAmelCase )
return config
def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase )
_lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0
_lowerCamelCase : List[Any] = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
scheduler.set_timesteps(__lowerCAmelCase )
for t in scheduler.timesteps:
_lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample
return sample
def _lowercase ( self: List[str] ):
'''simple docstring'''
for timesteps in [100, 500, 1_000]:
self.check_over_configs(num_train_timesteps=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 )
_lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) )
def _lowercase ( self: Any ):
'''simple docstring'''
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__lowerCAmelCase )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
self.check_over_configs(thresholding=__lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,)
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
for t in [1, 10, 49]:
self.check_over_forward(time_step=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ):
self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : Union[str, Any] = self.get_scheduler_config()
_lowerCamelCase : str = scheduler_class(**__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0
scheduler.set_timesteps(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = self.dummy_model()
_lowerCamelCase : Optional[int] = self.dummy_sample_deter
_lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1
_lowerCamelCase : Dict = self.dummy_sample_deter - 0.1
_lowerCamelCase : Union[str, Any] = samplea.shape[0]
_lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 )
_lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase )
_lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) )
_lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase )
_lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2
assert abs(result_mean.item() - 0.49_82 ) < 1e-3
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Any = self.full_loop()
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" )
_lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 52.53_02 ) < 1e-2
assert abs(result_mean.item() - 0.06_84 ) < 1e-3
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 )
_lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2
assert abs(result_mean.item() - 0.19_51 ) < 1e-3
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 )
_lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2
assert abs(result_mean.item() - 0.19_41 ) < 1e-3
| 46 | 0 |
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class lowercase__ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : int=True , _UpperCAmelCase : str=99 , _UpperCAmelCase : Optional[Any]=36 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Union[str, Any]=512 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Optional[int]=6 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[str]=1000 , ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_input_mask
UpperCAmelCase_ = use_token_type_ids
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = coordinate_size
UpperCAmelCase_ = shape_size
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = num_choices
UpperCAmelCase_ = scope
UpperCAmelCase_ = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
UpperCAmelCase_ = text_seq_length
UpperCAmelCase_ = (image_size // patch_size) ** 2 + 1
UpperCAmelCase_ = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
UpperCAmelCase_ = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ = bbox[i, j, 3]
UpperCAmelCase_ = bbox[i, j, 1]
UpperCAmelCase_ = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ = bbox[i, j, 2]
UpperCAmelCase_ = bbox[i, j, 0]
UpperCAmelCase_ = tmp_coordinate
UpperCAmelCase_ = tf.constant(_UpperCAmelCase )
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
if self.use_input_mask:
UpperCAmelCase_ = random_attention_mask([self.batch_size, self.text_seq_length] )
UpperCAmelCase_ = None
if self.use_token_type_ids:
UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
UpperCAmelCase_ = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ) -> int:
'''simple docstring'''
UpperCAmelCase_ = TFLayoutLMvaModel(config=_UpperCAmelCase )
# text + image
UpperCAmelCase_ = model(_UpperCAmelCase , pixel_values=_UpperCAmelCase , training=_UpperCAmelCase )
UpperCAmelCase_ = model(
_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , training=_UpperCAmelCase , )
UpperCAmelCase_ = model(_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , training=_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
UpperCAmelCase_ = model(_UpperCAmelCase , training=_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
UpperCAmelCase_ = model({"pixel_values": pixel_values} , training=_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = TFLayoutLMvaForSequenceClassification(config=_UpperCAmelCase )
UpperCAmelCase_ = model(
_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = TFLayoutLMvaForTokenClassification(config=_UpperCAmelCase )
UpperCAmelCase_ = model(
_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = 2
UpperCAmelCase_ = TFLayoutLMvaForQuestionAnswering(config=_UpperCAmelCase )
UpperCAmelCase_ = model(
_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , training=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = config_and_inputs
UpperCAmelCase_ = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_tf
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
UpperCamelCase = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> List[Any]:
'''simple docstring'''
return True
def lowercase__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any]=False ) -> dict:
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(_UpperCAmelCase )
if model_class in get_values(_UpperCAmelCase ):
UpperCAmelCase_ = {
k: tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(_UpperCAmelCase , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
UpperCAmelCase_ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_UpperCAmelCase ):
UpperCAmelCase_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
UpperCAmelCase_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_UpperCAmelCase ):
UpperCAmelCase_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_UpperCAmelCase ):
UpperCAmelCase_ = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = TFLayoutLMvaModelTester(self )
UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def lowercase__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
if getattr(_UpperCAmelCase , "hf_compute_loss" , _UpperCAmelCase ):
# The number of elements in the loss should be the same as the number of elements in the label
UpperCAmelCase_ = self._prepare_for_class(inputs_dict.copy() , _UpperCAmelCase , return_labels=_UpperCAmelCase )
UpperCAmelCase_ = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_UpperCAmelCase )[0]
]
UpperCAmelCase_ = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
UpperCAmelCase_ = self._prepare_for_class(inputs_dict.copy() , _UpperCAmelCase , return_labels=_UpperCAmelCase )
UpperCAmelCase_ = prepared_for_class.pop("input_ids" )
UpperCAmelCase_ = model(_UpperCAmelCase , **_UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
UpperCAmelCase_ = self._prepare_for_class(inputs_dict.copy() , _UpperCAmelCase , return_labels=_UpperCAmelCase )
UpperCAmelCase_ = prepared_for_class.pop("input_ids" )
if "labels" in prepared_for_class:
UpperCAmelCase_ = prepared_for_class["labels"].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
UpperCAmelCase_ = -100
UpperCAmelCase_ = tf.convert_to_tensor(_UpperCAmelCase )
UpperCAmelCase_ = model(_UpperCAmelCase , **_UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
UpperCAmelCase_ = self._prepare_for_class(inputs_dict.copy() , _UpperCAmelCase , return_labels=_UpperCAmelCase )
UpperCAmelCase_ = model(_UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
UpperCAmelCase_ = self._prepare_for_class(inputs_dict.copy() , _UpperCAmelCase , return_labels=_UpperCAmelCase )
# Get keys that were added with the _prepare_for_class function
UpperCAmelCase_ = prepared_for_class.keys() - inputs_dict.keys()
UpperCAmelCase_ = inspect.signature(model.call ).parameters
UpperCAmelCase_ = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
UpperCAmelCase_ = {0: "input_ids"}
for label_key in label_keys:
UpperCAmelCase_ = signature_names.index(_UpperCAmelCase )
UpperCAmelCase_ = label_key
UpperCAmelCase_ = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
UpperCAmelCase_ = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
UpperCAmelCase_ = prepared_for_class[value]
UpperCAmelCase_ = tuple(_UpperCAmelCase )
# Send to model
UpperCAmelCase_ = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ = type
self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : Any ) -> List[str]:
'''simple docstring'''
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
@slow
def lowercase__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = TFLayoutLMvaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( ):
UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) if is_vision_available() else None
@slow
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="tf" ).pixel_values
UpperCAmelCase_ = tf.constant([[1, 2]] )
UpperCAmelCase_ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
UpperCAmelCase_ = model(input_ids=_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , training=_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , _UpperCAmelCase )
UpperCAmelCase_ = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 82 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : int = {
'''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''',
}
class A_ ( _a , _a ):
lowerCAmelCase__ = 'bit'
lowerCAmelCase__ = ['preactivation', 'bottleneck']
lowerCAmelCase__ = ['SAME', 'VALID']
def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
if layer_type not in self.layer_types:
raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
_lowerCamelCase : List[Any] = global_padding.upper()
else:
raise ValueError(F"""Padding strategy {global_padding} not supported""" )
_lowerCamelCase : str = num_channels
_lowerCamelCase : str = embedding_size
_lowerCamelCase : Dict = hidden_sizes
_lowerCamelCase : str = depths
_lowerCamelCase : Any = layer_type
_lowerCamelCase : Any = hidden_act
_lowerCamelCase : List[str] = global_padding
_lowerCamelCase : Tuple = num_groups
_lowerCamelCase : Optional[int] = drop_path_rate
_lowerCamelCase : List[Any] = embedding_dynamic_padding
_lowerCamelCase : Any = output_stride
_lowerCamelCase : List[str] = width_factor
_lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )]
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices(
out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
| 46 | 0 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''',
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class __snake_case ( _lowercase):
snake_case__ : int = "wav2vec2"
def __init__( self : List[str] , __lowerCAmelCase : Tuple=3_2 , __lowerCAmelCase : Tuple=7_6_8 , __lowerCAmelCase : Union[str, Any]=1_2 , __lowerCAmelCase : Optional[Any]=1_2 , __lowerCAmelCase : Optional[int]=3_0_7_2 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : str=0.0 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : Optional[Any]=1E-5 , __lowerCAmelCase : List[str]="group" , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __lowerCAmelCase : Tuple=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase : Any=(1_0, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Any=1_2_8 , __lowerCAmelCase : Optional[Any]=1_6 , __lowerCAmelCase : int=False , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[int]=0.05 , __lowerCAmelCase : Union[str, Any]=1_0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : List[str]=1_0 , __lowerCAmelCase : Tuple=0 , __lowerCAmelCase : Tuple=3_2_0 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Dict=1_0_0 , __lowerCAmelCase : Union[str, Any]=2_5_6 , __lowerCAmelCase : str=2_5_6 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : int="sum" , __lowerCAmelCase : Any=False , __lowerCAmelCase : str=False , __lowerCAmelCase : Dict=2_5_6 , __lowerCAmelCase : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __lowerCAmelCase : Optional[Any]=(5, 3, 3, 1, 1) , __lowerCAmelCase : Optional[int]=(1, 2, 3, 1, 1) , __lowerCAmelCase : List[str]=5_1_2 , __lowerCAmelCase : Any=0 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=None , **__lowerCAmelCase : int , ):
"""simple docstring"""
super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase )
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : Union[str, Any] = feat_extract_norm
_lowerCamelCase : Dict = feat_extract_activation
_lowerCamelCase : int = list(__lowerCAmelCase )
_lowerCamelCase : Tuple = list(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = list(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = conv_bias
_lowerCamelCase : Any = num_conv_pos_embeddings
_lowerCamelCase : Any = num_conv_pos_embedding_groups
_lowerCamelCase : Dict = len(self.conv_dim )
_lowerCamelCase : Tuple = num_hidden_layers
_lowerCamelCase : Union[str, Any] = intermediate_size
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Union[str, Any] = num_attention_heads
_lowerCamelCase : List[Any] = hidden_dropout
_lowerCamelCase : int = attention_dropout
_lowerCamelCase : List[Any] = activation_dropout
_lowerCamelCase : Tuple = feat_proj_dropout
_lowerCamelCase : List[Any] = final_dropout
_lowerCamelCase : List[Any] = layerdrop
_lowerCamelCase : List[str] = layer_norm_eps
_lowerCamelCase : Optional[Any] = initializer_range
_lowerCamelCase : str = vocab_size
_lowerCamelCase : int = do_stable_layer_norm
_lowerCamelCase : Optional[Any] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCamelCase : Union[str, Any] = apply_spec_augment
_lowerCamelCase : Any = mask_time_prob
_lowerCamelCase : List[Any] = mask_time_length
_lowerCamelCase : Tuple = mask_time_min_masks
_lowerCamelCase : str = mask_feature_prob
_lowerCamelCase : Union[str, Any] = mask_feature_length
_lowerCamelCase : int = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_lowerCamelCase : List[Any] = num_codevectors_per_group
_lowerCamelCase : List[str] = num_codevector_groups
_lowerCamelCase : Dict = contrastive_logits_temperature
_lowerCamelCase : str = feat_quantizer_dropout
_lowerCamelCase : Optional[int] = num_negatives
_lowerCamelCase : Optional[int] = codevector_dim
_lowerCamelCase : Union[str, Any] = proj_codevector_dim
_lowerCamelCase : str = diversity_loss_weight
# ctc loss
_lowerCamelCase : Tuple = ctc_loss_reduction
_lowerCamelCase : List[str] = ctc_zero_infinity
# adapter
_lowerCamelCase : Union[str, Any] = add_adapter
_lowerCamelCase : List[Any] = adapter_kernel_size
_lowerCamelCase : Dict = adapter_stride
_lowerCamelCase : Dict = num_adapter_layers
_lowerCamelCase : Optional[int] = output_hidden_size or hidden_size
_lowerCamelCase : Optional[Any] = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCamelCase : List[str] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCamelCase : Union[str, Any] = list(__lowerCAmelCase )
_lowerCamelCase : int = list(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = list(__lowerCAmelCase )
_lowerCamelCase : Tuple = xvector_output_dim
@property
def SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 83 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
'''google/vivit-b-16x2-kinetics400''': (
'''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'''
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class A_ ( _a ):
lowerCAmelCase__ = 'vivit'
def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,):
'''simple docstring'''
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Union[str, Any] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Optional[Any] = attention_probs_dropout_prob
_lowerCamelCase : List[Any] = initializer_range
_lowerCamelCase : int = layer_norm_eps
_lowerCamelCase : Tuple = image_size
_lowerCamelCase : Dict = num_frames
_lowerCamelCase : Optional[int] = tubelet_size
_lowerCamelCase : int = num_channels
_lowerCamelCase : List[str] = qkv_bias
super().__init__(**__lowerCAmelCase )
| 46 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..utils import cached_file
# docstyle-ignore
UpperCAmelCase = '''
Human: <<task>>
Assistant: '''
UpperCAmelCase = '''huggingface-tools/default-prompts'''
UpperCAmelCase = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''}
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="run" ):
if prompt_or_repo_id is None:
lowercase = DEFAULT_PROMPTS_REPO
# prompt is considered a repo ID when it does not contain any kind of space
if re.search('\\s' , __SCREAMING_SNAKE_CASE ) is not None:
return prompt_or_repo_id
lowercase = cached_file(
__SCREAMING_SNAKE_CASE , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} )
with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
return f.read()
| 84 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = MgpstrTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = {}
lowerCAmelCase__ = False
def _lowercase ( self: int ):
'''simple docstring'''
super().setUp()
# fmt: off
_lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
_lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) )
_lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = "tester"
_lowerCamelCase : Optional[Any] = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
_lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase )
self.assertEqual(len(__lowerCAmelCase ) ,1 )
_lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase )
self.assertTrue(special_token not in decoded )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase )
_lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
_lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertNotEqual(len(__lowerCAmelCase ) ,0 )
_lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _lowercase ( self: str ):
'''simple docstring'''
pass
| 46 | 0 |
from __future__ import annotations
def _a ( lowercase__ : list[float] ):
'''simple docstring'''
if len(lowercase__ ) < 2:
raise ValueError('Monogons and Digons are not polygons in the Euclidean space' )
if any(i <= 0 for i in nums ):
raise ValueError('All values must be greater than 0' )
SCREAMING_SNAKE_CASE__ : Tuple = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 85 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
_lowerCAmelCase : str = '''
Examples:
```py
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/frog.png"
... )
>>> image = pipe(
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save("red_frog.png")
```
'''
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : int = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
_lowerCamelCase : Optional[Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int:
'''simple docstring'''
_lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
_lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) )
_lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1
_lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] )
_lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 )
return image
class A_ ( _a ):
def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,):
'''simple docstring'''
super().__init__()
self.register_modules(
unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,)
_lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase )
_lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 )
_lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" )
_lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt
if image.shape[1] == 4:
_lowerCamelCase : List[Any] = image
else:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase )
]
_lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 )
else:
_lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase )
_lowerCamelCase : int = self.movq.config.scaling_factor * init_latents
_lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 )
_lowerCamelCase : Optional[int] = init_latents.shape
_lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase )
# get latents
_lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : str = init_latents
return latents
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
_lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" )
_lowerCamelCase : Dict = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ):
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
_lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
_lowerCamelCase : str = None
for cpu_offloaded_model in [self.unet, self.movq]:
_lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase )
# We'll offload the last model manually.
_lowerCamelCase : int = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if not hasattr(self.unet ,"_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__lowerCAmelCase ,"_hf_hook" )
and hasattr(module._hf_hook ,"execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__lowerCAmelCase )
def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self._execution_device
_lowerCamelCase : Dict = guidance_scale > 1.0
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Any = image_embeds.shape[0]
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 )
if do_classifier_free_guidance:
_lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase )
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Tuple = [image]
if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" )
_lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 )
_lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase )
_lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"]
_lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 )
self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt )
_lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor )
_lowerCamelCase : List[Any] = self.prepare_latents(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase )
for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
_lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCamelCase : List[str] = {"image_embeds": image_embeds}
_lowerCamelCase : Tuple = self.unet(
sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0]
if do_classifier_free_guidance:
_lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 )
_lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 )
_lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 )
_lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
_lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 )
if not (
hasattr(self.scheduler.config ,"variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 )
# compute the previous noisy sample x_t -> x_t-1
_lowerCamelCase : Optional[int] = self.scheduler.step(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0]
# post-processing
_lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
_lowerCamelCase : Optional[int] = image * 0.5 + 0.5
_lowerCamelCase : str = image.clamp(0 ,1 )
_lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy()
if output_type == "pil":
_lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCAmelCase )
| 46 | 0 |
__a :Tuple = '0.21.0'
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 86 |
"""simple docstring"""
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def lowerCamelCase_( ) -> None:
'''simple docstring'''
print("Making key files..." )
make_key_files("rsa" , 1024 )
print("Key files generation successful." )
def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]:
'''simple docstring'''
print("Generating prime p..." )
_lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase )
print("Generating prime q..." )
_lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase )
_lowerCamelCase : Dict = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)..." )
while True:
_lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1:
break
print("Calculating d that is mod inverse of e..." )
_lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) )
_lowerCamelCase : Dict = (n, e)
_lowerCamelCase : Dict = (n, d)
return (public_key, private_key)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None:
'''simple docstring'''
if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ):
print("\nWARNING:" )
print(
F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"Use a different name or delete these files and re-run this program." )
sys.exit()
_lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase )
print(F"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(F"""{name}_pubkey.txt""" , "w" ) as out_file:
out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" )
print(F"""Writing private key to file {name}_privkey.txt...""" )
with open(F"""{name}_privkey.txt""" , "w" ) as out_file:
out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main()
| 46 | 0 |
def SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int:
"""simple docstring"""
A__ = (n * (n + 1) // 2) ** 2
A__ = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(F'''{solution() = }''')
| 87 |
"""simple docstring"""
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A_ :
def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,):
'''simple docstring'''
_lowerCamelCase : Optional[int] = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Any = image_size
_lowerCamelCase : List[str] = patch_size
_lowerCamelCase : Union[str, Any] = num_channels
_lowerCamelCase : List[str] = is_training
_lowerCamelCase : str = use_labels
_lowerCamelCase : List[Any] = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Optional[Any] = intermediate_size
_lowerCamelCase : Optional[int] = hidden_act
_lowerCamelCase : Union[str, Any] = hidden_dropout_prob
_lowerCamelCase : Any = attention_probs_dropout_prob
_lowerCamelCase : str = type_sequence_label_size
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Dict = mask_ratio
_lowerCamelCase : List[Any] = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_lowerCamelCase : str = (image_size // patch_size) ** 2
_lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase : int = None
if self.use_labels:
_lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
_lowerCamelCase : str = self.get_config()
return config, pixel_values, labels
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Dict = model(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2
_lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_lowerCamelCase : str = 1
_lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase )
_lowerCamelCase : Any = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : int = self.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs
_lowerCamelCase : Dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A_ ( _a , _a , unittest.TestCase ):
lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {}
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = ViTMAEModelTester(self )
_lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 )
def _lowercase ( self: List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMAE does not use inputs_embeds" )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
_lowerCamelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Dict = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Optional[Any] = [*signature.parameters.keys()]
_lowerCamelCase : Dict = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase )
def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
np.random.seed(2 )
_lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_lowerCamelCase : Dict = pt_noise
super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
_lowerCamelCase : Any = outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase )
model.to(__lowerCAmelCase )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
# Make sure we don't have nans
_lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCAmelCase ,1e-5 )
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: str ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" )
def _lowercase ( self: int ):
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _lowercase ( self: Dict ):
'''simple docstring'''
pass
@slow
def _lowercase ( self: Dict ):
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class A_ ( unittest.TestCase ):
@cached_property
def _lowercase ( self: str ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None
@slow
def _lowercase ( self: int ):
'''simple docstring'''
np.random.seed(2 )
_lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase )
_lowerCamelCase : int = self.default_image_processor
_lowerCamelCase : int = prepare_img()
_lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_lowerCamelCase : Tuple = ViTMAEConfig()
_lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
_lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) )
# verify the logits
_lowerCamelCase : Any = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape ,__lowerCAmelCase )
_lowerCamelCase : Tuple = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
| 46 | 0 |
"""simple docstring"""
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False, False, False
@dataclass
class lowercase__ :
__UpperCAmelCase = None
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = None
# Automatically constructed
__UpperCAmelCase = "dict"
__UpperCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} )
__UpperCAmelCase = field(default='''Audio''' ,init=A_ ,repr=A_ )
def __call__( self) -> Optional[int]:
return self.pa_type
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> dict:
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError("""To support encoding audio data, please install 'soundfile'.""") from err
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE):
return {"bytes": None, "path": value}
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
_lowerCamelCase : str = BytesIO()
sf.write(SCREAMING_SNAKE_CASE , value["""array"""] , value["""sampling_rate"""] , format="""wav""")
return {"bytes": buffer.getvalue(), "path": None}
elif value.get("""path""") is not None and os.path.isfile(value["""path"""]):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith("""pcm"""):
# "PCM" only has raw audio bytes
if value.get("""sampling_rate""") is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""")
if value.get("""bytes"""):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
_lowerCamelCase : Dict = np.frombuffer(value["""bytes"""] , dtype=np.intaa).astype(np.floataa) / 3_2767
else:
_lowerCamelCase : Optional[Any] = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""").astype(np.floataa) / 3_2767
_lowerCamelCase : List[Any] = BytesIO(bytes())
sf.write(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , value["""sampling_rate"""] , format="""wav""")
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get("""path""")}
elif value.get("""bytes""") is not None or value.get("""path""") is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get("""bytes"""), "path": value.get("""path""")}
else:
raise ValueError(
F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.')
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None) -> dict:
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""")
_lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["""path"""], BytesIO(value["""bytes"""])) if value["""bytes"""] is not None else (value["""path"""], None)
if path is None and file is None:
raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.')
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""") from err
_lowerCamelCase : List[Any] = xsplitext(SCREAMING_SNAKE_CASE)[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
"""Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """
"""You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """)
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
"""Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """
"""You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """)
if file is None:
_lowerCamelCase : List[Any] = token_per_repo_id or {}
_lowerCamelCase : Dict = path.split("""::""")[-1]
try:
_lowerCamelCase : str = string_to_dict(SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL)["""repo_id"""]
_lowerCamelCase : Tuple = token_per_repo_id[repo_id]
except (ValueError, KeyError):
_lowerCamelCase : Tuple = None
with xopen(SCREAMING_SNAKE_CASE , """rb""" , use_auth_token=SCREAMING_SNAKE_CASE) as f:
_lowerCamelCase , _lowerCamelCase : Dict = sf.read(SCREAMING_SNAKE_CASE)
else:
_lowerCamelCase , _lowerCamelCase : Tuple = sf.read(SCREAMING_SNAKE_CASE)
_lowerCamelCase : str = array.T
if self.mono:
_lowerCamelCase : Optional[int] = librosa.to_mono(SCREAMING_SNAKE_CASE)
if self.sampling_rate and self.sampling_rate != sampling_rate:
_lowerCamelCase : Optional[Any] = librosa.resample(SCREAMING_SNAKE_CASE , orig_sr=SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate)
_lowerCamelCase : Dict = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def UpperCamelCase_ ( self) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
if self.decode:
raise ValueError("""Cannot flatten a decoded Audio feature.""")
return {
"bytes": Value("""binary"""),
"path": Value("""string"""),
}
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> pa.StructArray:
if pa.types.is_string(storage.type):
_lowerCamelCase : Dict = pa.array([None] * len(SCREAMING_SNAKE_CASE) , type=pa.binary())
_lowerCamelCase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null())
elif pa.types.is_binary(storage.type):
_lowerCamelCase : List[Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE) , type=pa.string())
_lowerCamelCase : List[Any] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null())
elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("""array"""):
_lowerCamelCase : List[Any] = pa.array([Audio().encode_example(SCREAMING_SNAKE_CASE) if x is not None else None for x in storage.to_pylist()])
elif pa.types.is_struct(storage.type):
if storage.type.get_field_index("""bytes""") >= 0:
_lowerCamelCase : Any = storage.field("""bytes""")
else:
_lowerCamelCase : List[Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE) , type=pa.binary())
if storage.type.get_field_index("""path""") >= 0:
_lowerCamelCase : List[Any] = storage.field("""path""")
else:
_lowerCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE) , type=pa.string())
_lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null())
return array_cast(SCREAMING_SNAKE_CASE , self.pa_type)
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> pa.StructArray:
@no_op_if_value_is_null
def path_to_bytes(SCREAMING_SNAKE_CASE):
with xopen(SCREAMING_SNAKE_CASE , """rb""") as f:
_lowerCamelCase : int = f.read()
return bytes_
_lowerCamelCase : Any = pa.array(
[
(path_to_bytes(x["""path"""]) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
_lowerCamelCase : Tuple = pa.array(
[os.path.basename(SCREAMING_SNAKE_CASE) if path is not None else None for path in storage.field("""path""").to_pylist()] , type=pa.string() , )
_lowerCamelCase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null())
return array_cast(SCREAMING_SNAKE_CASE , self.pa_type)
| 88 |
"""simple docstring"""
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
_lowerCAmelCase : List[str] = 10
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
for i in range(_lowerCamelCase , _lowerCamelCase ):
if array[i] == target:
return i
return -1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Any = len(_lowerCamelCase )
while left <= right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : str = (left + right) // 3 + 1
_lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
_lowerCamelCase : Union[str, Any] = one_third - 1
elif array[two_third] < target:
_lowerCamelCase : Any = two_third + 1
else:
_lowerCamelCase : List[str] = one_third + 1
_lowerCamelCase : int = two_third - 1
else:
return -1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if left < right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Tuple = (left + right) // 3 + 1
_lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip()
_lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
_lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip())
_lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target)
_lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f'''Iterative search: {target} found at positions: {resulta}''')
print(f'''Recursive search: {target} found at positions: {resulta}''')
else:
print('''Not found''')
| 46 | 0 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class _lowerCamelCase( unittest.TestCase ):
@property
def UpperCamelCase ( self) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0)
_lowercase : Dict = UNetaDModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('DownBlock2D', 'AttnDownBlock2D'), up_block_types=('AttnUpBlock2D', 'UpBlock2D'), )
return model
def UpperCamelCase ( self) -> str:
"""simple docstring"""
_lowercase : List[str] = self.dummy_uncond_unet
_lowercase : Tuple = ScoreSdeVeScheduler()
_lowercase : str = ScoreSdeVePipeline(unet=lowerCamelCase, scheduler=lowerCamelCase)
sde_ve.to(lowerCamelCase)
sde_ve.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Any = torch.manual_seed(0)
_lowercase : Tuple = sde_ve(num_inference_steps=2, output_type='numpy', generator=lowerCamelCase).images
_lowercase : Any = torch.manual_seed(0)
_lowercase : Any = sde_ve(num_inference_steps=2, output_type='numpy', generator=lowerCamelCase, return_dict=lowerCamelCase)[
0
]
_lowercase : Optional[Any] = image[0, -3:, -3:, -1]
_lowercase : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_lowercase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2
@slow
@require_torch
class _lowerCamelCase( unittest.TestCase ):
def UpperCamelCase ( self) -> Any:
"""simple docstring"""
_lowercase : Union[str, Any] = 'google/ncsnpp-church-256'
_lowercase : Dict = UNetaDModel.from_pretrained(lowerCamelCase)
_lowercase : Dict = ScoreSdeVeScheduler.from_pretrained(lowerCamelCase)
_lowercase : Union[str, Any] = ScoreSdeVePipeline(unet=lowerCamelCase, scheduler=lowerCamelCase)
sde_ve.to(lowerCamelCase)
sde_ve.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Dict = torch.manual_seed(0)
_lowercase : str = sde_ve(num_inference_steps=10, output_type='numpy', generator=lowerCamelCase).images
_lowercase : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
_lowercase : Dict = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
| 89 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase = 100 ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = set()
_lowerCamelCase : Optional[Any] = 0
_lowerCamelCase : Optional[int] = n + 1 # maximum limit
for a in range(2 , _lowerCamelCase ):
for b in range(2 , _lowerCamelCase ):
_lowerCamelCase : List[str] = a**b # calculates the current power
collect_powers.add(_lowerCamelCase ) # adds the result to the set
return len(_lowerCamelCase )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 46 | 0 |
'''simple docstring'''
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
__UpperCAmelCase = logging.getLogger()
__UpperCAmelCase = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class a__ ( a__ ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]:
os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ )
lowerCAmelCase__ = {'''source''': '''What is love ?''', '''target''': '''life'''}
lowerCAmelCase__ = {'''train''': 12, '''val''': 2, '''test''': 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
lowerCAmelCase__ = '''\n'''.join([contents[field]] * n_lines[split] )
with open(os.path.join(lowerCamelCase_ , F"""{split}.{field}""" ) , '''w''' ) as f:
f.write(lowerCamelCase_ )
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = "pytorch" ) -> List[str]:
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = os.path.join(lowerCamelCase_ , '''output''' )
lowerCAmelCase__ = os.path.join(lowerCamelCase_ , '''data''' )
self._create_dummy_data(data_dir=lowerCamelCase_ )
lowerCAmelCase__ = F"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(F"""--gpus={gpus}""" )
if is_apex_available():
testargs.append('''--fp16''' )
else:
testargs.append('''--gpus=0''' )
testargs.append('''--distributed_backend=ddp_cpu''' )
testargs.append('''--num_processes=2''' )
lowerCAmelCase__ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(lowerCamelCase_ , env=self.get_env() )
lowerCAmelCase__ = os.path.join(lowerCamelCase_ , '''metrics.json''' )
with open(lowerCamelCase_ ) as f:
lowerCAmelCase__ = json.load(lowerCamelCase_ )
return result
@require_torch_gpu
def __SCREAMING_SNAKE_CASE ( self ) -> Any:
lowerCAmelCase__ = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
@require_torch_multi_gpu
def __SCREAMING_SNAKE_CASE ( self ) -> Tuple:
lowerCAmelCase__ = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
@require_torch_gpu
@require_ray
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
lowerCAmelCase__ = self._run_finetune(gpus=1 , distributed_retriever='''ray''' )
self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
@require_torch_multi_gpu
@require_ray
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ = self._run_finetune(gpus=1 , distributed_retriever='''ray''' )
self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
| 90 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
# TODO Update this
_lowerCAmelCase : Optional[Any] = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class A_ ( _a ):
lowerCAmelCase__ = 'esm'
def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Union[str, Any] = hidden_size
_lowerCamelCase : Optional[Any] = num_hidden_layers
_lowerCamelCase : str = num_attention_heads
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Any = attention_probs_dropout_prob
_lowerCamelCase : int = max_position_embeddings
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Optional[int] = position_embedding_type
_lowerCamelCase : str = use_cache
_lowerCamelCase : Union[str, Any] = emb_layer_norm_before
_lowerCamelCase : Tuple = token_dropout
_lowerCamelCase : Dict = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("No esmfold_config supplied for folding model, using default values." )
_lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = esmfold_config
if vocab_list is None:
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" )
_lowerCamelCase : List[str] = get_default_vocab_list()
else:
_lowerCamelCase : Optional[Any] = vocab_list
else:
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = None
if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ):
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[Any] = super().to_dict()
if isinstance(self.esmfold_config ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = self.esmfold_config.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = 0
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = None
def _lowercase ( self: Dict ):
'''simple docstring'''
if self.trunk is None:
_lowerCamelCase : Optional[int] = TrunkConfig()
elif isinstance(self.trunk ,__lowerCAmelCase ):
_lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = asdict(self )
_lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = 4_8
lowerCAmelCase__ = 1_0_2_4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = False
lowerCAmelCase__ = 4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = None
def _lowercase ( self: Any ):
'''simple docstring'''
if self.structure_module is None:
_lowerCamelCase : Tuple = StructureModuleConfig()
elif isinstance(self.structure_module ,__lowerCAmelCase ):
_lowerCamelCase : str = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" )
_lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width
_lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" )
if self.dropout >= 0.4:
raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Dict = asdict(self )
_lowerCamelCase : Optional[int] = self.structure_module.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = 3_8_4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 1_6
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 1_2
lowerCAmelCase__ = 4
lowerCAmelCase__ = 8
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 1
lowerCAmelCase__ = 2
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_0
lowerCAmelCase__ = 1E-8
lowerCAmelCase__ = 1E5
def _lowercase ( self: Any ):
'''simple docstring'''
return asdict(self )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 46 | 0 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( snake_case__ : list[int] ):
if not nums:
return 0
A = nums[0]
A = 0
for num in nums[1:]:
A , A = (
max_excluding + num,
max(snake_case__ , snake_case__ ),
)
return max(snake_case__ , snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 91 |
"""simple docstring"""
import re
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError("Invalid Strand" )
return dna.translate(dna.maketrans("ATCG" , "TAGC" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 46 | 0 |
'''simple docstring'''
import gc
import unittest
from transformers import CTRLConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
)
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str=14 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Any=99 , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Dict=512 , UpperCAmelCase__ : Tuple=16 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Dict=None , ):
'''simple docstring'''
lowercase : List[str] =parent
lowercase : Union[str, Any] =batch_size
lowercase : Optional[int] =seq_length
lowercase : List[Any] =is_training
lowercase : List[Any] =use_token_type_ids
lowercase : str =use_input_mask
lowercase : Dict =use_labels
lowercase : Optional[int] =use_mc_token_ids
lowercase : Union[str, Any] =vocab_size
lowercase : int =hidden_size
lowercase : Optional[int] =num_hidden_layers
lowercase : Optional[Any] =num_attention_heads
lowercase : Optional[Any] =intermediate_size
lowercase : int =hidden_act
lowercase : str =hidden_dropout_prob
lowercase : int =attention_probs_dropout_prob
lowercase : str =max_position_embeddings
lowercase : Tuple =type_vocab_size
lowercase : Union[str, Any] =type_sequence_label_size
lowercase : List[Any] =initializer_range
lowercase : Any =num_labels
lowercase : Optional[int] =num_choices
lowercase : List[Any] =scope
lowercase : Union[str, Any] =self.vocab_size - 1
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
lowercase : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : str =None
if self.use_input_mask:
lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Any =None
if self.use_token_type_ids:
lowercase : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase : int =None
if self.use_mc_token_ids:
lowercase : List[str] =ids_tensor([self.batch_size, self.num_choices] , self.seq_length )
lowercase : Dict =None
lowercase : Any =None
lowercase : Optional[Any] =None
if self.use_labels:
lowercase : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Any =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices )
lowercase : List[Any] =self.get_config()
lowercase : Tuple =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
return CTRLConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , *UpperCAmelCase__ : Any ):
'''simple docstring'''
lowercase : int =CTRLModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , head_mask=UpperCAmelCase__ )
model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )
lowercase : int =model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(len(result.past_key_values ) , config.n_layer )
def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , *UpperCAmelCase__ : Tuple ):
'''simple docstring'''
lowercase : int =CTRLLMHeadModel(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowercase : List[str] =model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
lowercase : List[Any] =self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) : Optional[int] =config_and_inputs
lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask}
return config, inputs_dict
def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , *UpperCAmelCase__ : str ):
'''simple docstring'''
lowercase : Optional[int] =self.num_labels
lowercase : Dict =CTRLForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowercase : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Tuple =model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
@require_torch
class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ):
lowerCamelCase_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
lowerCamelCase_ = (CTRLLMHeadModel,) if is_torch_available() else ()
lowerCamelCase_ = (
{
'feature-extraction': CTRLModel,
'text-classification': CTRLForSequenceClassification,
'text-generation': CTRLLMHeadModel,
'zero-shot': CTRLForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase_ = True
lowerCamelCase_ = False
lowerCamelCase_ = False
def lowerCamelCase_ ( self : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
lowercase : str =CTRLModelTester(self )
lowercase : Any =ConfigTester(self , config_class=UpperCAmelCase__ , n_embd=37 )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*UpperCAmelCase__ )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase__ )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
pass
@slow
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase : Dict =CTRLModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
pass
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
@slow
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
lowercase : str =CTRLLMHeadModel.from_pretrained('''ctrl''' )
model.to(UpperCAmelCase__ )
lowercase : str =torch.tensor(
[[11859, 0, 1611, 8]] , dtype=torch.long , device=UpperCAmelCase__ ) # Legal the president is
lowercase : Optional[Any] =[
11859,
0,
1611,
8,
5,
150,
26449,
2,
19,
348,
469,
3,
2595,
48,
20740,
246533,
246533,
19,
30,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
lowercase : List[Any] =model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ )
self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase__ )
| 92 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : str = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_lowerCamelCase : Tuple = ""
else:
_lowerCamelCase : str = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
_lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : Tuple = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : Any = dct.pop(_lowerCamelCase )
_lowerCamelCase : Dict = val
def lowerCamelCase_( ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
_lowerCamelCase : str = 8
# set labels if required
if not base_model:
_lowerCamelCase : str = 1000
_lowerCamelCase : Any = "huggingface/label-files"
_lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
_lowerCamelCase : int = 384
_lowerCamelCase : str = 1536
_lowerCamelCase : List[str] = 12
_lowerCamelCase : Optional[int] = 6
# load original model from torch hub
_lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase )
original_model.eval()
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : List[str] = original_model.state_dict()
if base_model:
remove_classification_head_(_lowerCamelCase )
_lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# load HuggingFace model
if base_model:
_lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval()
else:
_lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval()
model.load_state_dict(_lowerCamelCase )
# Check outputs on an image, prepared by ViTImageProcessor
_lowerCamelCase : Tuple = ViTImageProcessor()
_lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
_lowerCamelCase : Dict = encoding["pixel_values"]
_lowerCamelCase : int = model(_lowerCamelCase )
if base_model:
_lowerCamelCase : List[str] = original_model(_lowerCamelCase )
assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 )
else:
_lowerCamelCase : Tuple = original_model(_lowerCamelCase )
assert logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''dino_vitb16''',
type=str,
help='''Name of the model trained with DINO you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--base_model''',
action='''store_true''',
help='''Whether to only convert the base model (no projection head weights).''',
)
parser.set_defaults(base_model=True)
_lowerCAmelCase : List[Any] = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 46 | 0 |
"""simple docstring"""
from __future__ import annotations
def __A (_SCREAMING_SNAKE_CASE ) ->list[int]:
"""simple docstring"""
lowerCAmelCase__ :str = [True] * limit
lowerCAmelCase__ :Optional[int] = False
lowerCAmelCase__ :str = False
lowerCAmelCase__ :Dict = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
lowerCAmelCase__ :Union[str, Any] = i * 2
while index < limit:
lowerCAmelCase__ :Dict = False
lowerCAmelCase__ :Any = index + i
lowerCAmelCase__ :List[Any] = [2]
for i in range(3 , _SCREAMING_SNAKE_CASE , 2 ):
if is_prime[i]:
primes.append(_SCREAMING_SNAKE_CASE )
return primes
def __A (_SCREAMING_SNAKE_CASE = 100_0000 ) ->int:
"""simple docstring"""
lowerCAmelCase__ :Tuple = prime_sieve(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :List[str] = 0
lowerCAmelCase__ :Any = 0
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
for j in range(i + length , len(_SCREAMING_SNAKE_CASE ) ):
lowerCAmelCase__ :Any = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
lowerCAmelCase__ :List[str] = j - i
lowerCAmelCase__ :Tuple = sol
return largest
if __name__ == "__main__":
print(F'''{solution() = }''')
| 93 |
"""simple docstring"""
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase )
_lowerCamelCase : Dict = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase )
class A_ ( _a ):
lowerCAmelCase__ = 'sigmoid'
lowerCAmelCase__ = 'softmax'
lowerCAmelCase__ = 'none'
@add_end_docstrings(
_a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , )
class A_ ( _a ):
lowerCAmelCase__ = False
lowerCAmelCase__ = ClassificationFunction.NONE
def __init__( self: str ,**__lowerCAmelCase: str ):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = tokenizer_kwargs
_lowerCamelCase : Optional[int] = {}
if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None:
_lowerCamelCase : Tuple = self.model.config.return_all_scores
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None:
_lowerCamelCase : List[str] = top_k
_lowerCamelCase : Union[str, Any] = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,)
if return_all_scores:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : Union[str, Any] = 1
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
_lowerCamelCase : Dict = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
_lowerCamelCase : Optional[Any] = "top_k" not in kwargs
if isinstance(args[0] ,__lowerCAmelCase ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = self.framework
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"
" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." )
return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
return self.model(**__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ):
'''simple docstring'''
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
_lowerCamelCase : Dict = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
_lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None:
_lowerCamelCase : Optional[int] = self.model.config.function_to_apply
else:
_lowerCamelCase : str = ClassificationFunction.NONE
_lowerCamelCase : List[Any] = model_outputs["logits"][0]
_lowerCamelCase : Optional[int] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
_lowerCamelCase : str = sigmoid(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.SOFTMAX:
_lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.NONE:
_lowerCamelCase : str = outputs
else:
raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
_lowerCamelCase : Optional[int] = [
{"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase )
]
if not _legacy:
dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase )
if top_k is not None:
_lowerCamelCase : Any = dict_scores[:top_k]
return dict_scores
| 46 | 0 |
'''simple docstring'''
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
SCREAMING_SNAKE_CASE = collections.namedtuple('_Datasets', ['train', 'validation', 'test'])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
def lowercase_ ( __A : str ) -> Any:
"""simple docstring"""
lowercase : Dict =numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=__A )[0]
@deprecated(__A , '''Please use tf.data to implement this functionality.''' )
def lowercase_ ( __A : Union[str, Any] ) -> List[str]:
"""simple docstring"""
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__A ) as bytestream:
lowercase : int =_readaa(__A )
if magic != 2_0_5_1:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
lowercase : Optional[Any] =_readaa(__A )
lowercase : int =_readaa(__A )
lowercase : Dict =_readaa(__A )
lowercase : Union[str, Any] =bytestream.read(rows * cols * num_images )
lowercase : Union[str, Any] =numpy.frombuffer(__A , dtype=numpy.uinta )
lowercase : Tuple =data.reshape(__A , __A , __A , 1 )
return data
@deprecated(__A , '''Please use tf.one_hot on tensors.''' )
def lowercase_ ( __A : Dict , __A : Any ) -> List[str]:
"""simple docstring"""
lowercase : str =labels_dense.shape[0]
lowercase : int =numpy.arange(__A ) * num_classes
lowercase : List[str] =numpy.zeros((num_labels, num_classes) )
lowercase : Tuple =1
return labels_one_hot
@deprecated(__A , '''Please use tf.data to implement this functionality.''' )
def lowercase_ ( __A : List[str] , __A : Union[str, Any]=False , __A : Tuple=1_0 ) -> Optional[int]:
"""simple docstring"""
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__A ) as bytestream:
lowercase : List[Any] =_readaa(__A )
if magic != 2_0_4_9:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
lowercase : str =_readaa(__A )
lowercase : Optional[int] =bytestream.read(__A )
lowercase : List[str] =numpy.frombuffer(__A , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__A , __A )
return labels
class UpperCAmelCase_ :
"""simple docstring"""
@deprecated(
UpperCAmelCase , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[Any]=dtypes.floataa , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=None , ) -> List[str]:
'''simple docstring'''
lowercase , lowercase : Union[str, Any] =random_seed.get_seed(UpperCAmelCase )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
lowercase : Optional[int] =dtypes.as_dtype(UpperCAmelCase ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype )
if fake_data:
lowercase : Dict =1_0000
lowercase : Union[str, Any] =one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'images.shape: {images.shape} labels.shape: {labels.shape}'
lowercase : List[str] =images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
lowercase : int =images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
lowercase : Optional[Any] =images.astype(numpy.floataa )
lowercase : Tuple =numpy.multiply(UpperCAmelCase , 1.0 / 2_5_5.0 )
lowercase : Tuple =images
lowercase : Optional[int] =labels
lowercase : Union[str, Any] =0
lowercase : Any =0
@property
def A__ ( self : List[str] ) -> int:
'''simple docstring'''
return self._images
@property
def A__ ( self : str ) -> Dict:
'''simple docstring'''
return self._labels
@property
def A__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
return self._num_examples
@property
def A__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
return self._epochs_completed
def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : str=True ) -> int:
'''simple docstring'''
if fake_data:
lowercase : Optional[Any] =[1] * 784
lowercase : Any =[1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(UpperCAmelCase )],
[fake_label for _ in range(UpperCAmelCase )],
)
lowercase : List[str] =self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
lowercase : int =numpy.arange(self._num_examples )
numpy.random.shuffle(UpperCAmelCase )
lowercase : Union[str, Any] =self.images[perma]
lowercase : List[str] =self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
lowercase : Optional[int] =self._num_examples - start
lowercase : Tuple =self._images[start : self._num_examples]
lowercase : Optional[Any] =self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
lowercase : List[str] =numpy.arange(self._num_examples )
numpy.random.shuffle(UpperCAmelCase )
lowercase : Optional[int] =self.images[perm]
lowercase : Union[str, Any] =self.labels[perm]
# Start next epoch
lowercase : str =0
lowercase : Optional[int] =batch_size - rest_num_examples
lowercase : Optional[int] =self._index_in_epoch
lowercase : str =self._images[start:end]
lowercase : Dict =self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
lowercase : Union[str, Any] =self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__A , '''Please write your own downloading logic.''' )
def lowercase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Optional[int] ) -> Dict:
"""simple docstring"""
if not gfile.Exists(__A ):
gfile.MakeDirs(__A )
lowercase : Optional[int] =os.path.join(__A , __A )
if not gfile.Exists(__A ):
urllib.request.urlretrieve(__A , __A ) # noqa: S310
with gfile.GFile(__A ) as f:
lowercase : Dict =f.size()
print('''Successfully downloaded''' , __A , __A , '''bytes.''' )
return filepath
@deprecated(
__A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def lowercase_ ( __A : Any , __A : Union[str, Any]=False , __A : Tuple=False , __A : Optional[Any]=dtypes.floataa , __A : List[Any]=True , __A : str=5_0_0_0 , __A : Any=None , __A : Any=DEFAULT_SOURCE_URL , ) -> Dict:
"""simple docstring"""
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=__A , one_hot=__A , dtype=__A , seed=__A )
lowercase : Tuple =fake()
lowercase : Union[str, Any] =fake()
lowercase : int =fake()
return _Datasets(train=__A , validation=__A , test=__A )
if not source_url: # empty string check
lowercase : List[Any] =DEFAULT_SOURCE_URL
lowercase : List[Any] ='''train-images-idx3-ubyte.gz'''
lowercase : List[str] ='''train-labels-idx1-ubyte.gz'''
lowercase : List[Any] ='''t10k-images-idx3-ubyte.gz'''
lowercase : List[str] ='''t10k-labels-idx1-ubyte.gz'''
lowercase : Dict =_maybe_download(
__A , __A , source_url + train_images_file )
with gfile.Open(__A , '''rb''' ) as f:
lowercase : Union[str, Any] =_extract_images(__A )
lowercase : Dict =_maybe_download(
__A , __A , source_url + train_labels_file )
with gfile.Open(__A , '''rb''' ) as f:
lowercase : Tuple =_extract_labels(__A , one_hot=__A )
lowercase : Any =_maybe_download(
__A , __A , source_url + test_images_file )
with gfile.Open(__A , '''rb''' ) as f:
lowercase : Dict =_extract_images(__A )
lowercase : int =_maybe_download(
__A , __A , source_url + test_labels_file )
with gfile.Open(__A , '''rb''' ) as f:
lowercase : Any =_extract_labels(__A , one_hot=__A )
if not 0 <= validation_size <= len(__A ):
lowercase : str =(
'''Validation size should be between 0 and '''
F'{len(__A )}. Received: {validation_size}.'
)
raise ValueError(__A )
lowercase : int =train_images[:validation_size]
lowercase : Any =train_labels[:validation_size]
lowercase : List[Any] =train_images[validation_size:]
lowercase : List[Any] =train_labels[validation_size:]
lowercase : int ={'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
lowercase : Any =_DataSet(__A , __A , **__A )
lowercase : List[str] =_DataSet(__A , __A , **__A )
lowercase : Tuple =_DataSet(__A , __A , **__A )
return _Datasets(train=__A , validation=__A , test=__A )
| 94 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
_lowerCAmelCase : Tuple = '''\
Text data.
Second line of data.'''
_lowerCAmelCase : str = '''file'''
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd")
_lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" )
with zstd.open(_lowerCamelCase , "wb" ) as f:
f.write(_lowerCamelCase )
return path
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f:
f.write(_lowerCamelCase )
return FILE_PATH
@pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path}
_lowerCamelCase : Tuple = input_paths[compression_format]
_lowerCamelCase : int = tmp_path / "cache"
_lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase )
_lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase )
with open(_lowerCamelCase ) as f:
_lowerCamelCase : List[Any] = f.read()
with open(_lowerCamelCase ) as f:
_lowerCamelCase : int = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("default_extracted" , [True, False] )
@pytest.mark.parametrize("default_cache_dir" , [True, False] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "custom_cache"
_lowerCamelCase : List[str] = "custom_extracted_dir"
_lowerCamelCase : str = tmp_path / "custom_extracted_path"
if default_extracted:
_lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted")
else:
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) )
_lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_lowerCamelCase : int = xz_file
_lowerCamelCase : List[Any] = (
DownloadConfig(extract_compressed_file=_lowerCamelCase )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase )
)
_lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase )
assert Path(_lowerCamelCase ).parent.parts[-2:] == expected
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() )
assert cached_path(_lowerCamelCase ) == text_file
# relative path
_lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_lowerCamelCase ) == text_file
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" )
with pytest.raises(_lowerCamelCase ):
cached_path(_lowerCamelCase )
# relative path
_lowerCamelCase : List[Any] = "./__missing_file__.txt"
with pytest.raises(_lowerCamelCase ):
cached_path(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" )
with open(_lowerCamelCase ) as f:
_lowerCamelCase : Tuple = f.read()
assert output_file_content == FILE_CONTENT
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
with pytest.raises(_lowerCamelCase ):
cached_path("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
http_get("https://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
http_head("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
ftp_head("ftp://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
fsspec_head("s3://huggingface.co" )
| 46 | 0 |
"""simple docstring"""
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def snake_case ( A__ ,A__ ):
UpperCAmelCase_ : Union[str, Any] = old_name
if "patch_embed" in old_name:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = old_name.split("." )
if layer == "0":
UpperCAmelCase_ : List[Any] = old_name.replace("0" ,"convolution1" )
elif layer == "1":
UpperCAmelCase_ : List[str] = old_name.replace("1" ,"batchnorm_before" )
elif layer == "3":
UpperCAmelCase_ : Union[str, Any] = old_name.replace("3" ,"convolution2" )
else:
UpperCAmelCase_ : Union[str, Any] = old_name.replace("4" ,"batchnorm_after" )
if "network" in old_name and re.search(r"\d\.\d" ,A__ ):
UpperCAmelCase_ : int = r"\b\d{2}\b"
if bool(re.search(A__ ,A__ ) ):
UpperCAmelCase_ : List[Any] = re.search(r"\d\.\d\d." ,A__ ).group()
else:
UpperCAmelCase_ : Tuple = re.search(r"\d\.\d." ,A__ ).group()
if int(match[0] ) < 6:
UpperCAmelCase_ : List[Any] = old_name.replace(A__ ,"" )
UpperCAmelCase_ : str = trimmed_name.replace("network" ,match[0] + ".meta4D_layers.blocks." + match[2:-1] )
UpperCAmelCase_ : List[Any] = "intermediate_stages." + trimmed_name
else:
UpperCAmelCase_ : Dict = old_name.replace(A__ ,"" )
if int(match[2] ) < num_meta4D_last_stage:
UpperCAmelCase_ : List[Any] = trimmed_name.replace("network" ,"meta4D_layers.blocks." + match[2] )
else:
UpperCAmelCase_ : Dict = str(int(match[2] ) - num_meta4D_last_stage )
UpperCAmelCase_ : List[Any] = trimmed_name.replace("network" ,"meta3D_layers.blocks." + layer_index )
if "norm1" in old_name:
UpperCAmelCase_ : Tuple = trimmed_name.replace("norm1" ,"layernorm1" )
elif "norm2" in old_name:
UpperCAmelCase_ : Dict = trimmed_name.replace("norm2" ,"layernorm2" )
elif "fc1" in old_name:
UpperCAmelCase_ : Tuple = trimmed_name.replace("fc1" ,"linear_in" )
elif "fc2" in old_name:
UpperCAmelCase_ : str = trimmed_name.replace("fc2" ,"linear_out" )
UpperCAmelCase_ : str = "last_stage." + trimmed_name
elif "network" in old_name and re.search(r".\d." ,A__ ):
UpperCAmelCase_ : Any = old_name.replace("network" ,"intermediate_stages" )
if "fc" in new_name:
UpperCAmelCase_ : Dict = new_name.replace("fc" ,"convolution" )
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
UpperCAmelCase_ : Optional[Any] = new_name.replace("norm1" ,"batchnorm_before" )
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
UpperCAmelCase_ : List[str] = new_name.replace("norm2" ,"batchnorm_after" )
if "proj" in new_name:
UpperCAmelCase_ : Dict = new_name.replace("proj" ,"projection" )
if "dist_head" in new_name:
UpperCAmelCase_ : Tuple = new_name.replace("dist_head" ,"distillation_classifier" )
elif "head" in new_name:
UpperCAmelCase_ : Any = new_name.replace("head" ,"classifier" )
elif "patch_embed" in new_name:
UpperCAmelCase_ : int = "efficientformer." + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
UpperCAmelCase_ : Tuple = new_name.replace("norm" ,"layernorm" )
UpperCAmelCase_ : Optional[int] = "efficientformer." + new_name
else:
UpperCAmelCase_ : Any = "efficientformer.encoder." + new_name
return new_name
def snake_case ( A__ ,A__ ):
for key in checkpoint.copy().keys():
UpperCAmelCase_ : int = checkpoint.pop(A__ )
UpperCAmelCase_ : Tuple = val
return checkpoint
def snake_case ( ):
UpperCAmelCase_ : str = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ : int = Image.open(requests.get(A__ ,stream=A__ ).raw )
return image
def snake_case ( A__ ,A__ ,A__ ,A__ ):
UpperCAmelCase_ : List[Any] = torch.load(A__ ,map_location="cpu" )["model"]
UpperCAmelCase_ : Any = EfficientFormerConfig.from_json_file(A__ )
UpperCAmelCase_ : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(A__ )
UpperCAmelCase_ : Optional[int] = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] )
UpperCAmelCase_ : Optional[Any] = config.depths[-1] - config.num_metaad_blocks + 1
UpperCAmelCase_ : List[str] = convert_torch_checkpoint(A__ ,A__ )
model.load_state_dict(A__ )
model.eval()
UpperCAmelCase_ : Any = {
"bilinear": PILImageResampling.BILINEAR,
"bicubic": PILImageResampling.BICUBIC,
"nearest": PILImageResampling.NEAREST,
}
# prepare image
UpperCAmelCase_ : Tuple = prepare_img()
UpperCAmelCase_ : Tuple = 2_56
UpperCAmelCase_ : Any = 2_24
UpperCAmelCase_ : str = EfficientFormerImageProcessor(
size={"shortest_edge": image_size} ,crop_size={"height": crop_size, "width": crop_size} ,resample=pillow_resamplings["bicubic"] ,)
UpperCAmelCase_ : List[str] = processor(images=A__ ,return_tensors="pt" ).pixel_values
# original processing pipeline
UpperCAmelCase_ : List[Any] = Compose(
[
Resize(A__ ,interpolation=pillow_resamplings["bicubic"] ),
CenterCrop(A__ ),
ToTensor(),
Normalize(A__ ,A__ ),
] )
UpperCAmelCase_ : str = image_transforms(A__ ).unsqueeze(0 )
assert torch.allclose(A__ ,A__ )
UpperCAmelCase_ : Optional[Any] = model(A__ )
UpperCAmelCase_ : int = outputs.logits
UpperCAmelCase_ : Tuple = (1, 10_00)
if "l1" in model_name:
UpperCAmelCase_ : Dict = torch.Tensor(
[-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] )
assert torch.allclose(logits[0, :10] ,A__ ,atol=1e-3 )
assert logits.shape == expected_shape
elif "l3" in model_name:
UpperCAmelCase_ : Optional[Any] = torch.Tensor(
[-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] )
assert torch.allclose(logits[0, :10] ,A__ ,atol=1e-3 )
assert logits.shape == expected_shape
elif "l7" in model_name:
UpperCAmelCase_ : int = torch.Tensor(
[-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] )
assert logits.shape == expected_shape
else:
raise ValueError(
F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" )
# Save Checkpoints
Path(A__ ).mkdir(exist_ok=A__ )
model.save_pretrained(A__ )
print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" )
processor.save_pretrained(A__ )
print(F"""Processor successfuly saved at {pytorch_dump_path}""" )
if push_to_hub:
print("Pushing model to the hub..." )
model.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""" ,commit_message="Add model" ,use_temp_dir=A__ ,)
processor.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""" ,commit_message="Add image processor" ,use_temp_dir=A__ ,)
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--pytorch_model_path''',
default=None,
type=str,
required=True,
help='''Path to EfficientFormer pytorch checkpoint.''',
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The json file for EfficientFormer model config.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''')
parser.add_argument(
'''--no-push_to_hub''',
dest='''push_to_hub''',
action='''store_false''',
help='''Do not push model and image processor to the hub''',
)
parser.set_defaults(push_to_hub=True)
lowerCamelCase_ = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 95 |
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None:
'''simple docstring'''
_lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(_lowerCamelCase , torch.Tensor ):
raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" )
_lowerCamelCase : List[str] = v.half()
if save_path is None: # overwrite src_path
_lowerCamelCase : Union[str, Any] = src_path
torch.save(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 46 | 0 |
"""simple docstring"""
import os
# Precomputes a list of the 100 first triangular numbers
__lowerCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)]
def a ( ) -> Union[str, Any]:
__magic_name__: List[Any] = os.path.dirname(os.path.realpath(__UpperCAmelCase ) )
__magic_name__: Dict = os.path.join(__UpperCAmelCase , """words.txt""" )
__magic_name__: Dict = """"""
with open(__UpperCAmelCase ) as f:
__magic_name__: Any = f.readline()
__magic_name__: Optional[Any] = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )]
__magic_name__: int = [
word
for word in [sum(ord(__UpperCAmelCase ) - 6_4 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(__UpperCAmelCase )
if __name__ == "__main__":
print(solution())
| 96 |
"""simple docstring"""
import importlib
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
import transformers.models.auto
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
_lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''')
class A_ ( unittest.TestCase ):
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertIsNotNone(transformers.models.auto.__spec__ )
self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
# This model name contains bert and roberta, but roberta ends up being picked.
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" )
os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f:
f.write(json.dumps({} ) )
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
try:
AutoConfig.register("custom" ,__lowerCAmelCase )
# Wrong model type will raise an error
with self.assertRaises(__lowerCAmelCase ):
AutoConfig.register("model" ,__lowerCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCAmelCase ):
AutoConfig.register("bert" ,__lowerCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
_lowerCamelCase : Any = CustomConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
def _lowercase ( self: Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ):
_lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" )
def _lowercase ( self: Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
_lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" )
def _lowercase ( self: Tuple ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,):
_lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
with self.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfig" )
# Test config can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" )
def _lowercase ( self: Dict ):
'''simple docstring'''
class A_ ( _a ):
lowerCAmelCase__ = 'new-model'
try:
AutoConfig.register("new-model" ,__lowerCAmelCase )
# If remote code is not set, the default is to use local
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" )
# If remote code is disabled, we load the local one.
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" )
# If remote is enabled, we load from the Hub
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfig" )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
| 46 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
__a = logging.getLogger(__name__)
@dataclass
class lowercase__:
"""simple docstring"""
a :str = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
a :Optional[str] = field(
default=UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a :Optional[str] = field(
default=UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
a :Optional[str] = field(
default=UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
a :bool = field(default=UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} )
a :bool = field(default=UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} )
@dataclass
class lowercase__:
"""simple docstring"""
a :str = field(
metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} )
a :Optional[str] = field(
default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , )
a :Optional[int] = field(
default=1_024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a :Optional[int] = field(
default=128 , metadata={
'help': (
'The maximum total sequence length for target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a :Optional[int] = field(
default=142 , metadata={
'help': (
'The maximum total sequence length for validation target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded. '
'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used '
'during ``evaluate`` and ``predict``.'
)
} , )
a :Optional[int] = field(
default=142 , metadata={
'help': (
'The maximum total sequence length for test target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a :Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} )
a :Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} )
a :Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} )
a :Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'Source language id for translation.'} )
a :Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'Target language id for translation.'} )
a :Optional[int] = field(default=UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} )
a :bool = field(
default=UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , )
def a ( snake_case__: Dict , snake_case__: Optional[int] , snake_case__: List[str] ):
'''simple docstring'''
logger.info(F'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(F''' {key} = {metrics[key]}''' )
save_json(snake_case__ , os.path.join(snake_case__ , F'''{split}_results.json''' ) )
def a ( ):
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses()
check_output_dir(snake_case__ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , snake_case__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase_ = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(snake_case__ , snake_case__ , snake_case__ ):
assert hasattr(snake_case__ , snake_case__ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) )
lowercase_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase_ = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case__ , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(snake_case__ , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
lowercase_ = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(snake_case__ , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(snake_case__ , snake_case__ ):
lowercase_ = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
lowercase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(snake_case__ )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
lowercase_ = SeqaSeqDataset
# Get datasets
lowercase_ = (
dataset_class(
snake_case__ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
lowercase_ = (
dataset_class(
snake_case__ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
lowercase_ = (
dataset_class(
snake_case__ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
lowercase_ = (
build_compute_metrics_fn(data_args.task , snake_case__ ) if training_args.predict_with_generate else None
)
lowercase_ = SeqaSeqTrainer(
model=snake_case__ , args=snake_case__ , data_args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , data_collator=SeqaSeqDataCollator(
snake_case__ , snake_case__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case__ , tokenizer=snake_case__ , )
lowercase_ = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
lowercase_ = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
lowercase_ = train_result.metrics
lowercase_ = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , snake_case__ , training_args.output_dir )
all_metrics.update(snake_case__ )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase_ = trainer.evaluate(metric_key_prefix='''val''' )
lowercase_ = data_args.n_val
lowercase_ = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , snake_case__ , training_args.output_dir )
all_metrics.update(snake_case__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
lowercase_ = trainer.predict(test_dataset=snake_case__ , metric_key_prefix='''test''' )
lowercase_ = test_output.metrics
lowercase_ = data_args.n_test
if trainer.is_world_process_zero():
lowercase_ = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , snake_case__ , training_args.output_dir )
all_metrics.update(snake_case__ )
if training_args.predict_with_generate:
lowercase_ = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
lowercase_ = lmap(str.strip , snake_case__ )
write_txt_file(snake_case__ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(snake_case__ , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def a ( snake_case__: List[str] ):
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 97 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCAmelCase : str = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
_lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 46 | 0 |
'''simple docstring'''
from math import factorial
lowercase__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)}
def a__ ( lowercase : int ) -> int:
"""simple docstring"""
if not isinstance(lowercase, lowercase ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase ) )
def a__ ( lowercase : int = 60, lowercase : int = 1000000 ) -> int:
"""simple docstring"""
if not isinstance(lowercase, lowercase ) or not isinstance(lowercase, lowercase ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
_UpperCamelCase = 0
# the cached sizes of the previous chains
_UpperCamelCase = {}
for start_chain_element in range(1, lowercase ):
# The temporary set will contain the elements of the chain
_UpperCamelCase = set()
_UpperCamelCase = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
_UpperCamelCase = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(lowercase )
chain_set_length += 1
_UpperCamelCase = digit_factorial_sum(lowercase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
_UpperCamelCase = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution()}""")
| 98 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : Tuple = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int:
'''simple docstring'''
_lowerCamelCase : Any = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"),
(
"text_embeddings.position_embeddings.weight",
"vilt.embeddings.text_embeddings.position_embeddings.weight",
),
("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"),
(
"text_embeddings.token_type_embeddings.weight",
"vilt.embeddings.text_embeddings.token_type_embeddings.weight",
),
("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"),
("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"),
# patch embeddings
("transformer.cls_token", "vilt.embeddings.cls_token"),
("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"),
("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"),
("transformer.pos_embed", "vilt.embeddings.position_embeddings"),
# token type embeddings
("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"),
] )
# final layernorm + pooler
rename_keys.extend(
[
("transformer.norm.weight", "vilt.layernorm.weight"),
("transformer.norm.bias", "vilt.layernorm.bias"),
("pooler.dense.weight", "vilt.pooler.dense.weight"),
("pooler.dense.bias", "vilt.pooler.dense.bias"),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
("vqa_classifier.0.weight", "classifier.0.weight"),
("vqa_classifier.0.bias", "classifier.0.bias"),
("vqa_classifier.1.weight", "classifier.1.weight"),
("vqa_classifier.1.bias", "classifier.1.bias"),
("vqa_classifier.3.weight", "classifier.3.weight"),
("vqa_classifier.3.bias", "classifier.3.bias"),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
("nlvr2_classifier.0.weight", "classifier.0.weight"),
("nlvr2_classifier.0.bias", "classifier.0.bias"),
("nlvr2_classifier.1.weight", "classifier.1.weight"),
("nlvr2_classifier.1.bias", "classifier.1.bias"),
("nlvr2_classifier.3.weight", "classifier.3.weight"),
("nlvr2_classifier.3.bias", "classifier.3.bias"),
] )
else:
pass
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
_lowerCamelCase : Tuple = "vilt."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" )
_lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : str = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : Any = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Optional[int] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase )
_lowerCamelCase : Optional[int] = val
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase )
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Tuple = False
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : str = False
if "vqa" in checkpoint_url:
_lowerCamelCase : str = True
_lowerCamelCase : Union[str, Any] = 3129
_lowerCamelCase : str = "huggingface/label-files"
_lowerCamelCase : Optional[Any] = "vqa2-id2label.json"
_lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[int] = idalabel
_lowerCamelCase : int = {v: k for k, v in idalabel.items()}
_lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase )
elif "nlvr" in checkpoint_url:
_lowerCamelCase : Tuple = True
_lowerCamelCase : List[str] = 2
_lowerCamelCase : Optional[Any] = {0: "False", 1: "True"}
_lowerCamelCase : int = {v: k for k, v in config.idalabel.items()}
_lowerCamelCase : Optional[Any] = 3
_lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase )
elif "irtr" in checkpoint_url:
_lowerCamelCase : Tuple = True
_lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase )
elif "mlm_itm" in checkpoint_url:
_lowerCamelCase : Dict = True
_lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase )
else:
raise ValueError("Unknown model type" )
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"]
_lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase )
if mlm_model or irtr_model:
_lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
_lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(_lowerCamelCase )
# Define processor
_lowerCamelCase : int = ViltImageProcessor(size=384 )
_lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" )
_lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase )
# Forward pass on example inputs (image + text)
if nlvr_model:
_lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw )
_lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw )
_lowerCamelCase : str = (
"The left image contains twice the number of dogs as the right image, and at least two dogs in total are"
" standing."
)
_lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : int = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
_lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw )
if mlm_model:
_lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]."
else:
_lowerCamelCase : List[str] = "How many cats are there?"
_lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase )
# Verify outputs
if mlm_model:
_lowerCamelCase : List[str] = torch.Size([1, 11, 30522] )
_lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 )
# verify masked token prediction equals "cats"
_lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
_lowerCamelCase : List[str] = torch.Size([1, 3129] )
_lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] )
assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 )
# verify vqa prediction equals "2"
_lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
_lowerCamelCase : List[str] = torch.Size([1, 2] )
_lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
_lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 46 | 0 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class __UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case_ ( self ):
__a = inspect.getfile(accelerate.test_utils )
__a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] )
__a = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] )
__a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] )
@require_multi_gpu
def snake_case_ ( self ):
print(f'''Found {torch.cuda.device_count()} devices.''' )
__a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
@require_multi_gpu
def snake_case_ ( self ):
print(f'''Found {torch.cuda.device_count()} devices.''' )
__a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path]
print(f'''Command: {cmd}''' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
@require_multi_gpu
def snake_case_ ( self ):
__a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
@require_multi_gpu
def snake_case_ ( self ):
print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' )
__a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ):
execute_subprocess_async(__A , env=os.environ.copy() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = Accelerator()
SCREAMING_SNAKE_CASE = (accelerator.state.process_index + 2, 1_0)
SCREAMING_SNAKE_CASE = torch.randint(0, 1_0, shape).to(accelerator.device)
SCREAMING_SNAKE_CASE = ''
SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
SCREAMING_SNAKE_CASE = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 99 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = list(_lowerCamelCase )
_lowerCamelCase : Any = list(_lowerCamelCase )
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
if lista[i] != lista[i]:
count += 1
_lowerCamelCase : List[str] = "_"
if count > 1:
return False
else:
return "".join(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : List[str] = []
while True:
_lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase )
_lowerCamelCase : str = []
for i in range(len(_lowerCamelCase ) ):
for j in range(i + 1 , len(_lowerCamelCase ) ):
_lowerCamelCase : Dict = compare_string(binary[i] , binary[j] )
if k is False:
_lowerCamelCase : Any = "*"
_lowerCamelCase : Optional[int] = "*"
temp.append("X" )
for i in range(len(_lowerCamelCase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_lowerCamelCase ) == 0:
return pi
_lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = []
for minterm in minterms:
_lowerCamelCase : List[Any] = ""
for _ in range(_lowerCamelCase ):
_lowerCamelCase : List[str] = str(minterm % 2 ) + string
minterm //= 2
temp.append(_lowerCamelCase )
return temp
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = list(_lowerCamelCase )
_lowerCamelCase : Optional[int] = list(_lowerCamelCase )
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : Dict = []
_lowerCamelCase : Dict = [0] * len(_lowerCamelCase )
for i in range(len(chart[0] ) ):
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = -1
for j in range(len(_lowerCamelCase ) ):
if chart[j][i] == 1:
count += 1
_lowerCamelCase : Any = j
if count == 1:
_lowerCamelCase : Union[str, Any] = 1
for i in range(len(_lowerCamelCase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Optional[int] = 0
temp.append(prime_implicants[i] )
while True:
_lowerCamelCase : str = 0
_lowerCamelCase : int = -1
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Optional[int] = chart[i].count(1 )
if count_n > max_n:
_lowerCamelCase : Any = count_n
_lowerCamelCase : Union[str, Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Any = 0
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]:
'''simple docstring'''
_lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )]
for i in range(len(_lowerCamelCase ) ):
_lowerCamelCase : List[Any] = prime_implicants[i].count("_" )
for j in range(len(_lowerCamelCase ) ):
if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ):
_lowerCamelCase : Optional[Any] = 1
return chart
def lowerCamelCase_( ) -> None:
'''simple docstring'''
_lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) )
_lowerCamelCase : str = [
float(_lowerCamelCase )
for x in input(
"Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split()
]
_lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : str = check(_lowerCamelCase )
print("Prime Implicants are:" )
print(_lowerCamelCase )
_lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase )
print("Essential Prime Implicants are:" )
print(_lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 46 | 0 |
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def __snake_case ( lowerCAmelCase_ ) -> Union[str, Any]:
return EnvironmentCommand()
def __snake_case ( lowerCAmelCase_ ) -> Tuple:
return EnvironmentCommand(args.accelerate_config_file )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
def lowercase_ ( A_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = parser.add_parser('''env''' )
download_parser.set_defaults(func=A_ )
download_parser.add_argument(
'''--accelerate-config_file''' , default=A_ , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=A_ )
def __init__( self , A_ , *A_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = accelerate_config_file
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = '''not installed'''
if is_safetensors_available():
import safetensors
SCREAMING_SNAKE_CASE__ = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
SCREAMING_SNAKE_CASE__ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
SCREAMING_SNAKE_CASE__ = '''not installed'''
SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
SCREAMING_SNAKE_CASE__ = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(A_ ):
SCREAMING_SNAKE_CASE__ = load_config_from_file(self._accelerate_config_file ).to_dict()
SCREAMING_SNAKE_CASE__ = (
'''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(A_ , A_ )
else f'''\t{accelerate_config}'''
)
SCREAMING_SNAKE_CASE__ = '''not installed'''
SCREAMING_SNAKE_CASE__ = '''NA'''
if is_torch_available():
import torch
SCREAMING_SNAKE_CASE__ = torch.__version__
SCREAMING_SNAKE_CASE__ = torch.cuda.is_available()
SCREAMING_SNAKE_CASE__ = '''not installed'''
SCREAMING_SNAKE_CASE__ = '''NA'''
if is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE__ = tf.__version__
try:
# deprecated in v2.1
SCREAMING_SNAKE_CASE__ = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
SCREAMING_SNAKE_CASE__ = bool(tf.config.list_physical_devices('''GPU''' ) )
SCREAMING_SNAKE_CASE__ = '''not installed'''
SCREAMING_SNAKE_CASE__ = '''not installed'''
SCREAMING_SNAKE_CASE__ = '''not installed'''
SCREAMING_SNAKE_CASE__ = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
SCREAMING_SNAKE_CASE__ = flax.__version__
SCREAMING_SNAKE_CASE__ = jax.__version__
SCREAMING_SNAKE_CASE__ = jaxlib.__version__
SCREAMING_SNAKE_CASE__ = jax.lib.xla_bridge.get_backend().platform
SCREAMING_SNAKE_CASE__ = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': f'''{safetensors_version}''',
'''Accelerate version''': f'''{accelerate_version}''',
'''Accelerate config''': f'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': f'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': f'''{flax_version} ({jax_backend})''',
'''Jax version''': f'''{jax_version}''',
'''JaxLib version''': f'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(A_ ) )
return info
@staticmethod
def lowercase_ ( A_ ):
'''simple docstring'''
return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 100 |
"""simple docstring"""
from __future__ import annotations
from random import random
class A_ :
def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ):
'''simple docstring'''
_lowerCamelCase : Any = value
_lowerCamelCase : Optional[int] = random()
_lowerCamelCase : Node | None = None
_lowerCamelCase : Node | None = None
def __repr__( self: Tuple ):
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return F"""'{self.value}: {self.prior:.5}'"""
else:
return pformat(
{F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 )
def __str__( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Tuple = str(self.value ) + " "
_lowerCamelCase : Optional[Any] = str(self.left or "" )
_lowerCamelCase : int = str(self.right or "" )
return value + left + right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]:
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
_lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase )
return left, root
else:
_lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase )
return root, right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
_lowerCamelCase : Any = merge(left.right , _lowerCamelCase )
return left
else:
_lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left )
return right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
_lowerCamelCase : int = Node(_lowerCamelCase )
_lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase )
return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 )
_lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase )
return merge(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> None:
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value , end="," )
inorder(root.right )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
_lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) )
elif arg[0] == "-":
_lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) )
else:
print("Unknown command" )
return root
def lowerCamelCase_( ) -> None:
'''simple docstring'''
_lowerCamelCase : List[Any] = None
print(
"enter numbers to create a tree, + value to add value into treap, "
"- value to erase all nodes with value. 'q' to quit. " )
_lowerCamelCase : int = input()
while args != "q":
_lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase )
print(_lowerCamelCase )
_lowerCamelCase : Tuple = input()
print("good by!" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 46 | 0 |
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
lowerCAmelCase__ : Optional[int] =0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
lowerCAmelCase__ : str =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class __lowercase :
"""simple docstring"""
def __init__( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = WATERMARK_BITS
SCREAMING_SNAKE_CASE_ : int = WatermarkEncoder()
self.encoder.set_watermark('bits' , self.watermark )
def UpperCamelCase__ ( self , lowerCAmelCase__ ):
"""simple docstring"""
if images.shape[-1] < 2_5_6:
return images
SCREAMING_SNAKE_CASE_ : Tuple = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
SCREAMING_SNAKE_CASE_ : Optional[int] = [self.encoder.encode(lowerCAmelCase__ , 'dwtDct' ) for image in images]
SCREAMING_SNAKE_CASE_ : List[str] = torch.from_numpy(np.array(lowerCAmelCase__ ) ).permute(0 , 3 , 1 , 2 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 )
return images
| 101 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = SpeechTaTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = True
def _lowercase ( self: List[Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase )
_lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token} )
tokenizer.add_tokens(["<ctc_blank>"] )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self: List[str] ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = "this is a test"
_lowerCamelCase : Optional[Any] = "this is a test"
return input_text, output_text
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase )
return text, ids
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "<pad>"
_lowerCamelCase : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"<s>" )
self.assertEqual(vocab_keys[1] ,"<pad>" )
self.assertEqual(vocab_keys[-4] ,"œ" )
self.assertEqual(vocab_keys[-2] ,"<mask>" )
self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" )
self.assertEqual(len(__lowerCAmelCase ) ,81 )
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,79 )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase : Tuple = tokenizer.vocab_size
_lowerCamelCase : Optional[Any] = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"]
_lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.vocab_size
_lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) )
self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) )
_lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase )
self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
_lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
_lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase )
_lowerCamelCase : int = tokenizer.vocab_size
_lowerCamelCase : str = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) )
self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) )
_lowerCamelCase : Optional[int] = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase )
self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] ,tokens[1] )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokens[-4] )
self.assertEqual(tokens[0] ,tokenizer.eos_token_id )
self.assertEqual(tokens[-3] ,tokenizer.pad_token_id )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.get_tokenizer()
_lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" )
# fmt: off
self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,)
_lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
_lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
# fmt: off
self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
@slow
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = [
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
"general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
"Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained "
"models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.",
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
"conditioning on both left and right context in all layers.",
"The quick brown fox jumps over the lazy dog.",
]
# fmt: off
_lowerCamelCase : Tuple = {
"input_ids": [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
| 46 | 0 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class lowercase__ :
"""simple docstring"""
def __init__( self , _A , _A=1_3 , _A=2 , _A=2_4 , _A=1_6 , _A=True , _A=True , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=None , _A=2 , _A=2 , ):
'''simple docstring'''
UpperCamelCase : Tuple = parent
UpperCamelCase : str = batch_size
UpperCamelCase : Optional[Any] = patch_size
UpperCamelCase : Optional[int] = max_length
UpperCamelCase : str = num_mel_bins
UpperCamelCase : Optional[int] = is_training
UpperCamelCase : str = use_labels
UpperCamelCase : Optional[int] = hidden_size
UpperCamelCase : Union[str, Any] = num_hidden_layers
UpperCamelCase : Optional[Any] = num_attention_heads
UpperCamelCase : Union[str, Any] = intermediate_size
UpperCamelCase : str = hidden_act
UpperCamelCase : Optional[Any] = hidden_dropout_prob
UpperCamelCase : Dict = attention_probs_dropout_prob
UpperCamelCase : Union[str, Any] = type_sequence_label_size
UpperCamelCase : List[Any] = initializer_range
UpperCamelCase : Optional[Any] = scope
UpperCamelCase : List[Any] = frequency_stride
UpperCamelCase : Tuple = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
UpperCamelCase : Optional[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
UpperCamelCase : Dict = (self.max_length - self.patch_size) // self.time_stride + 1
UpperCamelCase : List[str] = frequency_out_dimension * time_out_dimension
UpperCamelCase : int = num_patches + 2
def _a ( self ):
'''simple docstring'''
UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
UpperCamelCase : int = None
if self.use_labels:
UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Dict = self.get_config()
return config, input_values, labels
def _a ( self ):
'''simple docstring'''
return ASTConfig(
patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , )
def _a ( self , _A , _A , _A ):
'''simple docstring'''
UpperCamelCase : List[str] = ASTModel(config=_A )
model.to(_A )
model.eval()
UpperCamelCase : int = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _a ( self ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : List[str] = config_and_inputs
UpperCamelCase : Union[str, Any] = {"""input_values""": input_values}
return config, inputs_dict
@require_torch
class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase : List[Any] = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
__lowerCAmelCase : Any = (
{"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel}
if is_torch_available()
else {}
)
__lowerCAmelCase : Union[str, Any] = False
__lowerCAmelCase : Any = False
__lowerCAmelCase : List[Any] = False
__lowerCAmelCase : Union[str, Any] = False
def _a ( self , _A , _A , _A , _A , _A ):
'''simple docstring'''
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def _a ( self ):
'''simple docstring'''
UpperCamelCase : str = ASTModelTester(self )
UpperCamelCase : int = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 )
def _a ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""AST does not use inputs_embeds""" )
def _a ( self ):
'''simple docstring'''
pass
def _a ( self ):
'''simple docstring'''
UpperCamelCase , UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Tuple = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , nn.Linear ) )
def _a ( self ):
'''simple docstring'''
UpperCamelCase , UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Dict = model_class(_A )
UpperCamelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : int = [*signature.parameters.keys()]
UpperCamelCase : Any = ["""input_values"""]
self.assertListEqual(arg_names[:1] , _A )
def _a ( self ):
'''simple docstring'''
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
@slow
def _a ( self ):
'''simple docstring'''
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : int = ASTModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def UpperCamelCase ():
UpperCamelCase : Optional[Any] = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" )
UpperCamelCase , UpperCamelCase : Dict = torchaudio.load(SCREAMING_SNAKE_CASE )
return audio, sampling_rate
@require_torch
@require_torchaudio
class lowercase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _a ( self ):
'''simple docstring'''
return (
ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" )
if is_torchaudio_available()
else None
)
@slow
def _a ( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = self.default_feature_extractor
UpperCamelCase : Any = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_A )
UpperCamelCase : Union[str, Any] = self.default_feature_extractor
UpperCamelCase , UpperCamelCase : List[Any] = prepare_audio()
UpperCamelCase : Optional[Any] = audio.squeeze().numpy()
UpperCamelCase : Union[str, Any] = feature_extractor(_A , sampling_rate=_A , return_tensors="""pt""" ).to(_A )
# forward pass
with torch.no_grad():
UpperCamelCase : Optional[Any] = model(**_A )
# verify the logits
UpperCamelCase : List[Any] = torch.Size((1, 5_2_7) )
self.assertEqual(outputs.logits.shape , _A )
UpperCamelCase : Optional[Any] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(_A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
| 102 |
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 46 | 0 |
"""simple docstring"""
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
snake_case = HfArgumentParser(InitializationArguments)
snake_case = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
snake_case = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
snake_case = {
'''vocab_size''': len(tokenizer),
'''scale_attn_by_inverse_layer_idx''': True,
'''reorder_and_upcast_attn''': True,
}
# Load model config (GPT-2 large in this case)
snake_case = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
snake_case = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
| 103 |
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A_ ( _a ):
lowerCAmelCase__ = (DDIMParallelScheduler,)
lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0))
def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = {
"num_train_timesteps": 1_000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**__lowerCAmelCase )
return config
def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase )
_lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0
_lowerCamelCase : List[Any] = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
scheduler.set_timesteps(__lowerCAmelCase )
for t in scheduler.timesteps:
_lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample
return sample
def _lowercase ( self: List[str] ):
'''simple docstring'''
for timesteps in [100, 500, 1_000]:
self.check_over_configs(num_train_timesteps=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 )
_lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) )
def _lowercase ( self: Any ):
'''simple docstring'''
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__lowerCAmelCase )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
self.check_over_configs(thresholding=__lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,)
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
for t in [1, 10, 49]:
self.check_over_forward(time_step=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ):
self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : Union[str, Any] = self.get_scheduler_config()
_lowerCamelCase : str = scheduler_class(**__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0
scheduler.set_timesteps(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = self.dummy_model()
_lowerCamelCase : Optional[int] = self.dummy_sample_deter
_lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1
_lowerCamelCase : Dict = self.dummy_sample_deter - 0.1
_lowerCamelCase : Union[str, Any] = samplea.shape[0]
_lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 )
_lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase )
_lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) )
_lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase )
_lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2
assert abs(result_mean.item() - 0.49_82 ) < 1e-3
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Any = self.full_loop()
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" )
_lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 52.53_02 ) < 1e-2
assert abs(result_mean.item() - 0.06_84 ) < 1e-3
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 )
_lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2
assert abs(result_mean.item() - 0.19_51 ) < 1e-3
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 )
_lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2
assert abs(result_mean.item() - 0.19_41 ) < 1e-3
| 46 | 0 |
"""simple docstring"""
def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : str ) -> bool:
"""simple docstring"""
A__ = len(UpperCAmelCase_ )
A__ = len(UpperCAmelCase_ )
A__ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
A__ = True
for i in range(UpperCAmelCase_ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
A__ = True
if a[i].islower():
A__ = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 104 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : int = {
'''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''',
}
class A_ ( _a , _a ):
lowerCAmelCase__ = 'bit'
lowerCAmelCase__ = ['preactivation', 'bottleneck']
lowerCAmelCase__ = ['SAME', 'VALID']
def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
if layer_type not in self.layer_types:
raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
_lowerCamelCase : List[Any] = global_padding.upper()
else:
raise ValueError(F"""Padding strategy {global_padding} not supported""" )
_lowerCamelCase : str = num_channels
_lowerCamelCase : str = embedding_size
_lowerCamelCase : Dict = hidden_sizes
_lowerCamelCase : str = depths
_lowerCamelCase : Any = layer_type
_lowerCamelCase : Any = hidden_act
_lowerCamelCase : List[str] = global_padding
_lowerCamelCase : Tuple = num_groups
_lowerCamelCase : Optional[int] = drop_path_rate
_lowerCamelCase : List[Any] = embedding_dynamic_padding
_lowerCamelCase : Any = output_stride
_lowerCamelCase : List[str] = width_factor
_lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )]
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices(
out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
| 46 | 0 |
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : complex , lowerCamelCase_ : str = "x" , lowerCamelCase_ : float = 10**-10 , lowerCamelCase_ : int = 1 , ) -> complex:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = symbols(lowerCamelCase_ )
SCREAMING_SNAKE_CASE_ : int = lambdify(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = lambdify(lowerCamelCase_ , diff(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE_ : Dict = starting_point
while True:
if diff_function(lowerCamelCase_ ) != 0:
SCREAMING_SNAKE_CASE_ : Optional[int] = prev_guess - multiplicity * func(lowerCamelCase_ ) / diff_function(
lowerCamelCase_ )
else:
raise ZeroDivisionError('Could not find root' ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
SCREAMING_SNAKE_CASE_ : str = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""")
# Find root of polynomial
# Find fourth Root of 5
print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""")
# Find value of e
print(
'''The root of log(y) - 1 = 0 is ''',
F"""{newton_raphson("log(y) - 1", 2, variable="y")}""",
)
# Exponential Roots
print(
'''The root of exp(x) - 1 = 0 is''',
F"""{newton_raphson("exp(x) - 1", 10, precision=0.0_05)}""",
)
# Find root of cos(x)
print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
| 105 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
'''google/vivit-b-16x2-kinetics400''': (
'''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'''
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class A_ ( _a ):
lowerCAmelCase__ = 'vivit'
def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,):
'''simple docstring'''
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Union[str, Any] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Optional[Any] = attention_probs_dropout_prob
_lowerCamelCase : List[Any] = initializer_range
_lowerCamelCase : int = layer_norm_eps
_lowerCamelCase : Tuple = image_size
_lowerCamelCase : Dict = num_frames
_lowerCamelCase : Optional[int] = tubelet_size
_lowerCamelCase : int = num_channels
_lowerCamelCase : List[str] = qkv_bias
super().__init__(**__lowerCAmelCase )
| 46 | 0 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class lowerCAmelCase__ :
def __init__( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=False , __UpperCamelCase : Any=10 , __UpperCamelCase : str=3 , __UpperCamelCase : Dict=32 * 4 , __UpperCamelCase : Dict=32 * 6 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple=32 , ) -> List[Any]:
A = parent
A = batch_size
A = is_training
A = use_auxiliary_loss
A = num_queries
A = num_channels
A = min_size
A = max_size
A = num_labels
A = mask_feature_size
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__UpperCamelCase )
A = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__UpperCamelCase )
A = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__UpperCamelCase ) > 0.5
).float()
A = (torch.rand((self.batch_size, self.num_labels) , device=__UpperCamelCase ) > 0.5).long()
A = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
A , A , A , A , A = self.prepare_config_and_inputs()
A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ) -> List[Any]:
A = output.encoder_hidden_states
A = output.pixel_decoder_hidden_states
A = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__UpperCamelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__UpperCamelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__UpperCamelCase ) , config.decoder_config.decoder_layers )
def __UpperCamelCase ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any=False ) -> Union[str, Any]:
with torch.no_grad():
A = MaskFormerModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(pixel_values=__UpperCamelCase , pixel_mask=__UpperCamelCase )
A = model(__UpperCamelCase , output_hidden_states=__UpperCamelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__UpperCamelCase , __UpperCamelCase )
def __UpperCamelCase ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ) -> Optional[int]:
A = MaskFormerForInstanceSegmentation(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
def comm_check_on_output(__UpperCamelCase : Optional[Any] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
A = model(pixel_values=__UpperCamelCase , pixel_mask=__UpperCamelCase )
A = model(__UpperCamelCase )
comm_check_on_output(__UpperCamelCase )
A = model(
pixel_values=__UpperCamelCase , pixel_mask=__UpperCamelCase , mask_labels=__UpperCamelCase , class_labels=__UpperCamelCase )
comm_check_on_output(__UpperCamelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ):
A_ : Any = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
A_ : Any = (
{'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
A_ : Dict = False
A_ : Dict = False
A_ : Optional[Any] = False
A_ : List[Any] = False
def __UpperCamelCase ( self : Tuple ) -> List[str]:
A = MaskFormerModelTester(self )
A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase )
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]:
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : List[str] ) -> int:
A , A = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(__UpperCamelCase , **__UpperCamelCase , output_hidden_states=__UpperCamelCase )
def __UpperCamelCase ( self : List[Any] ) -> Dict:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__UpperCamelCase )
@unittest.skip(reason='MaskFormer does not use inputs_embeds' )
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
pass
@unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' )
def __UpperCamelCase ( self : Optional[int] ) -> Any:
pass
@unittest.skip(reason='MaskFormer is not a generative model' )
def __UpperCamelCase ( self : str ) -> List[str]:
pass
@unittest.skip(reason='MaskFormer does not use token embeddings' )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def __UpperCamelCase ( self : str ) -> Tuple:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]:
pass
def __UpperCamelCase ( self : List[Any] ) -> Optional[int]:
A , A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A = model_class(__UpperCamelCase )
A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A = [*signature.parameters.keys()]
A = ['pixel_values']
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
@slow
def __UpperCamelCase ( self : int ) -> List[str]:
for model_name in ["facebook/maskformer-swin-small-coco"]:
A = MaskFormerModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
A = (self.model_tester.min_size,) * 2
A = {
'pixel_values': torch.randn((2, 3, *size) , device=__UpperCamelCase ),
'mask_labels': torch.randn((2, 10, *size) , device=__UpperCamelCase ),
'class_labels': torch.zeros(2 , 10 , device=__UpperCamelCase ).long(),
}
A = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__UpperCamelCase )
A = model(**__UpperCamelCase )
self.assertTrue(outputs.loss is not None )
def __UpperCamelCase ( self : Optional[Any] ) -> List[str]:
A , A = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(__UpperCamelCase , **__UpperCamelCase , output_hidden_states=__UpperCamelCase )
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
A , A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A = model_class(__UpperCamelCase ).to(__UpperCamelCase )
A = model(**__UpperCamelCase , output_attentions=__UpperCamelCase )
self.assertTrue(outputs.attentions is not None )
def __UpperCamelCase ( self : Dict ) -> Tuple:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
A = self.all_model_classes[1]
A , A , A , A , A = self.model_tester.prepare_config_and_inputs()
A = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
A = model(__UpperCamelCase , mask_labels=__UpperCamelCase , class_labels=__UpperCamelCase ).loss
loss.backward()
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
# only MaskFormerForInstanceSegmentation has the loss
A = self.all_model_classes[1]
A , A , A , A , A = self.model_tester.prepare_config_and_inputs()
A = True
A = True
A = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
A = model(__UpperCamelCase , mask_labels=__UpperCamelCase , class_labels=__UpperCamelCase )
A = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
A = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
A = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
A = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__UpperCamelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__snake_case :Optional[Any] =1E-4
def lowerCamelCase_ ( ) -> Optional[Any]:
'''simple docstring'''
A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self : List[str] ) -> Dict:
return (
MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' )
if is_vision_available()
else None
)
def __UpperCamelCase ( self : Dict ) -> Optional[Any]:
A = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(__UpperCamelCase )
A = self.default_image_processor
A = prepare_img()
A = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase )
A = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__UpperCamelCase , (1, 3, 800, 1_088) )
with torch.no_grad():
A = model(**__UpperCamelCase )
A = torch.tensor(
[[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(__UpperCamelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
A = torch.tensor(
[[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(__UpperCamelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
A = torch.tensor(
[[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(__UpperCamelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
def __UpperCamelCase ( self : str ) -> int:
A = (
MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' )
.to(__UpperCamelCase )
.eval()
)
A = self.default_image_processor
A = prepare_img()
A = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase )
A = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__UpperCamelCase , (1, 3, 800, 1_088) )
with torch.no_grad():
A = model(**__UpperCamelCase )
# masks_queries_logits
A = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
A = [
[-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3],
[-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5],
[-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2],
]
A = torch.tensor(__UpperCamelCase ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
# class_queries_logits
A = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
A = torch.tensor(
[
[1.6512e00, -5.2572e00, -3.3519e00],
[3.6169e-02, -5.9025e00, -2.9313e00],
[1.0766e-04, -7.7630e00, -5.1263e00],
] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
def __UpperCamelCase ( self : Tuple ) -> int:
A = (
MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' )
.to(__UpperCamelCase )
.eval()
)
A = self.default_image_processor
A = prepare_img()
A = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase )
A = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__UpperCamelCase , (1, 3, 800, 1_088) )
with torch.no_grad():
A = model(**__UpperCamelCase )
# masks_queries_logits
A = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
A = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]]
A = torch.tensor(__UpperCamelCase ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
# class_queries_logits
A = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
A = torch.tensor(
[[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
def __UpperCamelCase ( self : Any ) -> List[Any]:
A = (
MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' )
.to(__UpperCamelCase )
.eval()
)
A = self.default_image_processor
A = image_processor(
[np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , )
A = inputs['pixel_values'].to(__UpperCamelCase )
A = [el.to(__UpperCamelCase ) for el in inputs['mask_labels']]
A = [el.to(__UpperCamelCase ) for el in inputs['class_labels']]
with torch.no_grad():
A = model(**__UpperCamelCase )
self.assertTrue(outputs.loss is not None )
| 106 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = MgpstrTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = {}
lowerCAmelCase__ = False
def _lowercase ( self: int ):
'''simple docstring'''
super().setUp()
# fmt: off
_lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
_lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) )
_lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = "tester"
_lowerCamelCase : Optional[Any] = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
_lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase )
self.assertEqual(len(__lowerCAmelCase ) ,1 )
_lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase )
self.assertTrue(special_token not in decoded )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase )
_lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
_lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertNotEqual(len(__lowerCAmelCase ) ,0 )
_lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _lowercase ( self: str ):
'''simple docstring'''
pass
| 46 | 0 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( __snake_case : str ):
_A = 0
# if input_string is "aba" than new_input_string become "a|b|a"
_A = ''
_A = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(__snake_case ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
_A , _A = 0, 0
# length[i] shows the length of palindromic substring with center i
_A = [1 for i in range(len(__snake_case ) )]
# for each character in new_string find corresponding palindromic string
_A = 0
for j in range(len(__snake_case ) ):
_A = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(__snake_case )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
_A = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
_A = j - k + 1 # noqa: E741
_A = j + k - 1
# update max_length and start position
if max_length < length[j]:
_A = length[j]
_A = j
# create that string
_A = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 107 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
_lowerCAmelCase : str = '''
Examples:
```py
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/frog.png"
... )
>>> image = pipe(
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save("red_frog.png")
```
'''
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : int = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
_lowerCamelCase : Optional[Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int:
'''simple docstring'''
_lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
_lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) )
_lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1
_lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] )
_lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 )
return image
class A_ ( _a ):
def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,):
'''simple docstring'''
super().__init__()
self.register_modules(
unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,)
_lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase )
_lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 )
_lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" )
_lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt
if image.shape[1] == 4:
_lowerCamelCase : List[Any] = image
else:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase )
]
_lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 )
else:
_lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase )
_lowerCamelCase : int = self.movq.config.scaling_factor * init_latents
_lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 )
_lowerCamelCase : Optional[int] = init_latents.shape
_lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase )
# get latents
_lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : str = init_latents
return latents
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
_lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" )
_lowerCamelCase : Dict = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ):
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
_lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
_lowerCamelCase : str = None
for cpu_offloaded_model in [self.unet, self.movq]:
_lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase )
# We'll offload the last model manually.
_lowerCamelCase : int = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if not hasattr(self.unet ,"_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__lowerCAmelCase ,"_hf_hook" )
and hasattr(module._hf_hook ,"execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__lowerCAmelCase )
def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self._execution_device
_lowerCamelCase : Dict = guidance_scale > 1.0
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Any = image_embeds.shape[0]
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 )
if do_classifier_free_guidance:
_lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase )
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Tuple = [image]
if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" )
_lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 )
_lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase )
_lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"]
_lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 )
self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt )
_lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor )
_lowerCamelCase : List[Any] = self.prepare_latents(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase )
for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
_lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCamelCase : List[str] = {"image_embeds": image_embeds}
_lowerCamelCase : Tuple = self.unet(
sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0]
if do_classifier_free_guidance:
_lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 )
_lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 )
_lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 )
_lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
_lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 )
if not (
hasattr(self.scheduler.config ,"variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 )
# compute the previous noisy sample x_t -> x_t-1
_lowerCamelCase : Optional[int] = self.scheduler.step(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0]
# post-processing
_lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
_lowerCamelCase : Optional[int] = image * 0.5 + 0.5
_lowerCamelCase : str = image.clamp(0 ,1 )
_lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy()
if output_type == "pil":
_lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCAmelCase )
| 46 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
__a: List[str] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ):
'''simple docstring'''
_lowerCamelCase = '''upernet'''
def __init__( self : str , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=512 , lowerCamelCase : List[str]=0.02 , lowerCamelCase : int=[1, 2, 3, 6] , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Tuple=0.4 , lowerCamelCase : Union[str, Any]=384 , lowerCamelCase : Dict=256 , lowerCamelCase : List[Any]=1 , lowerCamelCase : Any=False , lowerCamelCase : Any=255 , **lowerCamelCase : Optional[int] , ) -> Tuple:
"""simple docstring"""
super().__init__(**lowerCamelCase )
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
_UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
elif isinstance(lowerCamelCase , lowerCamelCase ):
_UpperCAmelCase = backbone_config.get("""model_type""" )
_UpperCAmelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCAmelCase = config_class.from_dict(lowerCamelCase )
_UpperCAmelCase = backbone_config
_UpperCAmelCase = hidden_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = pool_scales
_UpperCAmelCase = use_auxiliary_head
_UpperCAmelCase = auxiliary_loss_weight
_UpperCAmelCase = auxiliary_in_channels
_UpperCAmelCase = auxiliary_channels
_UpperCAmelCase = auxiliary_num_convs
_UpperCAmelCase = auxiliary_concat_input
_UpperCAmelCase = loss_ignore_index
def lowerCamelCase ( self : int ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = copy.deepcopy(self.__dict__ )
_UpperCAmelCase = self.backbone_config.to_dict()
_UpperCAmelCase = self.__class__.model_type
return output
| 108 |
"""simple docstring"""
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def lowerCamelCase_( ) -> None:
'''simple docstring'''
print("Making key files..." )
make_key_files("rsa" , 1024 )
print("Key files generation successful." )
def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]:
'''simple docstring'''
print("Generating prime p..." )
_lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase )
print("Generating prime q..." )
_lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase )
_lowerCamelCase : Dict = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)..." )
while True:
_lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1:
break
print("Calculating d that is mod inverse of e..." )
_lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) )
_lowerCamelCase : Dict = (n, e)
_lowerCamelCase : Dict = (n, d)
return (public_key, private_key)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None:
'''simple docstring'''
if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ):
print("\nWARNING:" )
print(
F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"Use a different name or delete these files and re-run this program." )
sys.exit()
_lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase )
print(F"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(F"""{name}_pubkey.txt""" , "w" ) as out_file:
out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" )
print(F"""Writing private key to file {name}_privkey.txt...""" )
with open(F"""{name}_privkey.txt""" , "w" ) as out_file:
out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main()
| 46 | 0 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __a ( unittest.TestCase ):
def __init__( self : Optional[int] ,lowerCamelCase : int ,lowerCamelCase : Dict=7 ,lowerCamelCase : Optional[Any]=3 ,lowerCamelCase : int=30 ,lowerCamelCase : Any=400 ,lowerCamelCase : Union[str, Any]=True ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : Any=True ,lowerCamelCase : Any=[0.5, 0.5, 0.5] ,lowerCamelCase : Dict=[0.5, 0.5, 0.5] ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=1 / 255 ,lowerCamelCase : Tuple=True ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_normalize
__SCREAMING_SNAKE_CASE = image_mean
__SCREAMING_SNAKE_CASE = image_std
__SCREAMING_SNAKE_CASE = do_rescale
__SCREAMING_SNAKE_CASE = rescale_factor
__SCREAMING_SNAKE_CASE = do_pad
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Dict ,lowerCamelCase : List[Any]=False ):
'''simple docstring'''
if not batched:
__SCREAMING_SNAKE_CASE = image_inputs[0]
if isinstance(lowerCamelCase ,Image.Image ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.size
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2]
if w < h:
__SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w )
__SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""]
elif w > h:
__SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""]
__SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h )
else:
__SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""]
__SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""]
else:
__SCREAMING_SNAKE_CASE = []
for image in image_inputs:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__SCREAMING_SNAKE_CASE = max(lowerCamelCase ,key=lambda lowerCamelCase : item[0] )[0]
__SCREAMING_SNAKE_CASE = max(lowerCamelCase ,key=lambda lowerCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : List[str] = DeformableDetrImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = DeformableDetrImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_rescale""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_pad""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=lowerCamelCase )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad ,lowerCamelCase )
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase )
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase ,numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,np.ndarray )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase ,torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,torch.Tensor )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
@slow
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" ,"""r""" ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = {"""image_id""": 3_9769, """annotations""": target}
# encode them
__SCREAMING_SNAKE_CASE = DeformableDetrImageProcessor()
__SCREAMING_SNAKE_CASE = image_processing(images=lowerCamelCase ,annotations=lowerCamelCase ,return_tensors="""pt""" )
# verify pixel values
__SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,lowerCamelCase ,atol=1E-4 ) )
# verify area
__SCREAMING_SNAKE_CASE = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,lowerCamelCase ) )
# verify boxes
__SCREAMING_SNAKE_CASE = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,lowerCamelCase ,atol=1E-3 ) )
# verify image_id
__SCREAMING_SNAKE_CASE = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,lowerCamelCase ) )
# verify is_crowd
__SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,lowerCamelCase ) )
# verify class_labels
__SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,lowerCamelCase ) )
# verify orig_size
__SCREAMING_SNAKE_CASE = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,lowerCamelCase ) )
# verify size
__SCREAMING_SNAKE_CASE = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,lowerCamelCase ) )
@slow
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" ,"""r""" ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target}
__SCREAMING_SNAKE_CASE = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
__SCREAMING_SNAKE_CASE = DeformableDetrImageProcessor(format="""coco_panoptic""" )
__SCREAMING_SNAKE_CASE = image_processing(images=lowerCamelCase ,annotations=lowerCamelCase ,masks_path=lowerCamelCase ,return_tensors="""pt""" )
# verify pixel values
__SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,lowerCamelCase ,atol=1E-4 ) )
# verify area
__SCREAMING_SNAKE_CASE = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,lowerCamelCase ) )
# verify boxes
__SCREAMING_SNAKE_CASE = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,lowerCamelCase ,atol=1E-3 ) )
# verify image_id
__SCREAMING_SNAKE_CASE = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,lowerCamelCase ) )
# verify is_crowd
__SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,lowerCamelCase ) )
# verify class_labels
__SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,lowerCamelCase ) )
# verify masks
__SCREAMING_SNAKE_CASE = 82_2873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() ,lowerCamelCase )
# verify orig_size
__SCREAMING_SNAKE_CASE = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,lowerCamelCase ) )
# verify size
__SCREAMING_SNAKE_CASE = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,lowerCamelCase ) )
| 109 |
"""simple docstring"""
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A_ :
def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,):
'''simple docstring'''
_lowerCamelCase : Optional[int] = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Any = image_size
_lowerCamelCase : List[str] = patch_size
_lowerCamelCase : Union[str, Any] = num_channels
_lowerCamelCase : List[str] = is_training
_lowerCamelCase : str = use_labels
_lowerCamelCase : List[Any] = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Optional[Any] = intermediate_size
_lowerCamelCase : Optional[int] = hidden_act
_lowerCamelCase : Union[str, Any] = hidden_dropout_prob
_lowerCamelCase : Any = attention_probs_dropout_prob
_lowerCamelCase : str = type_sequence_label_size
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Dict = mask_ratio
_lowerCamelCase : List[Any] = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_lowerCamelCase : str = (image_size // patch_size) ** 2
_lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase : int = None
if self.use_labels:
_lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
_lowerCamelCase : str = self.get_config()
return config, pixel_values, labels
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Dict = model(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2
_lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_lowerCamelCase : str = 1
_lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase )
_lowerCamelCase : Any = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : int = self.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs
_lowerCamelCase : Dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A_ ( _a , _a , unittest.TestCase ):
lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {}
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = ViTMAEModelTester(self )
_lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 )
def _lowercase ( self: List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMAE does not use inputs_embeds" )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
_lowerCamelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Dict = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Optional[Any] = [*signature.parameters.keys()]
_lowerCamelCase : Dict = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase )
def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
np.random.seed(2 )
_lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_lowerCamelCase : Dict = pt_noise
super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
_lowerCamelCase : Any = outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase )
model.to(__lowerCAmelCase )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
# Make sure we don't have nans
_lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCAmelCase ,1e-5 )
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: str ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" )
def _lowercase ( self: int ):
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _lowercase ( self: Dict ):
'''simple docstring'''
pass
@slow
def _lowercase ( self: Dict ):
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class A_ ( unittest.TestCase ):
@cached_property
def _lowercase ( self: str ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None
@slow
def _lowercase ( self: int ):
'''simple docstring'''
np.random.seed(2 )
_lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase )
_lowerCamelCase : int = self.default_image_processor
_lowerCamelCase : int = prepare_img()
_lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_lowerCamelCase : Tuple = ViTMAEConfig()
_lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
_lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) )
# verify the logits
_lowerCamelCase : Any = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape ,__lowerCAmelCase )
_lowerCamelCase : Tuple = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
| 46 | 0 |
"""simple docstring"""
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a ( lowercase ):
def __snake_case ( self ):
UpperCAmelCase__ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def __snake_case ( self ):
with self.assertRaises(UpperCamelCase_ ):
UpperCAmelCase__ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def __snake_case ( self ):
with self.assertRaises(UpperCamelCase_ ):
UpperCAmelCase__ : List[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) )
def __snake_case ( self ):
UpperCAmelCase__ : str = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) )
self.assertEqual(arr.type , pa.intaa() )
def __snake_case ( self ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
UpperCAmelCase__ : List[str] = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) )
def __snake_case ( self ):
UpperCAmelCase__ : int = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) )
self.assertEqual(arr.type , pa.intaa() )
def __snake_case ( self ):
UpperCAmelCase__ : Any = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) )
self.assertEqual(arr.type , pa.string() )
def __snake_case ( self ):
UpperCAmelCase__ : int = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) )
def __snake_case ( self ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
UpperCAmelCase__ : int = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) )
def __snake_case ( self ):
UpperCAmelCase__ : str = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) )
def __snake_case ( self ):
UpperCAmelCase__ : List[Any] = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def __snake_case ( self ):
import PIL.Image
UpperCAmelCase__ : Tuple = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
'datasets.arrow_writer.cast_to_python_objects' , side_effect=UpperCamelCase_ ) as mock_cast_to_python_objects:
UpperCAmelCase__ : List[str] = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image] , type=Image() ) )
UpperCAmelCase__ , UpperCAmelCase__ : Any = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn('optimize_list_casting' , UpperCamelCase_ )
self.assertFalse(kwargs['optimize_list_casting'] )
def lowerCamelCase ( _snake_case ,_snake_case ):
UpperCAmelCase__ : str = pa.BufferReader(_snake_case ) if isinstance(_snake_case ,pa.Buffer ) else pa.memory_map(_snake_case )
UpperCAmelCase__ : Any = pa.ipc.open_stream(_snake_case )
UpperCAmelCase__ : pa.Table = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] )
@pytest.mark.parametrize(
'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def lowerCamelCase ( _snake_case ,_snake_case ):
UpperCAmelCase__ : Optional[Any] = pa.BufferOutputStream()
UpperCAmelCase__ : List[str] = pa.schema(_snake_case ) if fields else None
with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
UpperCAmelCase__ , UpperCAmelCase__ : Any = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ : Optional[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata )
_check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def lowerCamelCase ( ):
UpperCAmelCase__ : Tuple = pa.BufferOutputStream()
UpperCAmelCase__ : Optional[Any] = Features({'labels': ClassLabel(names=['neg', 'pos'] )} )
with ArrowWriter(stream=_snake_case ,features=_snake_case ) as writer:
writer.write({'labels': 0} )
writer.write({'labels': 1} )
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
UpperCAmelCase__ : List[str] = pa.BufferReader(output.getvalue() )
UpperCAmelCase__ : Optional[Any] = pa.ipc.open_stream(_snake_case )
UpperCAmelCase__ : pa.Table = f.read_all()
UpperCAmelCase__ : List[Any] = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(_snake_case )
@pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] )
def lowerCamelCase ( _snake_case ):
UpperCAmelCase__ : Optional[int] = pa.BufferOutputStream()
with ArrowWriter(
stream=_snake_case ,writer_batch_size=_snake_case ,hash_salt='split_name' ,check_duplicates=_snake_case ,) as writer:
with pytest.raises(_snake_case ):
writer.write({'col_1': 'foo', 'col_2': 1} ,key=[1, 2] )
UpperCAmelCase__ , UpperCAmelCase__ : str = writer.finalize()
@pytest.mark.parametrize('writer_batch_size' ,[None, 2, 10] )
def lowerCamelCase ( _snake_case ):
UpperCAmelCase__ : Union[str, Any] = pa.BufferOutputStream()
with ArrowWriter(
stream=_snake_case ,writer_batch_size=_snake_case ,hash_salt='split_name' ,check_duplicates=_snake_case ,) as writer:
with pytest.raises(_snake_case ):
writer.write({'col_1': 'foo', 'col_2': 1} ,key=10 )
writer.write({'col_1': 'bar', 'col_2': 2} ,key=10 )
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = writer.finalize()
@pytest.mark.parametrize('writer_batch_size' ,[None, 2, 10] )
def lowerCamelCase ( _snake_case ):
UpperCAmelCase__ : int = pa.BufferOutputStream()
with ArrowWriter(
stream=_snake_case ,writer_batch_size=_snake_case ,hash_salt='split_name' ,check_duplicates=_snake_case ,) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} ,key=1 )
writer.write({'col_1': 'bar', 'col_2': 2} ,key=2 )
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] )
@pytest.mark.parametrize(
'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def lowerCamelCase ( _snake_case ,_snake_case ):
UpperCAmelCase__ : List[Any] = pa.BufferOutputStream()
UpperCAmelCase__ : Tuple = pa.schema(_snake_case ) if fields else None
with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
writer.write_batch({'col_1': [], 'col_2': []} )
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ : Any = {'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata )
_check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] )
@pytest.mark.parametrize(
'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def lowerCamelCase ( _snake_case ,_snake_case ):
UpperCAmelCase__ : List[Any] = pa.BufferOutputStream()
UpperCAmelCase__ : Tuple = pa.schema(_snake_case ) if fields else None
with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer:
writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) )
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata )
_check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] )
@pytest.mark.parametrize(
'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def lowerCamelCase ( _snake_case ,_snake_case ):
UpperCAmelCase__ : List[str] = pa.BufferOutputStream()
UpperCAmelCase__ : List[str] = pa.schema(_snake_case ) if fields else None
with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer:
writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) )
writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) )
UpperCAmelCase__ , UpperCAmelCase__ : Dict = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata )
_check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def lowerCamelCase ( ):
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()}
UpperCAmelCase__ : Optional[int] = os.path.join(_snake_case ,'test.arrow' )
with ArrowWriter(path=_snake_case ,schema=pa.schema(_snake_case ) ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
UpperCAmelCase__ , UpperCAmelCase__ : Dict = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata )
_check_output(_snake_case ,1 )
def lowerCamelCase ( _snake_case ):
if pa.types.is_list(_snake_case ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def lowerCamelCase ( _snake_case ,_snake_case ):
if isinstance(lst[0] ,_snake_case ):
change_first_primitive_element_in_list(lst[0] ,_snake_case )
else:
UpperCAmelCase__ : Optional[int] = value
@pytest.mark.parametrize('optimized_int_type, expected_dtype' ,[(None, pa.intaa()), (Value('int32' ), pa.intaa())] )
@pytest.mark.parametrize('sequence' ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ):
UpperCAmelCase__ : Any = pa.array(TypedSequence(_snake_case ,optimized_int_type=_snake_case ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
'col, expected_dtype' ,[
('attention_mask', pa.inta()),
('special_tokens_mask', pa.inta()),
('token_type_ids', pa.inta()),
('input_ids', pa.intaa()),
('other', pa.intaa()),
] ,)
@pytest.mark.parametrize('sequence' ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ):
# in range
UpperCAmelCase__ : List[str] = pa.array(OptimizedTypedSequence(_snake_case ,col=_snake_case ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
UpperCAmelCase__ : Union[str, Any] = copy.deepcopy(_snake_case )
UpperCAmelCase__ : Tuple = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(_snake_case ,_snake_case )
UpperCAmelCase__ : Optional[Any] = pa.array(OptimizedTypedSequence(_snake_case ,col=_snake_case ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize('raise_exception' ,[False, True] )
def lowerCamelCase ( _snake_case ,_snake_case ):
UpperCAmelCase__ : str = str(tmp_path / 'dataset-train.arrow' )
try:
with ArrowWriter(path=_snake_case ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def lowerCamelCase ( _snake_case ):
UpperCAmelCase__ : Dict = 'mock://dataset-train.arrow'
with ArrowWriter(path=_snake_case ,storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs ,type(_snake_case ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(_snake_case )
def lowerCamelCase ( ):
UpperCAmelCase__ : Union[str, Any] = pa.BufferOutputStream()
with ParquetWriter(stream=_snake_case ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
UpperCAmelCase__ : Optional[Any] = pa.BufferReader(output.getvalue() )
UpperCAmelCase__ : pa.Table = pq.read_table(_snake_case )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize('embed_local_files' ,[False, True] )
def lowerCamelCase ( _snake_case ,_snake_case ):
import PIL.Image
UpperCAmelCase__ : str = str(tmp_path / 'test_image_rgb.jpg' )
PIL.Image.fromarray(np.zeros((5, 5) ,dtype=np.uinta ) ).save(_snake_case ,format='png' )
UpperCAmelCase__ : Any = pa.BufferOutputStream()
with ParquetWriter(
stream=_snake_case ,features=Features({'image': Image()} ) ,embed_local_files=_snake_case ) as writer:
writer.write({'image': image_path} )
writer.finalize()
UpperCAmelCase__ : str = pa.BufferReader(output.getvalue() )
UpperCAmelCase__ : pa.Table = pq.read_table(_snake_case )
UpperCAmelCase__ : List[str] = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out['image'][0]['path'] ,_snake_case )
with open(_snake_case ,'rb' ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def lowerCamelCase ( ):
UpperCAmelCase__ : Union[str, Any] = pa.schema([pa.field('col_1' ,pa.string() ,nullable=_snake_case )] )
UpperCAmelCase__ : Optional[Any] = pa.BufferOutputStream()
with ArrowWriter(stream=_snake_case ) as writer:
writer._build_writer(inferred_schema=_snake_case )
assert writer._schema == pa.schema([pa.field('col_1' ,pa.string() )] )
| 110 |
"""simple docstring"""
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
_lowerCAmelCase : List[str] = 10
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
for i in range(_lowerCamelCase , _lowerCamelCase ):
if array[i] == target:
return i
return -1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Any = len(_lowerCamelCase )
while left <= right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : str = (left + right) // 3 + 1
_lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
_lowerCamelCase : Union[str, Any] = one_third - 1
elif array[two_third] < target:
_lowerCamelCase : Any = two_third + 1
else:
_lowerCamelCase : List[str] = one_third + 1
_lowerCamelCase : int = two_third - 1
else:
return -1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if left < right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Tuple = (left + right) // 3 + 1
_lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip()
_lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
_lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip())
_lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target)
_lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f'''Iterative search: {target} found at positions: {resulta}''')
print(f'''Recursive search: {target} found at positions: {resulta}''')
else:
print('''Not found''')
| 46 | 0 |
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
lowercase__ : int = ['''small''', '''medium''', '''large''']
lowercase__ : str = '''lm_head.decoder.weight'''
lowercase__ : List[Any] = '''lm_head.weight'''
def lowerCamelCase__ ( _A , _A ):
'''simple docstring'''
snake_case_ = torch.load(_lowerCamelCase )
snake_case_ = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
lowercase__ : Union[str, Any] = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
lowercase__ : Optional[int] = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''')
lowercase__ : List[str] = f'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 376 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase = 100 ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = set()
_lowerCamelCase : Optional[Any] = 0
_lowerCamelCase : Optional[int] = n + 1 # maximum limit
for a in range(2 , _lowerCamelCase ):
for b in range(2 , _lowerCamelCase ):
_lowerCamelCase : List[str] = a**b # calculates the current power
collect_powers.add(_lowerCamelCase ) # adds the result to the set
return len(_lowerCamelCase )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 46 | 0 |
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class snake_case_ (tf.keras.optimizers.schedules.LearningRateSchedule ):
def __init__( self :List[str] ,__snake_case :float ,__snake_case :Callable ,__snake_case :int ,__snake_case :float = 1.0 ,__snake_case :str = None ,) -> Any:
super().__init__()
a__ = initial_learning_rate
a__ = warmup_steps
a__ = power
a__ = decay_schedule_fn
a__ = name
def __call__( self :List[str] ,__snake_case :int ) -> Optional[Any]:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
a__ = tf.cast(__lowerCAmelCase ,tf.floataa )
a__ = tf.cast(self.warmup_steps ,tf.floataa )
a__ = global_step_float / warmup_steps_float
a__ = self.initial_learning_rate * tf.math.pow(__lowerCAmelCase ,self.power )
return tf.cond(
global_step_float < warmup_steps_float ,lambda: warmup_learning_rate ,lambda: self.decay_schedule_fn(step - self.warmup_steps ) ,name=__lowerCAmelCase ,)
def lowerCamelCase__( self :Any ) -> Any:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] = 0.0 , __lowerCAmelCase : Any = 0.9 , __lowerCAmelCase : Union[str, Any] = 0.999 , __lowerCAmelCase : Union[str, Any] = 1E-8 , __lowerCAmelCase : List[str] = None , __lowerCAmelCase : Optional[Any] = None , __lowerCAmelCase : Optional[Any] = 0.0 , __lowerCAmelCase : Any = 1.0 , __lowerCAmelCase : Union[str, Any] = None , ):
a__ = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=_lowerCamelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_lowerCamelCase , )
if num_warmup_steps:
a__ = WarmUp(
initial_learning_rate=_lowerCamelCase , decay_schedule_fn=_lowerCamelCase , warmup_steps=_lowerCamelCase , )
if weight_decay_rate > 0.0:
a__ = AdamWeightDecay(
learning_rate=_lowerCamelCase , weight_decay_rate=_lowerCamelCase , beta_a=_lowerCamelCase , beta_a=_lowerCamelCase , epsilon=_lowerCamelCase , clipnorm=_lowerCamelCase , global_clipnorm=_lowerCamelCase , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=_lowerCamelCase , )
else:
a__ = tf.keras.optimizers.Adam(
learning_rate=_lowerCamelCase , beta_a=_lowerCamelCase , beta_a=_lowerCamelCase , epsilon=_lowerCamelCase , clipnorm=_lowerCamelCase , global_clipnorm=_lowerCamelCase , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class snake_case_ (_a ):
def __init__( self :Optional[int] ,__snake_case :Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_01 ,__snake_case :float = 0.9 ,__snake_case :float = 0.9_99 ,__snake_case :float = 1E-7 ,__snake_case :bool = False ,__snake_case :float = 0.0 ,__snake_case :Optional[List[str]] = None ,__snake_case :Optional[List[str]] = None ,__snake_case :str = "AdamWeightDecay" ,**__snake_case :Tuple ,) -> Any:
super().__init__(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase )
a__ = weight_decay_rate
a__ = include_in_weight_decay
a__ = exclude_from_weight_decay
@classmethod
def lowerCamelCase__( cls :Union[str, Any] ,__snake_case :Union[str, Any] ) -> List[Any]:
a__ = {"WarmUp": WarmUp}
return super(__lowerCAmelCase ,cls ).from_config(__lowerCAmelCase ,custom_objects=__lowerCAmelCase )
def lowerCamelCase__( self :List[str] ,__snake_case :Dict ,__snake_case :Tuple ,__snake_case :Tuple ) -> int:
super(__lowerCAmelCase ,self )._prepare_local(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
a__ = tf.constant(
self.weight_decay_rate ,name='adam_weight_decay_rate' )
def lowerCamelCase__( self :Any ,__snake_case :Any ,__snake_case :Optional[Any] ,__snake_case :Optional[Any] ) -> Dict:
a__ = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] ,use_locking=self._use_locking ,)
return tf.no_op()
def lowerCamelCase__( self :List[str] ,__snake_case :Tuple ,__snake_case :Union[str, Any]=None ,**__snake_case :Union[str, Any] ) -> List[str]:
a__ = list(zip(*__lowerCAmelCase ) )
return super(__lowerCAmelCase ,self ).apply_gradients(zip(__lowerCAmelCase ,__lowerCAmelCase ) ,name=__lowerCAmelCase ,**__lowerCAmelCase )
def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> List[Any]:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
a__ = apply_state or {}
a__ = apply_state.get((var_device, var_dtype) )
if coefficients is None:
a__ = self._fallback_apply_state(__lowerCAmelCase ,__lowerCAmelCase )
a__ = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowerCamelCase__( self :Optional[int] ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :Union[str, Any]=None ) -> str:
a__ = self._get_lr(var.device ,var.dtype.base_dtype ,__lowerCAmelCase )
a__ = self._decay_weights_op(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
with tf.control_dependencies([decay] ):
return super(__lowerCAmelCase ,self )._resource_apply_dense(__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase )
def lowerCamelCase__( self :List[str] ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Any ,__snake_case :Tuple=None ) -> Union[str, Any]:
a__ = self._get_lr(var.device ,var.dtype.base_dtype ,__lowerCAmelCase )
a__ = self._decay_weights_op(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
with tf.control_dependencies([decay] ):
return super(__lowerCAmelCase ,self )._resource_apply_sparse(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase )
def lowerCamelCase__( self :int ) -> Dict:
a__ = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def lowerCamelCase__( self :Tuple ,__snake_case :Any ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(__lowerCAmelCase ,__lowerCAmelCase ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(__lowerCAmelCase ,__lowerCAmelCase ) is not None:
return False
return True
class snake_case_ (_a ):
def __init__( self :Tuple ) -> Optional[int]:
a__ = []
a__ = None
@property
def lowerCamelCase__( self :Dict ) -> str:
if self._accum_steps is None:
a__ = tf.Variable(
tf.constant(0 ,dtype=tf.intaa ) ,trainable=__lowerCAmelCase ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,)
return self._accum_steps.value()
@property
def lowerCamelCase__( self :Dict ) -> Any:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self :str ,__snake_case :Tuple ) -> List[Any]:
if not self._gradients:
a__ = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(__lowerCAmelCase ) ,trainable=__lowerCAmelCase ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,)
if gradient is not None
else gradient
for gradient in gradients
] )
if len(__lowerCAmelCase ) != len(self._gradients ):
raise ValueError(F'Expected {len(self._gradients )} gradients, but got {len(__lowerCAmelCase )}' )
for accum_gradient, gradient in zip(self._gradients ,__lowerCAmelCase ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(__lowerCAmelCase )
self._accum_steps.assign_add(1 )
def lowerCamelCase__( self :Optional[int] ) -> Dict:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(__lowerCAmelCase ) )
| 335 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
# TODO Update this
_lowerCAmelCase : Optional[Any] = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class A_ ( _a ):
lowerCAmelCase__ = 'esm'
def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Union[str, Any] = hidden_size
_lowerCamelCase : Optional[Any] = num_hidden_layers
_lowerCamelCase : str = num_attention_heads
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Any = attention_probs_dropout_prob
_lowerCamelCase : int = max_position_embeddings
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Optional[int] = position_embedding_type
_lowerCamelCase : str = use_cache
_lowerCamelCase : Union[str, Any] = emb_layer_norm_before
_lowerCamelCase : Tuple = token_dropout
_lowerCamelCase : Dict = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("No esmfold_config supplied for folding model, using default values." )
_lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = esmfold_config
if vocab_list is None:
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" )
_lowerCamelCase : List[str] = get_default_vocab_list()
else:
_lowerCamelCase : Optional[Any] = vocab_list
else:
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = None
if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ):
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[Any] = super().to_dict()
if isinstance(self.esmfold_config ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = self.esmfold_config.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = 0
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = None
def _lowercase ( self: Dict ):
'''simple docstring'''
if self.trunk is None:
_lowerCamelCase : Optional[int] = TrunkConfig()
elif isinstance(self.trunk ,__lowerCAmelCase ):
_lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = asdict(self )
_lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = 4_8
lowerCAmelCase__ = 1_0_2_4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = False
lowerCAmelCase__ = 4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = None
def _lowercase ( self: Any ):
'''simple docstring'''
if self.structure_module is None:
_lowerCamelCase : Tuple = StructureModuleConfig()
elif isinstance(self.structure_module ,__lowerCAmelCase ):
_lowerCamelCase : str = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" )
_lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width
_lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" )
if self.dropout >= 0.4:
raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Dict = asdict(self )
_lowerCamelCase : Optional[int] = self.structure_module.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = 3_8_4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 1_6
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 1_2
lowerCAmelCase__ = 4
lowerCAmelCase__ = 8
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 1
lowerCAmelCase__ = 2
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_0
lowerCAmelCase__ = 1E-8
lowerCAmelCase__ = 1E5
def _lowercase ( self: Any ):
'''simple docstring'''
return asdict(self )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 46 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCAmelCase : int = {
'''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''],
'''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = ['''BertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] = [
'''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BertForMaskedLM''',
'''BertForMultipleChoice''',
'''BertForNextSentencePrediction''',
'''BertForPreTraining''',
'''BertForQuestionAnswering''',
'''BertForSequenceClassification''',
'''BertForTokenClassification''',
'''BertLayer''',
'''BertLMHeadModel''',
'''BertModel''',
'''BertPreTrainedModel''',
'''load_tf_weights_in_bert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[str] = [
'''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFBertEmbeddings''',
'''TFBertForMaskedLM''',
'''TFBertForMultipleChoice''',
'''TFBertForNextSentencePrediction''',
'''TFBertForPreTraining''',
'''TFBertForQuestionAnswering''',
'''TFBertForSequenceClassification''',
'''TFBertForTokenClassification''',
'''TFBertLMHeadModel''',
'''TFBertMainLayer''',
'''TFBertModel''',
'''TFBertPreTrainedModel''',
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = ['''TFBertTokenizer''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Dict = [
'''FlaxBertForCausalLM''',
'''FlaxBertForMaskedLM''',
'''FlaxBertForMultipleChoice''',
'''FlaxBertForNextSentencePrediction''',
'''FlaxBertForPreTraining''',
'''FlaxBertForQuestionAnswering''',
'''FlaxBertForSequenceClassification''',
'''FlaxBertForTokenClassification''',
'''FlaxBertModel''',
'''FlaxBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 529 |
"""simple docstring"""
import re
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError("Invalid Strand" )
return dna.translate(dna.maketrans("ATCG" , "TAGC" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 46 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class _UpperCamelCase :
'''simple docstring'''
__UpperCAmelCase : Any =field(
default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be trained."""} )
__UpperCAmelCase : Any =field(
default="""./""" ,metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__UpperCAmelCase : Optional[int] =field(
default="""codeparrot/codeparrot-clean-train""" ,metadata={"""help""": """Name or path of training dataset."""} )
__UpperCAmelCase : Tuple =field(
default="""codeparrot/codeparrot-clean-valid""" ,metadata={"""help""": """Name or path of validation dataset."""} )
__UpperCAmelCase : Dict =field(default=2 ,metadata={"""help""": """Batch size for training."""} )
__UpperCAmelCase : Union[str, Any] =field(default=2 ,metadata={"""help""": """Batch size for evaluation."""} )
__UpperCAmelCase : str =field(default=0.1 ,metadata={"""help""": """Value of weight decay."""} )
__UpperCAmelCase : Optional[Any] =field(
default=1_0_0_0_0 ,metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__UpperCAmelCase : int =field(default=2E-4 ,metadata={"""help""": """Learning rate fo training."""} )
__UpperCAmelCase : Any =field(default="""cosine""" ,metadata={"""help""": """Learning rate."""} )
__UpperCAmelCase : str =field(
default=7_5_0 ,metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__UpperCAmelCase : Dict =field(
default=1_6 ,metadata={"""help""": """Number of gradient accumulation steps."""} )
__UpperCAmelCase : List[Any] =field(
default=_a ,metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__UpperCAmelCase : Dict =field(default=5_0_0_0_0 ,metadata={"""help""": """Maximum number of training steps."""} )
__UpperCAmelCase : int =field(
default=-1 ,metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__UpperCAmelCase : List[Any] =field(default=1_0_2_4 ,metadata={"""help""": """Sequence lengths used for training."""} )
__UpperCAmelCase : Dict =field(default=1 ,metadata={"""help""": """Training seed."""} )
__UpperCAmelCase : List[str] =field(
default=1_0_2_4 ,metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} ,)
__UpperCAmelCase : Optional[Any] =field(
default=_a ,metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__UpperCAmelCase : Dict =field(default=_a ,metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class _UpperCamelCase :
'''simple docstring'''
__UpperCAmelCase : str =field(
default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be evaluated."""} )
__UpperCAmelCase : Union[str, Any] =field(
default="""codeparrot/codeparrot-clean-valid""" ,metadata={"""help""": """Name or path of validation dataset."""} )
__UpperCAmelCase : Union[str, Any] =field(default=2 ,metadata={"""help""": """Batch size used for evaluation."""} )
__UpperCAmelCase : int =field(
default=-1 ,metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__UpperCAmelCase : Union[str, Any] =field(default=1_0_2_4 ,metadata={"""help""": """Length of sequences to be evaluated."""} )
__UpperCAmelCase : Optional[Any] =field(default=1 ,metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class _UpperCamelCase :
'''simple docstring'''
__UpperCAmelCase : Tuple =field(
default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be evaluated."""} )
__UpperCAmelCase : Any =field(default=_a ,metadata={"""help""": """Number of workers used for code evaluation."""} )
__UpperCAmelCase : int =field(
default=_a ,metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} ,)
__UpperCAmelCase : Tuple =field(
default=_a ,metadata={"""help""": """Sample from the language model\'s output distribution."""} )
__UpperCAmelCase : int =field(default=0.2 ,metadata={"""help""": """Sampling temperature used for generation."""} )
__UpperCAmelCase : List[str] =field(default=2_5_6 ,metadata={"""help""": """Maximum number of newly generated tokens."""} )
__UpperCAmelCase : List[Any] =field(default=0 ,metadata={"""help""": """Top-k parameter used for generation."""} )
__UpperCAmelCase : List[Any] =field(default=0.95 ,metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__UpperCAmelCase : List[Any] =field(default=1_0 ,metadata={"""help""": """Number of generations to run in parallel."""} )
__UpperCAmelCase : str =field(
default=2_0_0 ,metadata={"""help""": """Number of completions to generate for each sample."""} )
__UpperCAmelCase : Optional[Any] =field(default=1 ,metadata={"""help""": """Random seed used for evaluation."""} )
__UpperCAmelCase : List[Any] =field(
default="""eval_results.json""" ,metadata={"""help""": """Random seed used for evaluation."""} )
__UpperCAmelCase : List[Any] =field(
default="""0""" ,metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__UpperCAmelCase : Union[str, Any] =field(
default=-1 ,metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} ,)
@dataclass
class _UpperCamelCase :
'''simple docstring'''
__UpperCAmelCase : List[str] =field(
default=_a ,metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} ,)
__UpperCAmelCase : Tuple =field(
default="""transformersbook/codeparrot""" ,metadata={"""help""": """Folder or name of dataset to process."""} )
__UpperCAmelCase : Optional[Any] =field(
default="""codeparrot-clean""" ,metadata={"""help""": """Folder to save processed processed dataset."""} )
__UpperCAmelCase : List[Any] =field(
default=1_0_0_0_0_0 ,metadata={"""help""": """Number of files to save per JSON output file."""} )
__UpperCAmelCase : Optional[Any] =field(default="""content""" ,metadata={"""help""": """Column containing text data to process."""} )
__UpperCAmelCase : Optional[int] =field(
default=1_0_0_0 ,metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__UpperCAmelCase : Any =field(
default=1_0_0 ,metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__UpperCAmelCase : int =field(
default=0.25 ,metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__UpperCAmelCase : int =field(
default=1.5 ,metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__UpperCAmelCase : List[str] =field(
default=0.7 ,metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__UpperCAmelCase : Any =field(
default="""codeparrot/codeparrot""" ,metadata={"""help""": """Name or path to the tokenizer."""} ,)
__UpperCAmelCase : Dict =field(
default=_a ,metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__UpperCAmelCase : Optional[int] =field(
default=0.85 ,metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class _UpperCamelCase :
'''simple docstring'''
__UpperCAmelCase : List[str] =field(
default="""gpt2""" ,metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__UpperCAmelCase : str =field(
default="""transformersbook/codeparrot-train""" ,metadata={"""help""": """Dataset to train tokenizer on."""} )
__UpperCAmelCase : List[str] =field(default="""content""" ,metadata={"""help""": """Column containing text data to process."""} )
__UpperCAmelCase : Optional[int] =field(default=2_0_0_0_0_0 ,metadata={"""help""": """Number of examples to train tokenizer on."""} )
__UpperCAmelCase : Optional[int] =field(
default=3_2_7_6_8 ,metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__UpperCAmelCase : Union[str, Any] =field(default="""codeparrot""" ,metadata={"""help""": """Name of new tokenizer."""} )
__UpperCAmelCase : Optional[int] =field(default=_a ,metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class _UpperCamelCase :
'''simple docstring'''
__UpperCAmelCase : str =field(
default="""codeparrot/codeparrot""" ,metadata={"""help""": """Name or path to the tokenizer."""} )
__UpperCAmelCase : int =field(
default="""codeparrot/codeparrot-clean-train""" ,metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__UpperCAmelCase : int =field(
default="""tokenized-codeparrot-train""" ,metadata={"""help""": """Repo name of the pretokenized data."""} )
__UpperCAmelCase : List[Any] =field(default=_a ,metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class _UpperCamelCase :
'''simple docstring'''
__UpperCAmelCase : str =field(
default="""gpt2-large""" ,metadata={"""help""": """Configuration to use for model initialization."""} )
__UpperCAmelCase : str =field(
default="""codeparrot/codeparrot""" ,metadata={"""help""": """Tokenizer attached to model."""} )
__UpperCAmelCase : List[Any] =field(default="""codeparrot""" ,metadata={"""help""": """Name of the created model."""} )
__UpperCAmelCase : Union[str, Any] =field(default=_a ,metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 636 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : str = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_lowerCamelCase : Tuple = ""
else:
_lowerCamelCase : str = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
_lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : Tuple = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : Any = dct.pop(_lowerCamelCase )
_lowerCamelCase : Dict = val
def lowerCamelCase_( ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
_lowerCamelCase : str = 8
# set labels if required
if not base_model:
_lowerCamelCase : str = 1000
_lowerCamelCase : Any = "huggingface/label-files"
_lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
_lowerCamelCase : int = 384
_lowerCamelCase : str = 1536
_lowerCamelCase : List[str] = 12
_lowerCamelCase : Optional[int] = 6
# load original model from torch hub
_lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase )
original_model.eval()
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : List[str] = original_model.state_dict()
if base_model:
remove_classification_head_(_lowerCamelCase )
_lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# load HuggingFace model
if base_model:
_lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval()
else:
_lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval()
model.load_state_dict(_lowerCamelCase )
# Check outputs on an image, prepared by ViTImageProcessor
_lowerCamelCase : Tuple = ViTImageProcessor()
_lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
_lowerCamelCase : Dict = encoding["pixel_values"]
_lowerCamelCase : int = model(_lowerCamelCase )
if base_model:
_lowerCamelCase : List[str] = original_model(_lowerCamelCase )
assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 )
else:
_lowerCamelCase : Tuple = original_model(_lowerCamelCase )
assert logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''dino_vitb16''',
type=str,
help='''Name of the model trained with DINO you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--base_model''',
action='''store_true''',
help='''Whether to only convert the base model (no projection head weights).''',
)
parser.set_defaults(base_model=True)
_lowerCAmelCase : List[Any] = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 46 | 0 |
"""simple docstring"""
import os
from distutils.util import strtobool
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ):
for e in env_keys:
lowerCAmelCase = int(os.environ.get(_lowerCamelCase , -1 ) )
if val >= 0:
return val
return default
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Tuple=False ):
lowerCAmelCase = os.environ.get(_lowerCamelCase , str(_lowerCamelCase ) )
return strtobool(_lowerCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int...
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str="no" ):
lowerCAmelCase = os.environ.get(_lowerCamelCase , str(_lowerCamelCase ) )
return value
| 4 |
"""simple docstring"""
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase )
_lowerCamelCase : Dict = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase )
class A_ ( _a ):
lowerCAmelCase__ = 'sigmoid'
lowerCAmelCase__ = 'softmax'
lowerCAmelCase__ = 'none'
@add_end_docstrings(
_a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , )
class A_ ( _a ):
lowerCAmelCase__ = False
lowerCAmelCase__ = ClassificationFunction.NONE
def __init__( self: str ,**__lowerCAmelCase: str ):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = tokenizer_kwargs
_lowerCamelCase : Optional[int] = {}
if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None:
_lowerCamelCase : Tuple = self.model.config.return_all_scores
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None:
_lowerCamelCase : List[str] = top_k
_lowerCamelCase : Union[str, Any] = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,)
if return_all_scores:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : Union[str, Any] = 1
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
_lowerCamelCase : Dict = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
_lowerCamelCase : Optional[Any] = "top_k" not in kwargs
if isinstance(args[0] ,__lowerCAmelCase ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = self.framework
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"
" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." )
return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
return self.model(**__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ):
'''simple docstring'''
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
_lowerCamelCase : Dict = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
_lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None:
_lowerCamelCase : Optional[int] = self.model.config.function_to_apply
else:
_lowerCamelCase : str = ClassificationFunction.NONE
_lowerCamelCase : List[Any] = model_outputs["logits"][0]
_lowerCamelCase : Optional[int] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
_lowerCamelCase : str = sigmoid(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.SOFTMAX:
_lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.NONE:
_lowerCamelCase : str = outputs
else:
raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
_lowerCamelCase : Optional[int] = [
{"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase )
]
if not _legacy:
dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase )
if top_k is not None:
_lowerCamelCase : Any = dict_scores[:top_k]
return dict_scores
| 46 | 0 |
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _SCREAMING_SNAKE_CASE:
def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=30 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=10 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=0.6 ,SCREAMING_SNAKE_CASE__=None ,) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :int = parent
__SCREAMING_SNAKE_CASE :int = batch_size
__SCREAMING_SNAKE_CASE :int = image_size
__SCREAMING_SNAKE_CASE :Optional[Any] = patch_size
__SCREAMING_SNAKE_CASE :List[Any] = num_channels
__SCREAMING_SNAKE_CASE :Tuple = is_training
__SCREAMING_SNAKE_CASE :Optional[Any] = use_labels
__SCREAMING_SNAKE_CASE :Tuple = hidden_size
__SCREAMING_SNAKE_CASE :List[Any] = num_hidden_layers
__SCREAMING_SNAKE_CASE :str = num_attention_heads
__SCREAMING_SNAKE_CASE :Union[str, Any] = intermediate_size
__SCREAMING_SNAKE_CASE :List[Any] = hidden_act
__SCREAMING_SNAKE_CASE :Union[str, Any] = hidden_dropout_prob
__SCREAMING_SNAKE_CASE :List[Any] = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE :Union[str, Any] = type_sequence_label_size
__SCREAMING_SNAKE_CASE :List[str] = initializer_range
__SCREAMING_SNAKE_CASE :int = mask_ratio
__SCREAMING_SNAKE_CASE :Optional[int] = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE :Union[str, Any] = (image_size // patch_size) ** 2
__SCREAMING_SNAKE_CASE :Optional[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _UpperCamelCase ( self ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE :int = None
if self.use_labels:
__SCREAMING_SNAKE_CASE :List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__SCREAMING_SNAKE_CASE :Any = self.get_config()
return config, pixel_values, labels
def _UpperCamelCase ( self ) -> Any:
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :Any = TFViTMAEModel(config=__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Optional[int] = model(__lowerCAmelCase ,training=__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :Tuple = TFViTMAEForPreTraining(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Any = model(__lowerCAmelCase ,training=__lowerCAmelCase )
# expected sequence length = num_patches
__SCREAMING_SNAKE_CASE :Union[str, Any] = (self.image_size // self.patch_size) ** 2
__SCREAMING_SNAKE_CASE :Any = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
__SCREAMING_SNAKE_CASE :Dict = 1
__SCREAMING_SNAKE_CASE :Optional[Any] = TFViTMAEForPreTraining(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE :List[str] = model(__lowerCAmelCase ,training=__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Tuple = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def _UpperCamelCase ( self ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :Dict = self.prepare_config_and_inputs()
(__SCREAMING_SNAKE_CASE) :List[Any] = config_and_inputs
__SCREAMING_SNAKE_CASE :List[str] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class _SCREAMING_SNAKE_CASE( _a , _a , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ : str = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
SCREAMING_SNAKE_CASE_ : List[Any] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {}
SCREAMING_SNAKE_CASE_ : int = False
SCREAMING_SNAKE_CASE_ : Optional[int] = False
SCREAMING_SNAKE_CASE_ : Tuple = False
SCREAMING_SNAKE_CASE_ : str = False
def _UpperCamelCase ( self ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :int = TFViTMAEModelTester(self )
__SCREAMING_SNAKE_CASE :Tuple = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 )
def _UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def _UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
pass
def _UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE :Optional[int] = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__SCREAMING_SNAKE_CASE :int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase ,tf.keras.layers.Layer ) )
def _UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE :Any = model_class(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Tuple = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE :int = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE :Optional[int] = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,__lowerCAmelCase )
def _UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase )
def _UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
np.random.seed(2 )
__SCREAMING_SNAKE_CASE :int = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE :List[Any] = int((config.image_size // config.patch_size) ** 2 )
__SCREAMING_SNAKE_CASE :Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE :Union[str, Any] = model_class(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :int = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Tuple = model(__lowerCAmelCase ,noise=__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :str = copy.deepcopy(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
__SCREAMING_SNAKE_CASE :Dict = model(**__lowerCAmelCase ,noise=__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :List[str] = outputs_dict[0].numpy()
__SCREAMING_SNAKE_CASE :int = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 )
def _UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
__SCREAMING_SNAKE_CASE :int = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE :Optional[int] = int((config.image_size // config.patch_size) ** 2 )
__SCREAMING_SNAKE_CASE :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(SCREAMING_SNAKE_CASE__ ):
__SCREAMING_SNAKE_CASE :List[str] = {}
for k, v in inputs_dict.items():
if tf.is_tensor(__lowerCAmelCase ):
__SCREAMING_SNAKE_CASE :Optional[int] = v.numpy()
else:
__SCREAMING_SNAKE_CASE :Optional[int] = np.array(__lowerCAmelCase )
return inputs_np_dict
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE :List[str] = model_class(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Union[str, Any] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Dict = prepare_numpy_arrays(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Any = model(__lowerCAmelCase ,noise=__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Tuple = model(**__lowerCAmelCase ,noise=__lowerCAmelCase )
self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase )
def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]:
"""simple docstring"""
np.random.seed(2 )
__SCREAMING_SNAKE_CASE :Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
__SCREAMING_SNAKE_CASE :str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
__SCREAMING_SNAKE_CASE :Optional[int] = tf.constant(__lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
__SCREAMING_SNAKE_CASE :Tuple = tf_noise
super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
def _UpperCamelCase ( self ) -> str:
"""simple docstring"""
np.random.seed(2 )
__SCREAMING_SNAKE_CASE :List[str] = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE :Union[str, Any] = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(__lowerCAmelCase )
if module_member_name.endswith('''MainLayer''' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )]
for module_member in (getattr(__lowerCAmelCase ,__lowerCAmelCase ),)
if isinstance(__lowerCAmelCase ,__lowerCAmelCase )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(__lowerCAmelCase ,'''_keras_serializable''' ,__lowerCAmelCase )
}
__SCREAMING_SNAKE_CASE :List[str] = int((config.image_size // config.patch_size) ** 2 )
__SCREAMING_SNAKE_CASE :int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
__SCREAMING_SNAKE_CASE :Optional[int] = tf.convert_to_tensor(__lowerCAmelCase )
inputs_dict.update({'''noise''': noise} )
for main_layer_class in tf_main_layer_classes:
__SCREAMING_SNAKE_CASE :Optional[Any] = main_layer_class(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Tuple = {
name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
__SCREAMING_SNAKE_CASE :Union[str, Any] = tf.keras.Model(__lowerCAmelCase ,outputs=main_layer(__lowerCAmelCase ) )
__SCREAMING_SNAKE_CASE :List[Any] = model(__lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE :Union[str, Any] = os.path.join(__lowerCAmelCase ,'''keras_model.h5''' )
model.save(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :str = tf.keras.models.load_model(
__lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(__lowerCAmelCase ,tf.keras.Model )
__SCREAMING_SNAKE_CASE :int = model(__lowerCAmelCase )
self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase )
@slow
def _UpperCamelCase ( self ) -> Any:
"""simple docstring"""
np.random.seed(2 )
__SCREAMING_SNAKE_CASE :Dict = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE :Union[str, Any] = int((config.image_size // config.patch_size) ** 2 )
__SCREAMING_SNAKE_CASE :List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE :Tuple = model_class(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Optional[int] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :List[str] = model(__lowerCAmelCase ,noise=__lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
__SCREAMING_SNAKE_CASE :Optional[int] = outputs.last_hidden_state.numpy()
__SCREAMING_SNAKE_CASE :List[str] = 0
else:
__SCREAMING_SNAKE_CASE :str = outputs.logits.numpy()
__SCREAMING_SNAKE_CASE :str = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCAmelCase ,saved_model=__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Dict = model_class.from_pretrained(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :List[str] = model(__lowerCAmelCase ,noise=__lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
__SCREAMING_SNAKE_CASE :int = after_outputs["last_hidden_state"].numpy()
__SCREAMING_SNAKE_CASE :Dict = 0
else:
__SCREAMING_SNAKE_CASE :List[Any] = after_outputs["logits"].numpy()
__SCREAMING_SNAKE_CASE :Optional[Any] = 0
__SCREAMING_SNAKE_CASE :int = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCAmelCase ,1E-5 )
def _UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
__SCREAMING_SNAKE_CASE :Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE :List[Any] = int((config.image_size // config.patch_size) ** 2 )
__SCREAMING_SNAKE_CASE :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE :List[Any] = model_class(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Tuple = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Optional[int] = model(__lowerCAmelCase ,noise=__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :List[Any] = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Optional[Any] = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
__SCREAMING_SNAKE_CASE :Dict = model_class.from_config(model.config )
__SCREAMING_SNAKE_CASE :str = new_model(__lowerCAmelCase ) # Build model
new_model.set_weights(model.get_weights() )
__SCREAMING_SNAKE_CASE :Union[str, Any] = new_model(__lowerCAmelCase ,noise=__lowerCAmelCase )
self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.''' )
def _UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def _UpperCamelCase ( self ) -> Any:
"""simple docstring"""
pass
@slow
def _UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :List[str] = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(__lowerCAmelCase )
def __lowerCamelCase ( ) -> int:
__SCREAMING_SNAKE_CASE :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class _SCREAMING_SNAKE_CASE( unittest.TestCase ):
@cached_property
def _UpperCamelCase ( self ) -> int:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def _UpperCamelCase ( self ) -> Any:
"""simple docstring"""
np.random.seed(2 )
__SCREAMING_SNAKE_CASE :List[str] = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' )
__SCREAMING_SNAKE_CASE :List[str] = self.default_image_processor
__SCREAMING_SNAKE_CASE :Optional[Any] = prepare_img()
__SCREAMING_SNAKE_CASE :Any = image_processor(images=__lowerCAmelCase ,return_tensors='''tf''' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
__SCREAMING_SNAKE_CASE :Dict = ViTMAEConfig()
__SCREAMING_SNAKE_CASE :Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
__SCREAMING_SNAKE_CASE :Optional[int] = np.random.uniform(size=(1, num_patches) )
# forward pass
__SCREAMING_SNAKE_CASE :str = model(**__lowerCAmelCase ,noise=__lowerCAmelCase )
# verify the logits
__SCREAMING_SNAKE_CASE :Tuple = tf.convert_to_tensor([1, 1_96, 7_68] )
self.assertEqual(outputs.logits.shape ,__lowerCAmelCase )
__SCREAMING_SNAKE_CASE :Tuple = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] ,__lowerCAmelCase ,atol=1E-4 )
| 498 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
_lowerCAmelCase : Tuple = '''\
Text data.
Second line of data.'''
_lowerCAmelCase : str = '''file'''
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd")
_lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" )
with zstd.open(_lowerCamelCase , "wb" ) as f:
f.write(_lowerCamelCase )
return path
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f:
f.write(_lowerCamelCase )
return FILE_PATH
@pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path}
_lowerCamelCase : Tuple = input_paths[compression_format]
_lowerCamelCase : int = tmp_path / "cache"
_lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase )
_lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase )
with open(_lowerCamelCase ) as f:
_lowerCamelCase : List[Any] = f.read()
with open(_lowerCamelCase ) as f:
_lowerCamelCase : int = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("default_extracted" , [True, False] )
@pytest.mark.parametrize("default_cache_dir" , [True, False] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "custom_cache"
_lowerCamelCase : List[str] = "custom_extracted_dir"
_lowerCamelCase : str = tmp_path / "custom_extracted_path"
if default_extracted:
_lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted")
else:
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) )
_lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_lowerCamelCase : int = xz_file
_lowerCamelCase : List[Any] = (
DownloadConfig(extract_compressed_file=_lowerCamelCase )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase )
)
_lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase )
assert Path(_lowerCamelCase ).parent.parts[-2:] == expected
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() )
assert cached_path(_lowerCamelCase ) == text_file
# relative path
_lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_lowerCamelCase ) == text_file
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" )
with pytest.raises(_lowerCamelCase ):
cached_path(_lowerCamelCase )
# relative path
_lowerCamelCase : List[Any] = "./__missing_file__.txt"
with pytest.raises(_lowerCamelCase ):
cached_path(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" )
with open(_lowerCamelCase ) as f:
_lowerCamelCase : Tuple = f.read()
assert output_file_content == FILE_CONTENT
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
with pytest.raises(_lowerCamelCase ):
cached_path("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
http_get("https://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
http_head("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
ftp_head("ftp://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
fsspec_head("s3://huggingface.co" )
| 46 | 0 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
A : str = 16
A : Dict = 32
def _a ( lowerCamelCase_ , lowerCamelCase_ = 16 ):
snake_case : List[Any] =AutoTokenizer.from_pretrained('''bert-base-cased''' )
snake_case : List[Any] =load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(lowerCamelCase_ ):
# max_length=None => use the model max length (it's actually the default)
snake_case : Dict =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowerCamelCase , max_length=_lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
snake_case : Any =datasets.map(
_lowerCamelCase , batched=_lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case : List[Any] =tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowerCamelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
snake_case : Union[str, Any] =1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
snake_case : str =16
elif accelerator.mixed_precision != "no":
snake_case : Union[str, Any] =8
else:
snake_case : Optional[int] =None
return tokenizer.pad(
_lowerCamelCase , padding='''longest''' , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors='''pt''' , )
# Instantiate dataloaders.
snake_case : Any =DataLoader(
tokenized_datasets['''train'''] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase )
snake_case : List[str] =DataLoader(
tokenized_datasets['''validation'''] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
A : Dict = mocked_dataloaders # noqa: F811
def _a ( lowerCamelCase_ , lowerCamelCase_ ):
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _lowerCamelCase ) == "1":
snake_case : List[str] =2
# New Code #
snake_case : Any =int(args.gradient_accumulation_steps )
# Initialize accelerator
snake_case : Dict =Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCamelCase )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
'''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case : Tuple =config["lr"]
snake_case : int =int(config['''num_epochs'''] )
snake_case : Any =int(config['''seed'''] )
snake_case : Optional[int] =int(config['''batch_size'''] )
snake_case : Optional[int] =evaluate.load('''glue''' , '''mrpc''' )
set_seed(_lowerCamelCase )
snake_case : Union[str, Any] =get_dataloaders(_lowerCamelCase , _lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case : Tuple =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
snake_case : List[str] =model.to(accelerator.device )
# Instantiate optimizer
snake_case : Any =AdamW(params=model.parameters() , lr=_lowerCamelCase )
# Instantiate scheduler
snake_case : List[Any] =get_linear_schedule_with_warmup(
optimizer=_lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case : Optional[Any] =accelerator.prepare(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Now we train the model
for epoch in range(_lowerCamelCase ):
model.train()
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(_lowerCamelCase ):
snake_case : List[str] =model(**_lowerCamelCase )
snake_case : Dict =output.loss
accelerator.backward(_lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
snake_case : str =model(**_lowerCamelCase )
snake_case : Any =outputs.logits.argmax(dim=-1 )
snake_case : Dict =accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=_lowerCamelCase , references=_lowerCamelCase , )
snake_case : int =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , _lowerCamelCase )
def _a ( ):
snake_case : List[str] =argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=_lowerCamelCase , default=_lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
# New Code #
parser.add_argument(
'''--gradient_accumulation_steps''' , type=_lowerCamelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
snake_case : Any =parser.parse_args()
snake_case : Dict ={"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
main()
| 349 |
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None:
'''simple docstring'''
_lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(_lowerCamelCase , torch.Tensor ):
raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" )
_lowerCamelCase : List[str] = v.half()
if save_path is None: # overwrite src_path
_lowerCamelCase : Union[str, Any] = src_path
torch.save(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 46 | 0 |
from __future__ import annotations
import requests
def a_ ( _A ) -> dict:
"""simple docstring"""
snake_case__ = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(_lowerCamelCase ).json()
def a_ ( _A = 10 ) -> list[dict]:
"""simple docstring"""
snake_case__ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty"
snake_case__ = requests.get(_lowerCamelCase ).json()[:max_stories]
return [get_hackernews_story(_lowerCamelCase ) for story_id in story_ids]
def a_ ( _A = 10 ) -> str:
"""simple docstring"""
snake_case__ = hackernews_top_stories(_lowerCamelCase )
return "\n".join('* [{title}]({url})'.format(**_lowerCamelCase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 328 |
"""simple docstring"""
import importlib
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
import transformers.models.auto
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
_lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''')
class A_ ( unittest.TestCase ):
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertIsNotNone(transformers.models.auto.__spec__ )
self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
# This model name contains bert and roberta, but roberta ends up being picked.
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" )
os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f:
f.write(json.dumps({} ) )
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
try:
AutoConfig.register("custom" ,__lowerCAmelCase )
# Wrong model type will raise an error
with self.assertRaises(__lowerCAmelCase ):
AutoConfig.register("model" ,__lowerCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCAmelCase ):
AutoConfig.register("bert" ,__lowerCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
_lowerCamelCase : Any = CustomConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
def _lowercase ( self: Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ):
_lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" )
def _lowercase ( self: Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
_lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" )
def _lowercase ( self: Tuple ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,):
_lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
with self.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfig" )
# Test config can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" )
def _lowercase ( self: Dict ):
'''simple docstring'''
class A_ ( _a ):
lowerCAmelCase__ = 'new-model'
try:
AutoConfig.register("new-model" ,__lowerCAmelCase )
# If remote code is not set, the default is to use local
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" )
# If remote code is disabled, we load the local one.
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" )
# If remote is enabled, we load from the Hub
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfig" )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
| 46 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
lowercase_ = {
'''configuration_audio_spectrogram_transformer''': [
'''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''ASTConfig''',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
'''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ASTForAudioClassification''',
'''ASTModel''',
'''ASTPreTrainedModel''',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ['''ASTFeatureExtractor''']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 562 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCAmelCase : str = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
_lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 46 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __snake_case ( unittest.TestCase):
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = 1
_lowerCamelCase : int = 3
_lowerCamelCase : Tuple = (3_2, 3_2)
_lowerCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase )
return image
@property
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCamelCase : str = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCamelCase : Dict = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCamelCase : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(__lowerCAmelCase )
@property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
def extract(*__lowerCAmelCase : Tuple , **__lowerCAmelCase : Tuple ):
class __snake_case :
def __init__( self : List[str] ):
"""simple docstring"""
_lowerCamelCase : Any = torch.ones([0] )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any] ):
"""simple docstring"""
self.pixel_values.to(__lowerCAmelCase )
return self
return Out()
return extract
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
_lowerCamelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator
_lowerCamelCase : Any = self.dummy_cond_unet
_lowerCamelCase : int = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = self.dummy_vae
_lowerCamelCase : List[str] = self.dummy_text_encoder
_lowerCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
_lowerCamelCase : Union[str, Any] = 7_7
_lowerCamelCase : List[Any] = self.dummy_image.to(__lowerCAmelCase )
_lowerCamelCase : List[str] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
_lowerCamelCase : int = AltDiffusionImgaImgPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
_lowerCamelCase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = alt_pipe.to(__lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : Dict = "A painting of a squirrel eating a burger"
_lowerCamelCase : List[str] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
_lowerCamelCase : int = alt_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__lowerCAmelCase , )
_lowerCamelCase : Dict = output.images
_lowerCamelCase : Any = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
_lowerCamelCase : Union[str, Any] = alt_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0]
_lowerCamelCase : List[Any] = image[0, -3:, -3:, -1]
_lowerCamelCase : Tuple = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
_lowerCamelCase : List[str] = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = self.dummy_cond_unet
_lowerCamelCase : str = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
_lowerCamelCase : int = self.dummy_vae
_lowerCamelCase : int = self.dummy_text_encoder
_lowerCamelCase : List[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
_lowerCamelCase : Tuple = 7_7
_lowerCamelCase : Any = self.dummy_image.to(__lowerCAmelCase )
# put models in fp16
_lowerCamelCase : List[str] = unet.half()
_lowerCamelCase : Union[str, Any] = vae.half()
_lowerCamelCase : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
_lowerCamelCase : Optional[Any] = AltDiffusionImgaImgPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
_lowerCamelCase : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = alt_pipe.to(__lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : int = "A painting of a squirrel eating a burger"
_lowerCamelCase : List[Any] = torch.manual_seed(0 )
_lowerCamelCase : Optional[int] = alt_pipe(
[prompt] , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , image=__lowerCAmelCase , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
_lowerCamelCase : List[str] = init_image.resize((7_6_0, 5_0_4) )
_lowerCamelCase : Any = "BAAI/AltDiffusion"
_lowerCamelCase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained(
__lowerCAmelCase , safety_checker=__lowerCAmelCase , )
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
pipe.enable_attention_slicing()
_lowerCamelCase : Optional[Any] = "A fantasy landscape, trending on artstation"
_lowerCamelCase : List[Any] = torch.manual_seed(0 )
_lowerCamelCase : Union[str, Any] = pipe(
prompt=__lowerCAmelCase , image=__lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCAmelCase , output_type='''np''' , )
_lowerCamelCase : Any = output.images[0]
_lowerCamelCase : Optional[int] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
_lowerCamelCase : List[Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase):
def SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
_lowerCamelCase : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
_lowerCamelCase : Union[str, Any] = init_image.resize((7_6_8, 5_1_2) )
_lowerCamelCase : Dict = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
_lowerCamelCase : Dict = "BAAI/AltDiffusion"
_lowerCamelCase : str = AltDiffusionImgaImgPipeline.from_pretrained(
__lowerCAmelCase , safety_checker=__lowerCAmelCase , )
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
pipe.enable_attention_slicing()
_lowerCamelCase : Optional[int] = "A fantasy landscape, trending on artstation"
_lowerCamelCase : Optional[Any] = torch.manual_seed(0 )
_lowerCamelCase : List[str] = pipe(
prompt=__lowerCAmelCase , image=__lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCAmelCase , output_type='''np''' , )
_lowerCamelCase : List[Any] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 83 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : Tuple = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int:
'''simple docstring'''
_lowerCamelCase : Any = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"),
(
"text_embeddings.position_embeddings.weight",
"vilt.embeddings.text_embeddings.position_embeddings.weight",
),
("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"),
(
"text_embeddings.token_type_embeddings.weight",
"vilt.embeddings.text_embeddings.token_type_embeddings.weight",
),
("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"),
("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"),
# patch embeddings
("transformer.cls_token", "vilt.embeddings.cls_token"),
("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"),
("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"),
("transformer.pos_embed", "vilt.embeddings.position_embeddings"),
# token type embeddings
("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"),
] )
# final layernorm + pooler
rename_keys.extend(
[
("transformer.norm.weight", "vilt.layernorm.weight"),
("transformer.norm.bias", "vilt.layernorm.bias"),
("pooler.dense.weight", "vilt.pooler.dense.weight"),
("pooler.dense.bias", "vilt.pooler.dense.bias"),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
("vqa_classifier.0.weight", "classifier.0.weight"),
("vqa_classifier.0.bias", "classifier.0.bias"),
("vqa_classifier.1.weight", "classifier.1.weight"),
("vqa_classifier.1.bias", "classifier.1.bias"),
("vqa_classifier.3.weight", "classifier.3.weight"),
("vqa_classifier.3.bias", "classifier.3.bias"),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
("nlvr2_classifier.0.weight", "classifier.0.weight"),
("nlvr2_classifier.0.bias", "classifier.0.bias"),
("nlvr2_classifier.1.weight", "classifier.1.weight"),
("nlvr2_classifier.1.bias", "classifier.1.bias"),
("nlvr2_classifier.3.weight", "classifier.3.weight"),
("nlvr2_classifier.3.bias", "classifier.3.bias"),
] )
else:
pass
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
_lowerCamelCase : Tuple = "vilt."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" )
_lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : str = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : Any = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Optional[int] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase )
_lowerCamelCase : Optional[int] = val
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase )
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Tuple = False
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : str = False
if "vqa" in checkpoint_url:
_lowerCamelCase : str = True
_lowerCamelCase : Union[str, Any] = 3129
_lowerCamelCase : str = "huggingface/label-files"
_lowerCamelCase : Optional[Any] = "vqa2-id2label.json"
_lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[int] = idalabel
_lowerCamelCase : int = {v: k for k, v in idalabel.items()}
_lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase )
elif "nlvr" in checkpoint_url:
_lowerCamelCase : Tuple = True
_lowerCamelCase : List[str] = 2
_lowerCamelCase : Optional[Any] = {0: "False", 1: "True"}
_lowerCamelCase : int = {v: k for k, v in config.idalabel.items()}
_lowerCamelCase : Optional[Any] = 3
_lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase )
elif "irtr" in checkpoint_url:
_lowerCamelCase : Tuple = True
_lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase )
elif "mlm_itm" in checkpoint_url:
_lowerCamelCase : Dict = True
_lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase )
else:
raise ValueError("Unknown model type" )
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"]
_lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase )
if mlm_model or irtr_model:
_lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
_lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(_lowerCamelCase )
# Define processor
_lowerCamelCase : int = ViltImageProcessor(size=384 )
_lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" )
_lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase )
# Forward pass on example inputs (image + text)
if nlvr_model:
_lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw )
_lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw )
_lowerCamelCase : str = (
"The left image contains twice the number of dogs as the right image, and at least two dogs in total are"
" standing."
)
_lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : int = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
_lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw )
if mlm_model:
_lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]."
else:
_lowerCamelCase : List[str] = "How many cats are there?"
_lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" )
_lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase )
# Verify outputs
if mlm_model:
_lowerCamelCase : List[str] = torch.Size([1, 11, 30522] )
_lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 )
# verify masked token prediction equals "cats"
_lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
_lowerCamelCase : List[str] = torch.Size([1, 3129] )
_lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] )
assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 )
# verify vqa prediction equals "2"
_lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
_lowerCamelCase : List[str] = torch.Size([1, 2] )
_lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
_lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 46 | 0 |
import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
UpperCAmelCase_ = {
'''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''',
'''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''',
'''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''',
'''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''',
'''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''',
'''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''',
'''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''',
'''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''',
'''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''',
'''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''',
}
def lowerCAmelCase_ ( lowercase: Tuple ) -> Dict:
'''simple docstring'''
_UpperCamelCase: Tuple = ["layers", "blocks"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase_ = {
'''blocks''': '''layers''',
'''mlp.0''': '''fc1''',
'''mlp.2''': '''fc2''',
'''mlp_ln''': '''final_layer_norm''',
'''.attn.query''': '''.self_attn.q_proj''',
'''.attn.key''': '''.self_attn.k_proj''',
'''.attn.value''': '''.self_attn.v_proj''',
'''.attn_ln''': '''.self_attn_layer_norm''',
'''.attn.out''': '''.self_attn.out_proj''',
'''.cross_attn.query''': '''.encoder_attn.q_proj''',
'''.cross_attn.key''': '''.encoder_attn.k_proj''',
'''.cross_attn.value''': '''.encoder_attn.v_proj''',
'''.cross_attn_ln''': '''.encoder_attn_layer_norm''',
'''.cross_attn.out''': '''.encoder_attn.out_proj''',
'''decoder.ln.''': '''decoder.layer_norm.''',
'''encoder.ln.''': '''encoder.layer_norm.''',
'''token_embedding''': '''embed_tokens''',
'''encoder.positional_embedding''': '''encoder.embed_positions.weight''',
'''decoder.positional_embedding''': '''decoder.embed_positions.weight''',
'''ln_post''': '''layer_norm''',
}
def lowerCAmelCase_ ( lowercase: Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase: Union[str, Any] = list(s_dict.keys() )
for key in keys:
_UpperCamelCase: int = key
for k, v in WHISPER_MAPPING.items():
if k in key:
_UpperCamelCase: List[Any] = new_key.replace(_lowerCamelCase , _lowerCamelCase )
print(F"""{key} -> {new_key}""" )
_UpperCamelCase: Union[str, Any] = s_dict.pop(_lowerCamelCase )
return s_dict
def lowerCAmelCase_ ( lowercase: Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase: Any = emb.weight.shape
_UpperCamelCase: Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase )
_UpperCamelCase: List[Any] = emb.weight.data
return lin_layer
def lowerCAmelCase_ ( lowercase: List[Any] , lowercase: Optional[Any] ) -> bytes:
'''simple docstring'''
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
_UpperCamelCase: Optional[Any] = os.path.basename(_lowerCamelCase )
_UpperCamelCase: Union[str, Any] = url.split('''/''' )[-2]
_UpperCamelCase: Union[str, Any] = os.path.join(_lowerCamelCase , _lowerCamelCase )
if os.path.exists(_lowerCamelCase ) and not os.path.isfile(_lowerCamelCase ):
raise RuntimeError(F"""{download_target} exists and is not a regular file""" )
if os.path.isfile(_lowerCamelCase ):
_UpperCamelCase: List[Any] = open(_lowerCamelCase , '''rb''' ).read()
if hashlib.shaaaa(_lowerCamelCase ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" )
with urllib.request.urlopen(_lowerCamelCase ) as source, open(_lowerCamelCase , '''wb''' ) as output:
with tqdm(
total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_lowerCamelCase , unit_divisor=1_024 ) as loop:
while True:
_UpperCamelCase: str = source.read(8_192 )
if not buffer:
break
output.write(_lowerCamelCase )
loop.update(len(_lowerCamelCase ) )
_UpperCamelCase: Dict = open(_lowerCamelCase , '''rb''' ).read()
if hashlib.shaaaa(_lowerCamelCase ).hexdigest() != expected_shaaaa:
raise RuntimeError(
'''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' )
return model_bytes
def lowerCAmelCase_ ( lowercase: Any , lowercase: List[Any] ) -> str:
'''simple docstring'''
if ".pt" not in checkpoint_path:
_UpperCamelCase: Tuple = _download(_MODELS[checkpoint_path] )
else:
_UpperCamelCase: List[Any] = torch.load(_lowerCamelCase , map_location='''cpu''' )
_UpperCamelCase: Dict = original_checkpoint["dims"]
_UpperCamelCase: Union[str, Any] = original_checkpoint["model_state_dict"]
_UpperCamelCase: int = state_dict["decoder.token_embedding.weight"]
remove_ignore_keys_(_lowerCamelCase )
rename_keys(_lowerCamelCase )
_UpperCamelCase: Union[str, Any] = True
_UpperCamelCase: List[str] = state_dict["decoder.layers.0.fc1.weight"].shape[0]
_UpperCamelCase: Dict = WhisperConfig(
vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_lowerCamelCase , decoder_ffn_dim=_lowerCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , )
_UpperCamelCase: List[str] = WhisperForConditionalGeneration(_lowerCamelCase )
_UpperCamelCase: int = model.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
if len(_lowerCamelCase ) > 0 and not set(_lowerCamelCase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
F""" but all the following weights are missing {missing}""" )
if tie_embeds:
_UpperCamelCase: Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
_UpperCamelCase: Tuple = proj_out_weights
model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# # Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''')
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
UpperCAmelCase_ = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 271 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = list(_lowerCamelCase )
_lowerCamelCase : Any = list(_lowerCamelCase )
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
if lista[i] != lista[i]:
count += 1
_lowerCamelCase : List[str] = "_"
if count > 1:
return False
else:
return "".join(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : List[str] = []
while True:
_lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase )
_lowerCamelCase : str = []
for i in range(len(_lowerCamelCase ) ):
for j in range(i + 1 , len(_lowerCamelCase ) ):
_lowerCamelCase : Dict = compare_string(binary[i] , binary[j] )
if k is False:
_lowerCamelCase : Any = "*"
_lowerCamelCase : Optional[int] = "*"
temp.append("X" )
for i in range(len(_lowerCamelCase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_lowerCamelCase ) == 0:
return pi
_lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = []
for minterm in minterms:
_lowerCamelCase : List[Any] = ""
for _ in range(_lowerCamelCase ):
_lowerCamelCase : List[str] = str(minterm % 2 ) + string
minterm //= 2
temp.append(_lowerCamelCase )
return temp
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = list(_lowerCamelCase )
_lowerCamelCase : Optional[int] = list(_lowerCamelCase )
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]:
'''simple docstring'''
_lowerCamelCase : Dict = []
_lowerCamelCase : Dict = [0] * len(_lowerCamelCase )
for i in range(len(chart[0] ) ):
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = -1
for j in range(len(_lowerCamelCase ) ):
if chart[j][i] == 1:
count += 1
_lowerCamelCase : Any = j
if count == 1:
_lowerCamelCase : Union[str, Any] = 1
for i in range(len(_lowerCamelCase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Optional[int] = 0
temp.append(prime_implicants[i] )
while True:
_lowerCamelCase : str = 0
_lowerCamelCase : int = -1
_lowerCamelCase : Dict = 0
for i in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Optional[int] = chart[i].count(1 )
if count_n > max_n:
_lowerCamelCase : Any = count_n
_lowerCamelCase : Union[str, Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Any = 0
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]:
'''simple docstring'''
_lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )]
for i in range(len(_lowerCamelCase ) ):
_lowerCamelCase : List[Any] = prime_implicants[i].count("_" )
for j in range(len(_lowerCamelCase ) ):
if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ):
_lowerCamelCase : Optional[Any] = 1
return chart
def lowerCamelCase_( ) -> None:
'''simple docstring'''
_lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) )
_lowerCamelCase : str = [
float(_lowerCamelCase )
for x in input(
"Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split()
]
_lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : str = check(_lowerCamelCase )
print("Prime Implicants are:" )
print(_lowerCamelCase )
_lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase )
print("Essential Prime Implicants are:" )
print(_lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 46 | 0 |
def lowerCamelCase__ ( _A ):
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise ValueError("check_bouncy() accepts only integer arguments" )
snake_case_ = str(_lowerCamelCase )
snake_case_ = "".join(sorted(_lowerCamelCase ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def lowerCamelCase__ ( _A = 99 ):
'''simple docstring'''
if not 0 < percent < 100:
raise ValueError("solution() only accepts values from 0 to 100" )
snake_case_ = 0
snake_case_ = 1
while True:
if check_bouncy(_lowerCamelCase ):
bouncy_num += 1
if (bouncy_num / num) * 100 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'''{solution(99)}''')
| 376 |
"""simple docstring"""
from __future__ import annotations
from random import random
class A_ :
def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ):
'''simple docstring'''
_lowerCamelCase : Any = value
_lowerCamelCase : Optional[int] = random()
_lowerCamelCase : Node | None = None
_lowerCamelCase : Node | None = None
def __repr__( self: Tuple ):
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return F"""'{self.value}: {self.prior:.5}'"""
else:
return pformat(
{F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 )
def __str__( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Tuple = str(self.value ) + " "
_lowerCamelCase : Optional[Any] = str(self.left or "" )
_lowerCamelCase : int = str(self.right or "" )
return value + left + right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]:
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
_lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase )
return left, root
else:
_lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase )
return root, right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
_lowerCamelCase : Any = merge(left.right , _lowerCamelCase )
return left
else:
_lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left )
return right
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
_lowerCamelCase : int = Node(_lowerCamelCase )
_lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase )
return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 )
_lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase )
return merge(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> None:
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value , end="," )
inorder(root.right )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None:
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
_lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) )
elif arg[0] == "-":
_lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) )
else:
print("Unknown command" )
return root
def lowerCamelCase_( ) -> None:
'''simple docstring'''
_lowerCamelCase : List[Any] = None
print(
"enter numbers to create a tree, + value to add value into treap, "
"- value to erase all nodes with value. 'q' to quit. " )
_lowerCamelCase : int = input()
while args != "q":
_lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase )
print(_lowerCamelCase )
_lowerCamelCase : Tuple = input()
print("good by!" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 46 | 0 |
import os
import platform
import sys
snake_case : Union[str, Any] = '''3'''
print('''Python version:''', sys.version)
print('''OS platform:''', platform.platform())
print('''OS architecture:''', platform.machine())
try:
import torch
print('''Torch version:''', torch.__version__)
print('''Cuda available:''', torch.cuda.is_available())
print('''Cuda version:''', torch.version.cuda)
print('''CuDNN version:''', torch.backends.cudnn.version())
print('''Number of GPUs available:''', torch.cuda.device_count())
except ImportError:
print('''Torch version:''', None)
try:
import transformers
print('''transformers version:''', transformers.__version__)
except ImportError:
print('''transformers version:''', None)
| 335 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = SpeechTaTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = True
def _lowercase ( self: List[Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase )
_lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token} )
tokenizer.add_tokens(["<ctc_blank>"] )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self: List[str] ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = "this is a test"
_lowerCamelCase : Optional[Any] = "this is a test"
return input_text, output_text
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase )
return text, ids
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "<pad>"
_lowerCamelCase : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"<s>" )
self.assertEqual(vocab_keys[1] ,"<pad>" )
self.assertEqual(vocab_keys[-4] ,"œ" )
self.assertEqual(vocab_keys[-2] ,"<mask>" )
self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" )
self.assertEqual(len(__lowerCAmelCase ) ,81 )
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,79 )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase : Tuple = tokenizer.vocab_size
_lowerCamelCase : Optional[Any] = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"]
_lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.vocab_size
_lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) )
self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) )
_lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase )
self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
_lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
_lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase )
_lowerCamelCase : int = tokenizer.vocab_size
_lowerCamelCase : str = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) )
self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) )
_lowerCamelCase : Optional[int] = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase )
self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] ,tokens[1] )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokens[-4] )
self.assertEqual(tokens[0] ,tokenizer.eos_token_id )
self.assertEqual(tokens[-3] ,tokenizer.pad_token_id )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.get_tokenizer()
_lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" )
# fmt: off
self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,)
_lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
_lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
# fmt: off
self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
@slow
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = [
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
"general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
"Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained "
"models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.",
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
"conditioning on both left and right context in all layers.",
"The quick brown fox jumps over the lazy dog.",
]
# fmt: off
_lowerCamelCase : Tuple = {
"input_ids": [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
| 46 | 0 |
import os
import sys
import unittest
__lowerCAmelCase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
__lowerCAmelCase : Union[str, Any] = os.path.join(git_repo_path, 'src', 'diffusers')
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__magic_name__ = find_backend(""" if not is_torch_available():""" )
self.assertEqual(__lowerCAmelCase , """torch""" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__magic_name__ = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" )
self.assertEqual(__lowerCAmelCase , """torch_and_transformers""" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__magic_name__ = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" )
self.assertEqual(__lowerCAmelCase , """torch_and_transformers_and_onnx""" )
def _lowercase ( self : Optional[Any] ) -> str:
"""simple docstring"""
__magic_name__ = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""" , __lowerCAmelCase )
self.assertIn("""torch_and_transformers""" , __lowerCAmelCase )
self.assertIn("""flax_and_transformers""" , __lowerCAmelCase )
self.assertIn("""torch_and_transformers_and_onnx""" , __lowerCAmelCase )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""" , objects["""torch"""] )
self.assertIn("""FlaxUNet2DConditionModel""" , objects["""flax"""] )
self.assertIn("""StableDiffusionPipeline""" , objects["""torch_and_transformers"""] )
self.assertIn("""FlaxStableDiffusionPipeline""" , objects["""flax_and_transformers"""] )
self.assertIn("""LMSDiscreteScheduler""" , objects["""torch_and_scipy"""] )
self.assertIn("""OnnxStableDiffusionPipeline""" , objects["""torch_and_transformers_and_onnx"""] )
def _lowercase ( self : List[str] ) -> Tuple:
"""simple docstring"""
__magic_name__ = create_dummy_object("""CONSTANT""" , """'torch'""" )
self.assertEqual(__lowerCAmelCase , """\nCONSTANT = None\n""" )
__magic_name__ = create_dummy_object("""function""" , """'torch'""" )
self.assertEqual(
__lowerCAmelCase , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
__magic_name__ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n"
__magic_name__ = create_dummy_object("""FakeClass""" , """'torch'""" )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
def _lowercase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__magic_name__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n"
__magic_name__ = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""] , __lowerCAmelCase )
| 529 |
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 46 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _UpperCamelCase ( _a ,unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] =MgpstrTokenizer
__UpperCAmelCase : int =False
__UpperCAmelCase : str ={}
__UpperCAmelCase : Dict =False
def snake_case ( self ):
super().setUp()
# fmt: off
__lowerCAmelCase = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
__lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
def snake_case ( self , **__a ):
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def snake_case ( self , __a ):
__lowerCAmelCase = "tester"
__lowerCAmelCase = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def snake_case ( self ):
pass
def snake_case ( self ):
__lowerCAmelCase = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
__lowerCAmelCase = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
__lowerCAmelCase = tokenizer.encode([special_token] , add_special_tokens=__lowerCAmelCase )
self.assertEqual(len(__lowerCAmelCase ) , 1 )
__lowerCAmelCase = tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase )
self.assertTrue(special_token not in decoded )
def snake_case ( self ):
__lowerCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
__lowerCAmelCase = self.get_input_output_texts(__lowerCAmelCase )
__lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase )
__lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
__lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertNotEqual(len(__lowerCAmelCase ) , 0 )
__lowerCAmelCase = tokenizer.decode(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(text_a.replace(" " , "" ) , __lowerCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def snake_case ( self ):
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def snake_case ( self ):
pass
| 636 |
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A_ ( _a ):
lowerCAmelCase__ = (DDIMParallelScheduler,)
lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0))
def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = {
"num_train_timesteps": 1_000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**__lowerCAmelCase )
return config
def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase )
_lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0
_lowerCamelCase : List[Any] = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
scheduler.set_timesteps(__lowerCAmelCase )
for t in scheduler.timesteps:
_lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample
return sample
def _lowercase ( self: List[str] ):
'''simple docstring'''
for timesteps in [100, 500, 1_000]:
self.check_over_configs(num_train_timesteps=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 )
_lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) )
def _lowercase ( self: Any ):
'''simple docstring'''
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__lowerCAmelCase )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
self.check_over_configs(thresholding=__lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,)
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
for t in [1, 10, 49]:
self.check_over_forward(time_step=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ):
self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : Union[str, Any] = self.get_scheduler_config()
_lowerCamelCase : str = scheduler_class(**__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0
scheduler.set_timesteps(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = self.dummy_model()
_lowerCamelCase : Optional[int] = self.dummy_sample_deter
_lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1
_lowerCamelCase : Dict = self.dummy_sample_deter - 0.1
_lowerCamelCase : Union[str, Any] = samplea.shape[0]
_lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 )
_lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase )
_lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) )
_lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase )
_lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2
assert abs(result_mean.item() - 0.49_82 ) < 1e-3
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Any = self.full_loop()
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" )
_lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 52.53_02 ) < 1e-2
assert abs(result_mean.item() - 0.06_84 ) < 1e-3
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 )
_lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2
assert abs(result_mean.item() - 0.19_51 ) < 1e-3
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 )
_lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) )
_lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2
assert abs(result_mean.item() - 0.19_41 ) < 1e-3
| 46 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : List[Any] = {
'''configuration_mobilebert''': [
'''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''MobileBertConfig''',
'''MobileBertOnnxConfig''',
],
'''tokenization_mobilebert''': ['''MobileBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = ['''MobileBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = [
'''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileBertForMaskedLM''',
'''MobileBertForMultipleChoice''',
'''MobileBertForNextSentencePrediction''',
'''MobileBertForPreTraining''',
'''MobileBertForQuestionAnswering''',
'''MobileBertForSequenceClassification''',
'''MobileBertForTokenClassification''',
'''MobileBertLayer''',
'''MobileBertModel''',
'''MobileBertPreTrainedModel''',
'''load_tf_weights_in_mobilebert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = [
'''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFMobileBertForMaskedLM''',
'''TFMobileBertForMultipleChoice''',
'''TFMobileBertForNextSentencePrediction''',
'''TFMobileBertForPreTraining''',
'''TFMobileBertForQuestionAnswering''',
'''TFMobileBertForSequenceClassification''',
'''TFMobileBertForTokenClassification''',
'''TFMobileBertMainLayer''',
'''TFMobileBertModel''',
'''TFMobileBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : int = {
'''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''',
}
class A_ ( _a , _a ):
lowerCAmelCase__ = 'bit'
lowerCAmelCase__ = ['preactivation', 'bottleneck']
lowerCAmelCase__ = ['SAME', 'VALID']
def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
if layer_type not in self.layer_types:
raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
_lowerCamelCase : List[Any] = global_padding.upper()
else:
raise ValueError(F"""Padding strategy {global_padding} not supported""" )
_lowerCamelCase : str = num_channels
_lowerCamelCase : str = embedding_size
_lowerCamelCase : Dict = hidden_sizes
_lowerCamelCase : str = depths
_lowerCamelCase : Any = layer_type
_lowerCamelCase : Any = hidden_act
_lowerCamelCase : List[str] = global_padding
_lowerCamelCase : Tuple = num_groups
_lowerCamelCase : Optional[int] = drop_path_rate
_lowerCamelCase : List[Any] = embedding_dynamic_padding
_lowerCamelCase : Any = output_stride
_lowerCamelCase : List[str] = width_factor
_lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )]
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices(
out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
| 46 | 0 |
"""simple docstring"""
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
'''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''',
}
class _SCREAMING_SNAKE_CASE( _a ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''autoformer'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = "student_t" ,SCREAMING_SNAKE_CASE__ = "nll" ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4, 5, 6, 7] ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 64 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 32 ,SCREAMING_SNAKE_CASE__ = 32 ,SCREAMING_SNAKE_CASE__ = "gelu" ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 1_00 ,SCREAMING_SNAKE_CASE__ = 0.0_2 ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__ = 10 ,SCREAMING_SNAKE_CASE__ = 25 ,SCREAMING_SNAKE_CASE__ = 3 ,**SCREAMING_SNAKE_CASE__ ,) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :str = prediction_length
__SCREAMING_SNAKE_CASE :Union[str, Any] = context_length if context_length is not None else prediction_length
__SCREAMING_SNAKE_CASE :Tuple = distribution_output
__SCREAMING_SNAKE_CASE :Tuple = loss
__SCREAMING_SNAKE_CASE :Any = input_size
__SCREAMING_SNAKE_CASE :Tuple = num_time_features
__SCREAMING_SNAKE_CASE :Optional[Any] = lags_sequence
__SCREAMING_SNAKE_CASE :Optional[Any] = scaling
__SCREAMING_SNAKE_CASE :int = num_dynamic_real_features
__SCREAMING_SNAKE_CASE :Dict = num_static_real_features
__SCREAMING_SNAKE_CASE :int = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(__lowerCAmelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
__SCREAMING_SNAKE_CASE :int = cardinality
else:
__SCREAMING_SNAKE_CASE :Any = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(__lowerCAmelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
__SCREAMING_SNAKE_CASE :Optional[Any] = embedding_dimension
else:
__SCREAMING_SNAKE_CASE :Tuple = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality]
__SCREAMING_SNAKE_CASE :Union[str, Any] = num_parallel_samples
# Transformer architecture configuration
__SCREAMING_SNAKE_CASE :List[Any] = input_size * len(self.lags_sequence ) + self._number_of_features
__SCREAMING_SNAKE_CASE :str = d_model
__SCREAMING_SNAKE_CASE :Optional[int] = encoder_attention_heads
__SCREAMING_SNAKE_CASE :int = decoder_attention_heads
__SCREAMING_SNAKE_CASE :Tuple = encoder_ffn_dim
__SCREAMING_SNAKE_CASE :Union[str, Any] = decoder_ffn_dim
__SCREAMING_SNAKE_CASE :Any = encoder_layers
__SCREAMING_SNAKE_CASE :Any = decoder_layers
__SCREAMING_SNAKE_CASE :Optional[Any] = dropout
__SCREAMING_SNAKE_CASE :Dict = attention_dropout
__SCREAMING_SNAKE_CASE :int = activation_dropout
__SCREAMING_SNAKE_CASE :Dict = encoder_layerdrop
__SCREAMING_SNAKE_CASE :Union[str, Any] = decoder_layerdrop
__SCREAMING_SNAKE_CASE :Optional[Any] = activation_function
__SCREAMING_SNAKE_CASE :List[str] = init_std
__SCREAMING_SNAKE_CASE :str = use_cache
# Autoformer
__SCREAMING_SNAKE_CASE :Dict = label_length
__SCREAMING_SNAKE_CASE :Optional[Any] = moving_average
__SCREAMING_SNAKE_CASE :Optional[int] = autocorrelation_factor
super().__init__(is_encoder_decoder=__lowerCAmelCase ,**__lowerCAmelCase )
@property
def _UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 498 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
'''google/vivit-b-16x2-kinetics400''': (
'''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'''
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class A_ ( _a ):
lowerCAmelCase__ = 'vivit'
def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,):
'''simple docstring'''
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Union[str, Any] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Optional[Any] = attention_probs_dropout_prob
_lowerCamelCase : List[Any] = initializer_range
_lowerCamelCase : int = layer_norm_eps
_lowerCamelCase : Tuple = image_size
_lowerCamelCase : Dict = num_frames
_lowerCamelCase : Optional[int] = tubelet_size
_lowerCamelCase : int = num_channels
_lowerCamelCase : List[str] = qkv_bias
super().__init__(**__lowerCAmelCase )
| 46 | 0 |
'''simple docstring'''
def _a ( lowerCamelCase_ , lowerCamelCase_ ):
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"{price_plus_tax(100, 0.25) = }")
print(f"{price_plus_tax(125.50, 0.05) = }")
| 349 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = MgpstrTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = {}
lowerCAmelCase__ = False
def _lowercase ( self: int ):
'''simple docstring'''
super().setUp()
# fmt: off
_lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
_lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) )
_lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = "tester"
_lowerCamelCase : Optional[Any] = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
_lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase )
self.assertEqual(len(__lowerCAmelCase ) ,1 )
_lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase )
self.assertTrue(special_token not in decoded )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase )
_lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
_lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertNotEqual(len(__lowerCAmelCase ) ,0 )
_lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _lowercase ( self: str ):
'''simple docstring'''
pass
| 46 | 0 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class __SCREAMING_SNAKE_CASE:
def __init__( self: Dict , UpperCamelCase: str , UpperCamelCase: List[str]=13 , UpperCamelCase: int=2 , UpperCamelCase: Dict=24 , UpperCamelCase: int=16 , UpperCamelCase: Dict=True , UpperCamelCase: Optional[int]=True , UpperCamelCase: Optional[int]=32 , UpperCamelCase: Optional[int]=5 , UpperCamelCase: Optional[Any]=4 , UpperCamelCase: Optional[Any]=37 , UpperCamelCase: str="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: List[Any]=10 , UpperCamelCase: Tuple=0.02 , UpperCamelCase: Any=None , UpperCamelCase: Dict=2 , UpperCamelCase: Dict=2 , ) -> Optional[Any]:
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = patch_size
snake_case__ = max_length
snake_case__ = num_mel_bins
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = type_sequence_label_size
snake_case__ = initializer_range
snake_case__ = scope
snake_case__ = frequency_stride
snake_case__ = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
snake_case__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
snake_case__ = (self.max_length - self.patch_size) // self.time_stride + 1
snake_case__ = frequency_out_dimension * time_out_dimension
snake_case__ = num_patches + 2
def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]:
snake_case__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
snake_case__ = None
if self.use_labels:
snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case__ = self.get_config()
return config, input_values, labels
def lowerCAmelCase_ ( self: str ) -> Union[str, Any]:
return ASTConfig(
patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , )
def lowerCAmelCase_ ( self: int , UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: int ) -> Union[str, Any]:
snake_case__ = ASTModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
snake_case__ = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self: List[Any] ) -> int:
snake_case__ = self.prepare_config_and_inputs()
(
snake_case__
) = config_and_inputs
snake_case__ = {"input_values": input_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE( _a , _a , unittest.TestCase ):
_UpperCAmelCase = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
_UpperCAmelCase = (
{"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel}
if is_torch_available()
else {}
)
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: List[str] ) -> Tuple:
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def lowerCAmelCase_ ( self: Optional[int] ) -> str:
snake_case__ = ASTModelTester(self )
snake_case__ = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 )
def lowerCAmelCase_ ( self: List[str] ) -> List[Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='AST does not use inputs_embeds' )
def lowerCAmelCase_ ( self: Tuple ) -> Any:
pass
def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]:
snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) )
def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[Any]:
snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(__lowerCAmelCase )
snake_case__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ = [*signature.parameters.keys()]
snake_case__ = ["input_values"]
self.assertListEqual(arg_names[:1] , __lowerCAmelCase )
def lowerCAmelCase_ ( self: Any ) -> Union[str, Any]:
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
@slow
def lowerCAmelCase_ ( self: List[str] ) -> Any:
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ = ASTModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def a_ ( ) -> str:
"""simple docstring"""
snake_case__ = hf_hub_download(
repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' )
snake_case__ = torchaudio.load(_lowerCamelCase )
return audio, sampling_rate
@require_torch
@require_torchaudio
class __SCREAMING_SNAKE_CASE( unittest.TestCase ):
@cached_property
def lowerCAmelCase_ ( self: Dict ) -> Any:
return (
ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' )
if is_torchaudio_available()
else None
)
@slow
def lowerCAmelCase_ ( self: Optional[Any] ) -> int:
snake_case__ = self.default_feature_extractor
snake_case__ = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(__lowerCAmelCase )
snake_case__ = self.default_feature_extractor
snake_case__ = prepare_audio()
snake_case__ = audio.squeeze().numpy()
snake_case__ = feature_extractor(__lowerCAmelCase , sampling_rate=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase )
# forward pass
with torch.no_grad():
snake_case__ = model(**__lowerCAmelCase )
# verify the logits
snake_case__ = torch.Size((1, 5_27) )
self.assertEqual(outputs.logits.shape , __lowerCAmelCase )
snake_case__ = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(__lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) )
| 328 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
_lowerCAmelCase : str = '''
Examples:
```py
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/frog.png"
... )
>>> image = pipe(
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save("red_frog.png")
```
'''
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : int = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
_lowerCamelCase : Optional[Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int:
'''simple docstring'''
_lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
_lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) )
_lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1
_lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] )
_lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 )
return image
class A_ ( _a ):
def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,):
'''simple docstring'''
super().__init__()
self.register_modules(
unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,)
_lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase )
_lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 )
_lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" )
_lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt
if image.shape[1] == 4:
_lowerCamelCase : List[Any] = image
else:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase )
]
_lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 )
else:
_lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase )
_lowerCamelCase : int = self.movq.config.scaling_factor * init_latents
_lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 )
_lowerCamelCase : Optional[int] = init_latents.shape
_lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase )
# get latents
_lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : str = init_latents
return latents
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
_lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" )
_lowerCamelCase : Dict = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ):
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
_lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
_lowerCamelCase : str = None
for cpu_offloaded_model in [self.unet, self.movq]:
_lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase )
# We'll offload the last model manually.
_lowerCamelCase : int = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if not hasattr(self.unet ,"_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__lowerCAmelCase ,"_hf_hook" )
and hasattr(module._hf_hook ,"execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__lowerCAmelCase )
def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self._execution_device
_lowerCamelCase : Dict = guidance_scale > 1.0
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Any = image_embeds.shape[0]
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 )
if do_classifier_free_guidance:
_lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 )
_lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase )
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Tuple = [image]
if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" )
_lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 )
_lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase )
_lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"]
_lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 )
self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt )
_lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor )
_lowerCamelCase : List[Any] = self.prepare_latents(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase )
for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
_lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCamelCase : List[str] = {"image_embeds": image_embeds}
_lowerCamelCase : Tuple = self.unet(
sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0]
if do_classifier_free_guidance:
_lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 )
_lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 )
_lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 )
_lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
_lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 )
if not (
hasattr(self.scheduler.config ,"variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 )
# compute the previous noisy sample x_t -> x_t-1
_lowerCamelCase : Optional[int] = self.scheduler.step(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0]
# post-processing
_lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
_lowerCamelCase : Optional[int] = image * 0.5 + 0.5
_lowerCamelCase : str = image.clamp(0 ,1 )
_lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy()
if output_type == "pil":
_lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCAmelCase )
| 46 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=7 , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : Any=1_8 , SCREAMING_SNAKE_CASE_ : Any=3_0 , SCREAMING_SNAKE_CASE_ : Tuple=4_0_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : List[Any]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_ : Tuple=[0.5, 0.5, 0.5] , ):
_a = size if size is not None else {"shortest_edge": 1_8}
_a = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_center_crop
_a = crop_size
_a = do_normalize
_a = image_mean
_a = image_std
def _UpperCAmelCase ( self : Union[str, Any] ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _UpperCamelCase ( _a , unittest.TestCase ):
'''simple docstring'''
_A = LevitImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self : List[str] ):
_a = LevitImageProcessingTester(self )
@property
def _UpperCAmelCase ( self : Union[str, Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self : List[str] ):
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCAmelCase , 'image_mean' ) )
self.assertTrue(hasattr(__lowerCAmelCase , 'image_std' ) )
self.assertTrue(hasattr(__lowerCAmelCase , 'do_normalize' ) )
self.assertTrue(hasattr(__lowerCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(__lowerCAmelCase , 'do_center_crop' ) )
self.assertTrue(hasattr(__lowerCAmelCase , 'size' ) )
def _UpperCAmelCase ( self : List[str] ):
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 1_8} )
self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} )
_a = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 )
self.assertEqual(image_processor.size , {'shortest_edge': 4_2} )
self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} )
def _UpperCAmelCase ( self : Optional[Any] ):
pass
def _UpperCAmelCase ( self : str ):
_a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCAmelCase , Image.Image )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_a = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def _UpperCAmelCase ( self : Dict ):
_a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCAmelCase , np.ndarray )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_a = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def _UpperCAmelCase ( self : Any ):
_a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCAmelCase , torch.Tensor )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_a = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 562 |
"""simple docstring"""
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def lowerCamelCase_( ) -> None:
'''simple docstring'''
print("Making key files..." )
make_key_files("rsa" , 1024 )
print("Key files generation successful." )
def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]:
'''simple docstring'''
print("Generating prime p..." )
_lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase )
print("Generating prime q..." )
_lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase )
_lowerCamelCase : Dict = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)..." )
while True:
_lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1:
break
print("Calculating d that is mod inverse of e..." )
_lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) )
_lowerCamelCase : Dict = (n, e)
_lowerCamelCase : Dict = (n, d)
return (public_key, private_key)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None:
'''simple docstring'''
if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ):
print("\nWARNING:" )
print(
F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"Use a different name or delete these files and re-run this program." )
sys.exit()
_lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase )
print(F"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(F"""{name}_pubkey.txt""" , "w" ) as out_file:
out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" )
print(F"""Writing private key to file {name}_privkey.txt...""" )
with open(F"""{name}_privkey.txt""" , "w" ) as out_file:
out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main()
| 46 | 0 |
"""simple docstring"""
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class __snake_case :
def __init__( self : List[str] , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : str = "openai/clip-vit-large-patch14" ):
"""simple docstring"""
_lowerCamelCase : List[str] = device
_lowerCamelCase : Dict = CLIPTokenizerFast.from_pretrained(__lowerCAmelCase )
_lowerCamelCase : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
_lowerCamelCase : List[Any] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
_lowerCamelCase : Tuple = torchvision.transforms.Normalize(self.image_mean , self.image_std )
_lowerCamelCase : Optional[Any] = torchvision.transforms.Resize(2_2_4 )
_lowerCamelCase : List[Any] = torchvision.transforms.CenterCrop(2_2_4 )
def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase : str = self.resize(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = self.center_crop(__lowerCAmelCase )
_lowerCamelCase : List[str] = self.normalize(__lowerCAmelCase )
return images
def __call__( self : Optional[int] , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[Any]=None , **__lowerCAmelCase : Optional[int] ):
"""simple docstring"""
_lowerCamelCase : List[Any] = self.tokenizer(text=__lowerCAmelCase , **__lowerCAmelCase )
_lowerCamelCase : Any = self.preprocess_img(__lowerCAmelCase )
_lowerCamelCase : List[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class __snake_case ( nn.Module):
def __init__( self : Tuple , __lowerCAmelCase : Any=1_0 , __lowerCAmelCase : List[Any]=0.01 , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]="image" , __lowerCAmelCase : int=True , __lowerCAmelCase : int=False , __lowerCAmelCase : str=False , __lowerCAmelCase : Any=False , ):
"""simple docstring"""
super().__init__()
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : Any = device if device else get_device()
if vqgan:
_lowerCamelCase : Any = vqgan
else:
_lowerCamelCase : List[str] = load_vqgan(self.device , conf_path=__lowerCAmelCase , ckpt_path=__lowerCAmelCase )
self.vqgan.eval()
if clip:
_lowerCamelCase : Any = clip
else:
_lowerCamelCase : List[Any] = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' )
self.clip.to(self.device )
_lowerCamelCase : Optional[int] = ProcessorGradientFlow(device=self.device )
_lowerCamelCase : int = iterations
_lowerCamelCase : Tuple = lr
_lowerCamelCase : Any = log
_lowerCamelCase : Dict = make_grid
_lowerCamelCase : Optional[int] = return_val
_lowerCamelCase : Union[str, Any] = quantize
_lowerCamelCase : List[str] = self.vqgan.decoder.z_shape
def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : List[Any]=True ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = []
if output_path is None:
_lowerCamelCase : Optional[Any] = "./animation.gif"
if input_path is None:
_lowerCamelCase : Optional[Any] = self.save_path
_lowerCamelCase : Dict = sorted(glob(input_path + '''/*''' ) )
if not len(__lowerCAmelCase ):
raise ValueError(
'''No images found in save path, aborting (did you pass save_intermediate=True to the generate'''
''' function?)''' )
if len(__lowerCAmelCase ) == 1:
print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' )
_lowerCamelCase : Any = total_duration / len(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = [frame_duration] * len(__lowerCAmelCase )
if extend_frames:
_lowerCamelCase : Dict = 1.5
_lowerCamelCase : List[Any] = 3
for file_name in paths:
if file_name.endswith('''.png''' ):
images.append(imageio.imread(__lowerCAmelCase ) )
imageio.mimsave(__lowerCAmelCase , __lowerCAmelCase , duration=__lowerCAmelCase )
print(f'''gif saved to {output_path}''' )
def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Optional[Any]=None ):
"""simple docstring"""
if not (path or img):
raise ValueError('''Input either path or tensor''' )
if img is not None:
raise NotImplementedError
_lowerCamelCase : Tuple = preprocess(Image.open(__lowerCAmelCase ) , target_image_size=2_5_6 ).to(self.device )
_lowerCamelCase : str = preprocess_vqgan(__lowerCAmelCase )
_lowerCamelCase : List[str] = self.vqgan.encode(__lowerCAmelCase )
return z
def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Any ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = self.latent.detach().requires_grad_()
_lowerCamelCase : str = base_latent + transform_vector
if self.quantize:
_lowerCamelCase : List[Any] = self.vqgan.quantize(__lowerCAmelCase )
else:
_lowerCamelCase : str = trans_latent
return self.vqgan.decode(__lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict=None ):
"""simple docstring"""
_lowerCamelCase : List[str] = self.clip_preprocessor(text=__lowerCAmelCase , images=__lowerCAmelCase , return_tensors='''pt''' , padding=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = self.clip(**__lowerCAmelCase )
_lowerCamelCase : Dict = clip_outputs.logits_per_image
if weights is not None:
_lowerCamelCase : Union[str, Any] = similarity_logits * weights
return similarity_logits.sum()
def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ):
"""simple docstring"""
_lowerCamelCase : List[Any] = self._get_clip_similarity(pos_prompts['''prompts'''] , __lowerCAmelCase , weights=(1 / pos_prompts['''weights''']) )
if neg_prompts:
_lowerCamelCase : List[Any] = self._get_clip_similarity(neg_prompts['''prompts'''] , __lowerCAmelCase , weights=neg_prompts['''weights'''] )
else:
_lowerCamelCase : Union[str, Any] = torch.tensor([1] , device=self.device )
_lowerCamelCase : List[str] = -torch.log(__lowerCAmelCase ) + torch.log(__lowerCAmelCase )
return loss
def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase : List[Any] = torch.randn_like(self.latent , requires_grad=__lowerCAmelCase , device=self.device )
_lowerCamelCase : Union[str, Any] = torch.optim.Adam([vector] , lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
_lowerCamelCase : List[str] = self._add_vector(__lowerCAmelCase )
_lowerCamelCase : Dict = loop_post_process(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = self._get_CLIP_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
print('''CLIP loss''' , __lowerCAmelCase )
if self.log:
wandb.log({'''CLIP Loss''': clip_loss} )
clip_loss.backward(retain_graph=__lowerCAmelCase )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : List[str] ):
"""simple docstring"""
wandb.init(reinit=__lowerCAmelCase , project='''face-editor''' )
wandb.config.update({'''Positive Prompts''': positive_prompts} )
wandb.config.update({'''Negative Prompts''': negative_prompts} )
wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} )
if image_path:
_lowerCamelCase : Dict = Image.open(__lowerCAmelCase )
_lowerCamelCase : int = image.resize((2_5_6, 2_5_6) )
wandb.log('''Original Image''' , wandb.Image(__lowerCAmelCase ) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Any ):
"""simple docstring"""
if not prompts:
return []
_lowerCamelCase : List[Any] = []
_lowerCamelCase : Any = []
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
_lowerCamelCase : Optional[Any] = [prompt.strip() for prompt in prompts.split('''|''' )]
for prompt in prompts:
if isinstance(__lowerCAmelCase , (tuple, list) ):
_lowerCamelCase : Optional[int] = prompt[0]
_lowerCamelCase : Optional[int] = float(prompt[1] )
elif ":" in prompt:
_lowerCamelCase : Union[str, Any] = prompt.split(''':''' )
_lowerCamelCase : Dict = float(__lowerCAmelCase )
else:
_lowerCamelCase : Any = prompt
_lowerCamelCase : int = 1.0
processed_prompts.append(__lowerCAmelCase )
weights.append(__lowerCAmelCase )
return {
"prompts": processed_prompts,
"weights": torch.tensor(__lowerCAmelCase , device=self.device ),
}
def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : str=None , ):
"""simple docstring"""
if image_path:
_lowerCamelCase : Optional[Any] = self._get_latent(__lowerCAmelCase )
else:
_lowerCamelCase : Union[str, Any] = torch.randn(self.latent_dim , device=self.device )
if self.log:
self._init_logging(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
assert pos_prompts, "You must provide at least one positive prompt."
_lowerCamelCase : Union[str, Any] = self.process_prompts(__lowerCAmelCase )
_lowerCamelCase : List[Any] = self.process_prompts(__lowerCAmelCase )
if save_final and save_path is None:
_lowerCamelCase : Union[str, Any] = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) )
if not os.path.exists(__lowerCAmelCase ):
os.makedirs(__lowerCAmelCase )
else:
_lowerCamelCase : List[Any] = save_path + "_" + get_timestamp()
os.makedirs(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = save_path
_lowerCamelCase : Optional[int] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('''Original Image''' )
show_pil(custom_to_pil(__lowerCAmelCase ) )
_lowerCamelCase : int = loop_post_process(__lowerCAmelCase )
for iter, transformed_img in enumerate(self._optimize_CLIP(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ):
if show_intermediate:
show_pil(__lowerCAmelCase )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) )
if self.log:
wandb.log({'''Image''': wandb.Image(__lowerCAmelCase )} )
if show_final:
show_pil(__lowerCAmelCase )
if save_final:
transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
| 83 |
"""simple docstring"""
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A_ :
def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,):
'''simple docstring'''
_lowerCamelCase : Optional[int] = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Any = image_size
_lowerCamelCase : List[str] = patch_size
_lowerCamelCase : Union[str, Any] = num_channels
_lowerCamelCase : List[str] = is_training
_lowerCamelCase : str = use_labels
_lowerCamelCase : List[Any] = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Optional[Any] = intermediate_size
_lowerCamelCase : Optional[int] = hidden_act
_lowerCamelCase : Union[str, Any] = hidden_dropout_prob
_lowerCamelCase : Any = attention_probs_dropout_prob
_lowerCamelCase : str = type_sequence_label_size
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Dict = mask_ratio
_lowerCamelCase : List[Any] = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_lowerCamelCase : str = (image_size // patch_size) ** 2
_lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase : int = None
if self.use_labels:
_lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
_lowerCamelCase : str = self.get_config()
return config, pixel_values, labels
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Dict = model(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2
_lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_lowerCamelCase : str = 1
_lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase )
_lowerCamelCase : Any = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : int = self.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs
_lowerCamelCase : Dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A_ ( _a , _a , unittest.TestCase ):
lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {}
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = ViTMAEModelTester(self )
_lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 )
def _lowercase ( self: List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMAE does not use inputs_embeds" )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
_lowerCamelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Dict = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Optional[Any] = [*signature.parameters.keys()]
_lowerCamelCase : Dict = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase )
def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
np.random.seed(2 )
_lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_lowerCamelCase : Dict = pt_noise
super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
_lowerCamelCase : Any = outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase )
model.to(__lowerCAmelCase )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
# Make sure we don't have nans
_lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCAmelCase ,1e-5 )
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: str ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" )
def _lowercase ( self: int ):
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _lowercase ( self: Dict ):
'''simple docstring'''
pass
@slow
def _lowercase ( self: Dict ):
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class A_ ( unittest.TestCase ):
@cached_property
def _lowercase ( self: str ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None
@slow
def _lowercase ( self: int ):
'''simple docstring'''
np.random.seed(2 )
_lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase )
_lowerCamelCase : int = self.default_image_processor
_lowerCamelCase : int = prepare_img()
_lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_lowerCamelCase : Tuple = ViTMAEConfig()
_lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
_lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) )
# verify the logits
_lowerCamelCase : Any = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape ,__lowerCAmelCase )
_lowerCamelCase : Tuple = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
| 46 | 0 |
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class __magic_name__ :
"""simple docstring"""
def __init__( self : List[str] , _lowercase : List[str] , _lowercase : List[Any]=13 , _lowercase : Optional[int]=7 , _lowercase : str=True , _lowercase : Tuple=True , _lowercase : Any=True , _lowercase : List[Any]=True , _lowercase : Tuple=99 , _lowercase : Optional[Any]=64 , _lowercase : Optional[Any]=32 , _lowercase : Dict=5 , _lowercase : Tuple=4 , _lowercase : Union[str, Any]=37 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : Optional[int]=512 , _lowercase : Tuple=16 , _lowercase : Tuple=2 , _lowercase : List[str]=0.02 , _lowercase : Optional[int]=3 , _lowercase : Tuple=4 , _lowercase : int=None , ):
"""simple docstring"""
_UpperCamelCase: Union[str, Any] = parent
_UpperCamelCase: Optional[Any] = batch_size
_UpperCamelCase: List[Any] = seq_length
_UpperCamelCase: Tuple = is_training
_UpperCamelCase: str = use_input_mask
_UpperCamelCase: List[str] = use_token_type_ids
_UpperCamelCase: Union[str, Any] = use_labels
_UpperCamelCase: Any = vocab_size
_UpperCamelCase: Tuple = hidden_size
_UpperCamelCase: Optional[Any] = embedding_size
_UpperCamelCase: List[Any] = num_hidden_layers
_UpperCamelCase: Optional[int] = num_attention_heads
_UpperCamelCase: Dict = intermediate_size
_UpperCamelCase: Optional[int] = hidden_act
_UpperCamelCase: Tuple = hidden_dropout_prob
_UpperCamelCase: Optional[Any] = attention_probs_dropout_prob
_UpperCamelCase: List[str] = max_position_embeddings
_UpperCamelCase: List[str] = type_vocab_size
_UpperCamelCase: List[str] = type_sequence_label_size
_UpperCamelCase: Any = initializer_range
_UpperCamelCase: Optional[int] = num_labels
_UpperCamelCase: str = num_choices
_UpperCamelCase: Optional[Any] = scope
def lowerCAmelCase ( self : Tuple ):
"""simple docstring"""
_UpperCamelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase: List[Any] = None
if self.use_input_mask:
_UpperCamelCase: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase: Any = None
if self.use_token_type_ids:
_UpperCamelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase: List[Any] = None
_UpperCamelCase: List[str] = None
_UpperCamelCase: int = None
if self.use_labels:
_UpperCamelCase: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCamelCase: Dict = ids_tensor([self.batch_size] , self.num_choices )
_UpperCamelCase: Optional[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : Optional[int] ):
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : int , _lowercase : Optional[Any] , _lowercase : Any ):
"""simple docstring"""
_UpperCamelCase: Union[str, Any] = MegatronBertModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_UpperCamelCase: str = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase )
_UpperCamelCase: int = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase )
_UpperCamelCase: Dict = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : List[str] , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Optional[int] ):
"""simple docstring"""
_UpperCamelCase: List[Any] = MegatronBertForMaskedLM(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_UpperCamelCase: List[str] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , _lowercase : Dict , _lowercase : Any , _lowercase : List[str] , _lowercase : str , _lowercase : Dict , _lowercase : str , _lowercase : str ):
"""simple docstring"""
_UpperCamelCase: int = MegatronBertForCausalLM(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_UpperCamelCase: Dict = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : List[Any] ):
"""simple docstring"""
_UpperCamelCase: Any = MegatronBertForNextSentencePrediction(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_UpperCamelCase: List[Any] = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def lowerCAmelCase ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Optional[int] ):
"""simple docstring"""
_UpperCamelCase: List[Any] = MegatronBertForPreTraining(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_UpperCamelCase: int = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , next_sentence_label=__lowerCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def lowerCAmelCase ( self : int , _lowercase : Tuple , _lowercase : Tuple , _lowercase : int , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Dict ):
"""simple docstring"""
_UpperCamelCase: Optional[int] = MegatronBertForQuestionAnswering(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_UpperCamelCase: Optional[int] = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[Any] , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Union[str, Any] ):
"""simple docstring"""
_UpperCamelCase: List[Any] = self.num_labels
_UpperCamelCase: List[str] = MegatronBertForSequenceClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_UpperCamelCase: Optional[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Optional[Any] ):
"""simple docstring"""
_UpperCamelCase: Tuple = self.num_labels
_UpperCamelCase: Dict = MegatronBertForTokenClassification(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_UpperCamelCase: Optional[int] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : str , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : int , _lowercase : Optional[int] ):
"""simple docstring"""
_UpperCamelCase: Optional[Any] = self.num_choices
_UpperCamelCase: Optional[int] = MegatronBertForMultipleChoice(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_UpperCamelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase: Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase: Dict = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : Optional[int] ):
"""simple docstring"""
_UpperCamelCase: List[str] = self.prepare_config_and_inputs()
(
_UpperCamelCase
): Any = config_and_inputs
_UpperCamelCase: int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class __magic_name__ ( _a , _a , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase : Tuple = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCAmelCase : Any = (
{
'''feature-extraction''': MegatronBertModel,
'''fill-mask''': MegatronBertForMaskedLM,
'''question-answering''': MegatronBertForQuestionAnswering,
'''text-classification''': MegatronBertForSequenceClassification,
'''text-generation''': MegatronBertForCausalLM,
'''token-classification''': MegatronBertForTokenClassification,
'''zero-shot''': MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase : int = True
# test_resize_embeddings = False
lowerCAmelCase : Dict = False
def lowerCAmelCase ( self : List[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Optional[Any]=False ):
"""simple docstring"""
_UpperCamelCase: List[str] = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase )
if return_labels:
if model_class in get_values(__lowerCAmelCase ):
_UpperCamelCase: Dict = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase )
_UpperCamelCase: List[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase )
return inputs_dict
def lowerCAmelCase ( self : List[str] ):
"""simple docstring"""
_UpperCamelCase: str = MegatronBertModelTester(self )
_UpperCamelCase: Dict = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 )
def lowerCAmelCase ( self : List[str] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ):
"""simple docstring"""
_UpperCamelCase: Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*__lowerCAmelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
_UpperCamelCase: List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowerCAmelCase )
def lowerCAmelCase ( self : List[str] ):
"""simple docstring"""
_UpperCamelCase: Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowerCAmelCase )
def lowerCAmelCase ( self : List[Any] ):
"""simple docstring"""
_UpperCamelCase: Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowerCAmelCase )
def lowerCAmelCase ( self : Optional[int] ):
"""simple docstring"""
_UpperCamelCase: str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowerCAmelCase )
def lowerCAmelCase ( self : List[str] ):
"""simple docstring"""
_UpperCamelCase: Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowerCAmelCase )
def lowerCAmelCase ( self : int ):
"""simple docstring"""
_UpperCamelCase: int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowerCAmelCase )
def lowerCAmelCase ( self : Dict ):
"""simple docstring"""
_UpperCamelCase: List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowerCAmelCase )
def lowerCAmelCase_ ( lowercase: Any ) -> int:
'''simple docstring'''
return torch.tensor(
_lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , )
UpperCAmelCase_ = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
@slow
@unittest.skip('''Model is not available.''' )
def lowerCAmelCase ( self : str ):
"""simple docstring"""
_UpperCamelCase: Optional[int] = "nvidia/megatron-bert-uncased-345m"
if "MYDIR" in os.environ:
_UpperCamelCase: Optional[int] = os.path.join(os.environ['''MYDIR'''] , __lowerCAmelCase )
_UpperCamelCase: Optional[int] = MegatronBertModel.from_pretrained(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.half()
_UpperCamelCase: Optional[int] = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] )
with torch.no_grad():
_UpperCamelCase: Any = model(__lowerCAmelCase )[0]
_UpperCamelCase: List[str] = torch.Size((1, 9, 1_024) )
self.assertEqual(output.shape , __lowerCAmelCase )
_UpperCamelCase: Any = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728]
for ii in range(3 ):
for jj in range(3 ):
_UpperCamelCase: str = output[0, ii, jj]
_UpperCamelCase: Optional[int] = expected[3 * ii + jj]
_UpperCamelCase: Union[str, Any] = "ii={} jj={} a={} b={}".format(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
self.assertTrue(math.isclose(__lowerCAmelCase , __lowerCAmelCase , rel_tol=__lowerCAmelCase , abs_tol=__lowerCAmelCase ) , msg=__lowerCAmelCase )
| 271 |
"""simple docstring"""
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
_lowerCAmelCase : List[str] = 10
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
for i in range(_lowerCamelCase , _lowerCamelCase ):
if array[i] == target:
return i
return -1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Any = len(_lowerCamelCase )
while left <= right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : str = (left + right) // 3 + 1
_lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
_lowerCamelCase : Union[str, Any] = one_third - 1
elif array[two_third] < target:
_lowerCamelCase : Any = two_third + 1
else:
_lowerCamelCase : List[str] = one_third + 1
_lowerCamelCase : int = two_third - 1
else:
return -1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if left < right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Tuple = (left + right) // 3 + 1
_lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip()
_lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
_lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip())
_lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target)
_lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f'''Iterative search: {target} found at positions: {resulta}''')
print(f'''Recursive search: {target} found at positions: {resulta}''')
else:
print('''Not found''')
| 46 | 0 |
def lowerCamelCase__ ( _A = 50 ):
'''simple docstring'''
snake_case_ = [1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'''{solution() = }''')
| 376 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase = 100 ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = set()
_lowerCamelCase : Optional[Any] = 0
_lowerCamelCase : Optional[int] = n + 1 # maximum limit
for a in range(2 , _lowerCamelCase ):
for b in range(2 , _lowerCamelCase ):
_lowerCamelCase : List[str] = a**b # calculates the current power
collect_powers.add(_lowerCamelCase ) # adds the result to the set
return len(_lowerCamelCase )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 46 | 0 |
import os
def __lowercase ( ):
with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file:
a__ = str(file.readlines()[0] )
a__ = names.replace('\"' , '' ).split(',' )
names.sort()
a__ = 0
a__ = 0
for i, name in enumerate(_lowerCamelCase ):
for letter in name:
name_score += ord(_lowerCamelCase ) - 6_4
total_score += (i + 1) * name_score
a__ = 0
return total_score
if __name__ == "__main__":
print(solution())
| 335 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
# TODO Update this
_lowerCAmelCase : Optional[Any] = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class A_ ( _a ):
lowerCAmelCase__ = 'esm'
def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Union[str, Any] = hidden_size
_lowerCamelCase : Optional[Any] = num_hidden_layers
_lowerCamelCase : str = num_attention_heads
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Any = attention_probs_dropout_prob
_lowerCamelCase : int = max_position_embeddings
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Optional[int] = position_embedding_type
_lowerCamelCase : str = use_cache
_lowerCamelCase : Union[str, Any] = emb_layer_norm_before
_lowerCamelCase : Tuple = token_dropout
_lowerCamelCase : Dict = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("No esmfold_config supplied for folding model, using default values." )
_lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = esmfold_config
if vocab_list is None:
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" )
_lowerCamelCase : List[str] = get_default_vocab_list()
else:
_lowerCamelCase : Optional[Any] = vocab_list
else:
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = None
if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ):
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[Any] = super().to_dict()
if isinstance(self.esmfold_config ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = self.esmfold_config.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = 0
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = None
def _lowercase ( self: Dict ):
'''simple docstring'''
if self.trunk is None:
_lowerCamelCase : Optional[int] = TrunkConfig()
elif isinstance(self.trunk ,__lowerCAmelCase ):
_lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = asdict(self )
_lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = 4_8
lowerCAmelCase__ = 1_0_2_4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 3_2
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = False
lowerCAmelCase__ = 4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = None
def _lowercase ( self: Any ):
'''simple docstring'''
if self.structure_module is None:
_lowerCamelCase : Tuple = StructureModuleConfig()
elif isinstance(self.structure_module ,__lowerCAmelCase ):
_lowerCamelCase : str = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" )
_lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width
_lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" )
if self.dropout >= 0.4:
raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Dict = asdict(self )
_lowerCamelCase : Optional[int] = self.structure_module.to_dict()
return output
@dataclass
class A_ :
lowerCAmelCase__ = 3_8_4
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 1_6
lowerCAmelCase__ = 1_2_8
lowerCAmelCase__ = 1_2
lowerCAmelCase__ = 4
lowerCAmelCase__ = 8
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 1
lowerCAmelCase__ = 2
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_0
lowerCAmelCase__ = 1E-8
lowerCAmelCase__ = 1E5
def _lowercase ( self: Any ):
'''simple docstring'''
return asdict(self )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 46 | 0 |
def a__ ( A_ ):
'''simple docstring'''
__magic_name__ = [[0 for _ in range(_lowerCamelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
__magic_name__ = 1
for n in range(m + 1 ):
for k in range(1, _lowerCamelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
__lowerCAmelCase : Optional[Any] = int(input('Enter a number: ').strip())
print(partition(n))
except ValueError:
print('Please enter a number.')
else:
try:
__lowerCAmelCase : Dict = int(sys.argv[1])
print(partition(n))
except ValueError:
print('Please pass a number.')
| 529 |
"""simple docstring"""
import re
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError("Invalid Strand" )
return dna.translate(dna.maketrans("ATCG" , "TAGC" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 46 | 0 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class _UpperCamelCase :
'''simple docstring'''
def __init__( self , __a , __a=13 , __a=30 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.0_2 , __a=3 , __a=None , __a=2 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = image_size
__lowerCAmelCase = patch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = is_training
__lowerCAmelCase = use_labels
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = type_sequence_label_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = scope
__lowerCAmelCase = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__lowerCAmelCase = (image_size // patch_size) ** 2
__lowerCAmelCase = num_patches + 2
def snake_case ( self ):
__lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCAmelCase = None
if self.use_labels:
__lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def snake_case ( self ):
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def snake_case ( self , __a , __a , __a ):
__lowerCAmelCase = TFDeiTModel(config=__lowerCAmelCase )
__lowerCAmelCase = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case ( self , __a , __a , __a ):
__lowerCAmelCase = TFDeiTForMaskedImageModeling(config=__lowerCAmelCase )
__lowerCAmelCase = model(__lowerCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__lowerCAmelCase = 1
__lowerCAmelCase = TFDeiTForMaskedImageModeling(__lowerCAmelCase )
__lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCAmelCase = model(__lowerCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def snake_case ( self , __a , __a , __a ):
__lowerCAmelCase = self.type_sequence_label_size
__lowerCAmelCase = TFDeiTForImageClassification(__lowerCAmelCase )
__lowerCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCAmelCase = 1
__lowerCAmelCase = TFDeiTForImageClassification(__lowerCAmelCase )
__lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def snake_case ( self ):
__lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase = config_and_inputs
__lowerCAmelCase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class _UpperCamelCase ( _a ,_a ,unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Dict =(
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
__UpperCAmelCase : Dict =(
{
"""feature-extraction""": TFDeiTModel,
"""image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
__UpperCAmelCase : Optional[int] =False
__UpperCAmelCase : List[Any] =False
__UpperCAmelCase : Optional[Any] =False
__UpperCAmelCase : Dict =False
def snake_case ( self ):
__lowerCAmelCase = TFDeiTModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 )
def snake_case ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def snake_case ( self ):
pass
def snake_case ( self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
__lowerCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase , tf.keras.layers.Dense ) )
def snake_case ( self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(__lowerCAmelCase )
__lowerCAmelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase = [*signature.parameters.keys()]
__lowerCAmelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCAmelCase )
def snake_case ( self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def snake_case ( self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase )
def snake_case ( self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase )
def snake_case ( self , __a , __a , __a=False ):
__lowerCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def snake_case ( self ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = TFDeiTModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def snake_case ( self ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def snake_case ( self ):
__lowerCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__lowerCAmelCase = self.default_image_processor
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = image_processor(images=__lowerCAmelCase , return_tensors="tf" )
# forward pass
__lowerCAmelCase = model(**__lowerCAmelCase )
# verify the logits
__lowerCAmelCase = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCAmelCase )
__lowerCAmelCase = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) )
| 636 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : str = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_lowerCamelCase : Tuple = ""
else:
_lowerCamelCase : str = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
_lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : Tuple = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : Any = dct.pop(_lowerCamelCase )
_lowerCamelCase : Dict = val
def lowerCamelCase_( ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
_lowerCamelCase : str = 8
# set labels if required
if not base_model:
_lowerCamelCase : str = 1000
_lowerCamelCase : Any = "huggingface/label-files"
_lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
_lowerCamelCase : int = 384
_lowerCamelCase : str = 1536
_lowerCamelCase : List[str] = 12
_lowerCamelCase : Optional[int] = 6
# load original model from torch hub
_lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase )
original_model.eval()
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : List[str] = original_model.state_dict()
if base_model:
remove_classification_head_(_lowerCamelCase )
_lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# load HuggingFace model
if base_model:
_lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval()
else:
_lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval()
model.load_state_dict(_lowerCamelCase )
# Check outputs on an image, prepared by ViTImageProcessor
_lowerCamelCase : Tuple = ViTImageProcessor()
_lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
_lowerCamelCase : Dict = encoding["pixel_values"]
_lowerCamelCase : int = model(_lowerCamelCase )
if base_model:
_lowerCamelCase : List[str] = original_model(_lowerCamelCase )
assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 )
else:
_lowerCamelCase : Tuple = original_model(_lowerCamelCase )
assert logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''dino_vitb16''',
type=str,
help='''Name of the model trained with DINO you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--base_model''',
action='''store_true''',
help='''Whether to only convert the base model (no projection head weights).''',
)
parser.set_defaults(base_model=True)
_lowerCAmelCase : List[Any] = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 46 | 0 |
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 4 |
"""simple docstring"""
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase )
_lowerCamelCase : Dict = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase )
class A_ ( _a ):
lowerCAmelCase__ = 'sigmoid'
lowerCAmelCase__ = 'softmax'
lowerCAmelCase__ = 'none'
@add_end_docstrings(
_a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , )
class A_ ( _a ):
lowerCAmelCase__ = False
lowerCAmelCase__ = ClassificationFunction.NONE
def __init__( self: str ,**__lowerCAmelCase: str ):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = tokenizer_kwargs
_lowerCamelCase : Optional[int] = {}
if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None:
_lowerCamelCase : Tuple = self.model.config.return_all_scores
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None:
_lowerCamelCase : List[str] = top_k
_lowerCamelCase : Union[str, Any] = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,)
if return_all_scores:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : Union[str, Any] = 1
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
_lowerCamelCase : Dict = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
_lowerCamelCase : Optional[Any] = "top_k" not in kwargs
if isinstance(args[0] ,__lowerCAmelCase ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = self.framework
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"
" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." )
return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
return self.model(**__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ):
'''simple docstring'''
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
_lowerCamelCase : Dict = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
_lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None:
_lowerCamelCase : Optional[int] = self.model.config.function_to_apply
else:
_lowerCamelCase : str = ClassificationFunction.NONE
_lowerCamelCase : List[Any] = model_outputs["logits"][0]
_lowerCamelCase : Optional[int] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
_lowerCamelCase : str = sigmoid(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.SOFTMAX:
_lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.NONE:
_lowerCamelCase : str = outputs
else:
raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
_lowerCamelCase : Optional[int] = [
{"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase )
]
if not _legacy:
dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase )
if top_k is not None:
_lowerCamelCase : Any = dict_scores[:top_k]
return dict_scores
| 46 | 0 |
"""simple docstring"""
from __future__ import annotations
def __lowerCamelCase ( a_ : Any , a_ : List[str] ) -> int:
if len(_lowerCamelCase ) < k or k < 0:
raise ValueError('''Invalid Input''' )
__SCREAMING_SNAKE_CASE :Optional[Any] = sum(array[:k] )
for i in range(len(_lowerCamelCase ) - k ):
__SCREAMING_SNAKE_CASE :Optional[int] = current_sum - array[i] + array[i + k]
__SCREAMING_SNAKE_CASE :Union[str, Any] = max(_lowerCamelCase , _lowerCamelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
lowerCamelCase_ = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)]
lowerCamelCase_ = randint(0, 1_1_0)
print(f'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
| 498 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
_lowerCAmelCase : Tuple = '''\
Text data.
Second line of data.'''
_lowerCAmelCase : str = '''file'''
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd")
_lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" )
with zstd.open(_lowerCamelCase , "wb" ) as f:
f.write(_lowerCamelCase )
return path
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f:
f.write(_lowerCamelCase )
return FILE_PATH
@pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path}
_lowerCamelCase : Tuple = input_paths[compression_format]
_lowerCamelCase : int = tmp_path / "cache"
_lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase )
_lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase )
with open(_lowerCamelCase ) as f:
_lowerCamelCase : List[Any] = f.read()
with open(_lowerCamelCase ) as f:
_lowerCamelCase : int = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("default_extracted" , [True, False] )
@pytest.mark.parametrize("default_cache_dir" , [True, False] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "custom_cache"
_lowerCamelCase : List[str] = "custom_extracted_dir"
_lowerCamelCase : str = tmp_path / "custom_extracted_path"
if default_extracted:
_lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted")
else:
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) )
_lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_lowerCamelCase : int = xz_file
_lowerCamelCase : List[Any] = (
DownloadConfig(extract_compressed_file=_lowerCamelCase )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase )
)
_lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase )
assert Path(_lowerCamelCase ).parent.parts[-2:] == expected
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() )
assert cached_path(_lowerCamelCase ) == text_file
# relative path
_lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_lowerCamelCase ) == text_file
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" )
with pytest.raises(_lowerCamelCase ):
cached_path(_lowerCamelCase )
# relative path
_lowerCamelCase : List[Any] = "./__missing_file__.txt"
with pytest.raises(_lowerCamelCase ):
cached_path(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" )
with open(_lowerCamelCase ) as f:
_lowerCamelCase : Tuple = f.read()
assert output_file_content == FILE_CONTENT
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
with pytest.raises(_lowerCamelCase ):
cached_path("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
http_get("https://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
http_head("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
ftp_head("ftp://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(_lowerCamelCase ):
fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase )
with pytest.raises(_lowerCamelCase ):
fsspec_head("s3://huggingface.co" )
| 46 | 0 |
'''simple docstring'''
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
'''compression_format, is_archive''' , [
('''7z''', True),
('''bz2''', False),
('''gzip''', False),
('''lz4''', False),
('''tar''', True),
('''xz''', False),
('''zip''', True),
('''zstd''', False),
] , )
def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ):
snake_case : Tuple ={
"7z": (seven_zip_file, SevenZipExtractor),
"bz2": (bza_file, BzipaExtractor),
"gzip": (gz_file, GzipExtractor),
"lz4": (lza_file, LzaExtractor),
"tar": (tar_file, TarExtractor),
"xz": (xz_file, XzExtractor),
"zip": (zip_file, ZipExtractor),
"zstd": (zstd_file, ZstdExtractor),
}
snake_case : Any =input_paths_and_base_extractors[compression_format]
if input_path is None:
snake_case : Any =F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(_lowerCamelCase )
assert base_extractor.is_extractable(_lowerCamelCase )
snake_case : Tuple =tmp_path / ("extracted" if is_archive else "extracted.txt")
base_extractor.extract(_lowerCamelCase , _lowerCamelCase )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
snake_case : Union[str, Any] =file_path.read_text(encoding='''utf-8''' )
else:
snake_case : Any =output_path.read_text(encoding='''utf-8''' )
snake_case : Optional[int] =text_file.read_text(encoding='''utf-8''' )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
'''compression_format, is_archive''' , [
('''7z''', True),
('''bz2''', False),
('''gzip''', False),
('''lz4''', False),
('''tar''', True),
('''xz''', False),
('''zip''', True),
('''zstd''', False),
] , )
def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ):
snake_case : str ={
"7z": seven_zip_file,
"bz2": bza_file,
"gzip": gz_file,
"lz4": lza_file,
"tar": tar_file,
"xz": xz_file,
"zip": zip_file,
"zstd": zstd_file,
}
snake_case : List[Any] =input_paths[compression_format]
if input_path is None:
snake_case : List[str] =F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(_lowerCamelCase )
snake_case : Tuple =Extractor.infer_extractor_format(_lowerCamelCase )
assert extractor_format is not None
snake_case : int =tmp_path / ("extracted" if is_archive else "extracted.txt")
Extractor.extract(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
snake_case : str =file_path.read_text(encoding='''utf-8''' )
else:
snake_case : Dict =output_path.read_text(encoding='''utf-8''' )
snake_case : Union[str, Any] =text_file.read_text(encoding='''utf-8''' )
assert extracted_file_content == expected_file_content
@pytest.fixture
def _a ( lowerCamelCase_ , lowerCamelCase_ ):
import tarfile
snake_case : Optional[Any] =tmp_path / "data_dot_dot"
directory.mkdir()
snake_case : Optional[int] =directory / "tar_file_with_dot_dot.tar"
with tarfile.TarFile(_lowerCamelCase , '''w''' ) as f:
f.add(_lowerCamelCase , arcname=os.path.join('''..''' , text_file.name ) )
return path
@pytest.fixture
def _a ( lowerCamelCase_ ):
import tarfile
snake_case : Optional[Any] =tmp_path / "data_sym_link"
directory.mkdir()
snake_case : List[Any] =directory / "tar_file_with_sym_link.tar"
os.symlink('''..''' , directory / '''subdir''' , target_is_directory=_lowerCamelCase )
with tarfile.TarFile(_lowerCamelCase , '''w''' ) as f:
f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
'''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , )
def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
snake_case : Union[str, Any] ={
"tar_file_with_dot_dot": tar_file_with_dot_dot,
"tar_file_with_sym_link": tar_file_with_sym_link,
}
snake_case : Any =insecure_tar_files[insecure_tar_file]
snake_case : Tuple =tmp_path / "extracted"
TarExtractor.extract(_lowerCamelCase , _lowerCamelCase )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def _a ( lowerCamelCase_ ):
snake_case : Dict =tmpdir / "not_a_zip_file"
# From: https://github.com/python/cpython/pull/5053
snake_case : Dict =(
B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"
B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"
B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"
B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"
)
with not_a_zip_file.open('''wb''' ) as f:
f.write(_lowerCamelCase )
assert zipfile.is_zipfile(str(_lowerCamelCase ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(_lowerCamelCase ) # but we're right
| 349 |
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None:
'''simple docstring'''
_lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(_lowerCamelCase , torch.Tensor ):
raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" )
_lowerCamelCase : List[str] = v.half()
if save_path is None: # overwrite src_path
_lowerCamelCase : Union[str, Any] = src_path
torch.save(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 46 | 0 |
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
__UpperCamelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class __SCREAMING_SNAKE_CASE( nn.Module ):
def __init__( self: Optional[int] , UpperCamelCase: Any ) -> List[Any]:
super().__init__()
snake_case__ = torchvision.models.resnetaaa(pretrained=__lowerCAmelCase )
snake_case__ = list(model.children() )[:-2]
snake_case__ = nn.Sequential(*__lowerCAmelCase )
snake_case__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int ) -> Union[str, Any]:
snake_case__ = self.pool(self.model(__lowerCAmelCase ) )
snake_case__ = torch.flatten(__lowerCAmelCase , start_dim=2 )
snake_case__ = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class __SCREAMING_SNAKE_CASE( _a ):
def __init__( self: str , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Any , UpperCamelCase: int ) -> Optional[int]:
snake_case__ = [json.loads(__lowerCAmelCase ) for l in open(__lowerCAmelCase )]
snake_case__ = os.path.dirname(__lowerCAmelCase )
snake_case__ = tokenizer
snake_case__ = labels
snake_case__ = len(__lowerCAmelCase )
snake_case__ = max_seq_length
snake_case__ = transforms
def __len__( self: List[Any] ) -> Union[str, Any]:
return len(self.data )
def __getitem__( self: Tuple , UpperCamelCase: List[Any] ) -> Optional[int]:
snake_case__ = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=__lowerCAmelCase ) )
snake_case__ = sentence[0], sentence[1:-1], sentence[-1]
snake_case__ = sentence[: self.max_seq_length]
snake_case__ = torch.zeros(self.n_classes )
snake_case__ = 1
snake_case__ = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' )
snake_case__ = self.transforms(__lowerCAmelCase )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]:
snake_case__ = Counter()
for row in self.data:
label_freqs.update(row['label'] )
return label_freqs
def a_ ( _A ) -> str:
"""simple docstring"""
snake_case__ = [len(row['sentence'] ) for row in batch]
snake_case__ = len(_lowerCamelCase ), max(_lowerCamelCase )
snake_case__ = torch.zeros(_lowerCamelCase , _lowerCamelCase , dtype=torch.long )
snake_case__ = torch.zeros(_lowerCamelCase , _lowerCamelCase , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(_lowerCamelCase , _lowerCamelCase ) ):
snake_case__ = input_row["sentence"]
snake_case__ = 1
snake_case__ = torch.stack([row['image'] for row in batch] )
snake_case__ = torch.stack([row['label'] for row in batch] )
snake_case__ = torch.stack([row['image_start_token'] for row in batch] )
snake_case__ = torch.stack([row['image_end_token'] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def a_ ( ) -> int:
"""simple docstring"""
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def a_ ( ) -> Tuple:
"""simple docstring"""
return transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ),
] )
| 328 |
"""simple docstring"""
import importlib
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
import transformers.models.auto
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
_lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''')
class A_ ( unittest.TestCase ):
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertIsNotNone(transformers.models.auto.__spec__ )
self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
# This model name contains bert and roberta, but roberta ends up being picked.
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" )
os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f:
f.write(json.dumps({} ) )
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
try:
AutoConfig.register("custom" ,__lowerCAmelCase )
# Wrong model type will raise an error
with self.assertRaises(__lowerCAmelCase ):
AutoConfig.register("model" ,__lowerCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCAmelCase ):
AutoConfig.register("bert" ,__lowerCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
_lowerCamelCase : Any = CustomConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
def _lowercase ( self: Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ):
_lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" )
def _lowercase ( self: Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
_lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" )
def _lowercase ( self: Tuple ):
'''simple docstring'''
with self.assertRaisesRegex(
__lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,):
_lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
with self.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfig" )
# Test config can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" )
def _lowercase ( self: Dict ):
'''simple docstring'''
class A_ ( _a ):
lowerCAmelCase__ = 'new-model'
try:
AutoConfig.register("new-model" ,__lowerCAmelCase )
# If remote code is not set, the default is to use local
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" )
# If remote code is disabled, we load the local one.
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" )
# If remote is enabled, we load from the Hub
_lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase )
self.assertEqual(config.__class__.__name__ ,"NewModelConfig" )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
| 46 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.