code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __UpperCAmelCase = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } __UpperCAmelCase = { '''169M''': 768, '''430M''': 1_024, '''1B5''': 2_048, '''3B''': 2_560, '''7B''': 4_096, '''14B''': 5_120, } def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Tuple: UpperCamelCase : Union[str, Any] = list(state_dict.keys() ) for name in state_dict_keys: UpperCamelCase : Optional[Any] = state_dict.pop(snake_case__ ) # emb -> embedding if name.startswith('emb.' ): UpperCamelCase : Optional[Any] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): UpperCamelCase : Optional[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention UpperCamelCase : Optional[int] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , snake_case__ ) # ffn -> feed_forward UpperCamelCase : Dict = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , snake_case__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): UpperCamelCase : Tuple = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): UpperCamelCase : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): UpperCamelCase : Any = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": UpperCamelCase : Tuple = 'rwkv.' + name UpperCamelCase : Dict = weight return state_dict def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Tuple=None , snake_case__ : Dict=None , snake_case__ : List[str]=False , snake_case__ : Union[str, Any]=None ) -> str: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) UpperCamelCase : Tuple = 50277 UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: UpperCamelCase : List[Any] = PreTrainedTokenizerFast(tokenizer_file=snake_case__ ) UpperCamelCase : Tuple = len(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) # 2. Build the config UpperCamelCase : Optional[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCamelCase : Union[str, Any] = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) UpperCamelCase : Optional[int] = RwkvConfig( vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(snake_case__ ) # 3. Download model file then convert state_dict UpperCamelCase : Optional[int] = hf_hub_download(snake_case__ , snake_case__ ) UpperCamelCase : Optional[Any] = torch.load(snake_case__ , map_location='cpu' ) UpperCamelCase : List[str] = convert_state_dict(snake_case__ ) # 4. Split in shards and save UpperCamelCase , UpperCamelCase : Tuple = shard_checkpoint(snake_case__ ) for shard_file, shard in shards.items(): torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if index is not None: UpperCamelCase : List[Any] = os.path.join(snake_case__ , snake_case__ ) # Save the index as well with open(snake_case__ , 'w' , encoding='utf-8' ) as f: UpperCamelCase : str = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '\n' f.write(snake_case__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) UpperCamelCase : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCamelCase : int = torch.load(os.path.join(snake_case__ , snake_case__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained(snake_case__ ) model.push_to_hub(snake_case__ , max_shard_size='2GB' ) tokenizer.push_to_hub(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) __UpperCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
40
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,**lowercase__ : int ): __lowercase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowercase__ ) return config def SCREAMING_SNAKE_CASE ( self : Any ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] ,[0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=lowercase__ ,beta_end=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): self.check_over_configs(thresholding=lowercase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase__ ,prediction_type=lowercase__ ,sample_max_value=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.0_2 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = len(lowercase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(lowercase__ ) ): # 1. predict noise residual __lowercase = model(lowercase__ ,lowercase__ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(lowercase__ ,lowercase__ ,lowercase__ ,generator=lowercase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowercase = scheduler_class(**lowercase__ ) __lowercase = len(lowercase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(lowercase__ ) ): # 1. predict noise residual __lowercase = model(lowercase__ ,lowercase__ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(lowercase__ ,lowercase__ ,lowercase__ ,generator=lowercase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowercase__ ) __lowercase = scheduler.timesteps for i, timestep in enumerate(lowercase__ ): if i == len(lowercase__ ) - 1: __lowercase = -1 else: __lowercase = timesteps[i + 1] __lowercase = scheduler.previous_timestep(lowercase__ ) __lowercase = prev_t.item() self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowercase__ ,msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = [1_0_0, 8_7, 5_0, 1, 0] __lowercase = len(lowercase__ ) with self.assertRaises(lowercase__ ,msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowercase__ ,timesteps=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase__ ,msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' ,): scheduler.set_timesteps(timesteps=lowercase__ )
41
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ) -> Dict: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _UpperCamelCase ( __UpperCamelCase ) -> list[tuple[int, int]]: lowerCamelCase_ = 0 lowerCamelCase_ = len(__UpperCamelCase ) # No of vertices in graph lowerCamelCase_ = [0] * n lowerCamelCase_ = [False] * n def dfs(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = True lowerCamelCase_ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,id_ ) lowerCamelCase_ = min(low[at] ,low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCamelCase_ = min(low[at] ,low[to] ) lowerCamelCase_ = [] for i in range(__UpperCamelCase ): if not visited[i]: dfs(__UpperCamelCase ,-1 ,__UpperCamelCase ,id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
42
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
0
from collections import defaultdict class _a : def __init__( self: str , UpperCamelCase_: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowercase__ = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) ) ] lowercase__ = defaultdict(UpperCamelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowercase__ = (1 << len(UpperCamelCase_ )) - 1 def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] ) -> List[str]: """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowercase__ = self.count_ways_until(UpperCamelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. lowercase__ = total_ways_util return self.dp[mask][task_no] def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" for i in range(len(UpperCamelCase_ ) ): for j in task_performed[i]: self.task[j].append(UpperCamelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowerCAmelCase = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowerCAmelCase = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
43
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
0
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = None lowerCAmelCase_ = 1 lowerCAmelCase_ = None lowerCAmelCase_ = False lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase_ ( self : Any ): return self.__class__(**{k: copy.deepcopy(__A ) for k, v in self.__dict__.items()} )
44
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[Any] = """ClapFeatureExtractor""" _snake_case : int = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self :Optional[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[Any] ): super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self :List[Any] , lowerCamelCase__ :List[Any]=None , lowerCamelCase__ :Optional[int]=None , lowerCamelCase__ :Dict=None , **lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :List[str] = kwargs.pop("""sampling_rate""" , lowerCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: UpperCamelCase__ :Optional[Any] = self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if audios is not None: UpperCamelCase__ :str = self.feature_extractor( lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None and audios is not None: UpperCamelCase__ :Tuple = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__ ) , tensor_type=lowerCamelCase__ ) def __a ( self :Any , *lowerCamelCase__ :List[str] , **lowerCamelCase__ :Any ): return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :int , *lowerCamelCase__ :Any , **lowerCamelCase__ :Optional[int] ): return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def __a ( self :Tuple ): UpperCamelCase__ :List[str] = self.tokenizer.model_input_names UpperCamelCase__ :Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
45
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ = 50 # max width of layer names SCREAMING_SNAKE_CASE__ = 70 # max width of quantizer names def UpperCAmelCase__ ( lowerCamelCase_ : Dict ): __a : int = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=lowerCamelCase_ , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=lowerCamelCase_ , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=lowerCamelCase_ , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=lowerCamelCase_ , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=lowerCamelCase_ , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=lowerCamelCase_ , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def UpperCAmelCase__ ( lowerCamelCase_ : Dict ): if args.calibrator == "max": __a : str = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) __a : int = 'histogram' elif args.calibrator == "mse": __a : List[str] = 'histogram' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) __a : Optional[Any] = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCamelCase_ ) __a : Optional[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCamelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Dict=False ): logger.info('Configuring Model for Quantization' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCamelCase_ , ['embeddings'] , which='weight' , _disabled=lowerCamelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCamelCase_ , [''] , _disabled=lowerCamelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCamelCase_ , args.quant_disable_keyword , _disabled=lowerCamelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCamelCase_ , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=lowerCamelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCamelCase_ , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=lowerCamelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCamelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCamelCase_ , lowerCamelCase_ ) if args.clip_gelu: clip_gelu(lowerCamelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : str ): logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict ): logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): def fusea(lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] ): for mod in [qq, qk, qv]: if not hasattr(lowerCamelCase_ , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return __a : Any = qq._amax.detach().item() __a : Union[str, Any] = qk._amax.detach().item() __a : int = qv._amax.detach().item() __a : List[Any] = max(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) qq._amax.fill_(lowerCamelCase_ ) qk._amax.fill_(lowerCamelCase_ ) qv._amax.fill_(lowerCamelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str ): for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): __a : Dict = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCamelCase_ ) __a : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: __a : Optional[int] = mod.weight.shape[0] __a : List[str] = mod._weight_quantizer._amax.detach() __a : List[Any] = torch.ones(lowerCamelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def UpperCAmelCase__ ( lowerCamelCase_ : Tuple ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __a : Tuple = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __a : str = set(range(len(mod.weight.size() ) ) ) - axis_set __a : Union[str, Any] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCamelCase_ , keepdims=lowerCamelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) __a : Union[str, Any] = amax def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any]=2_5 , lowerCamelCase_ : Dict=1_8_0 , lowerCamelCase_ : int=None ): if ignore is None: __a : Any = [] elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): __a : int = [ignore] __a : Optional[int] = 0 for name, mod in model.named_modules(): if not hasattr(lowerCamelCase_ , 'weight' ): continue __a : List[str] = max(lowerCamelCase_ , len(lowerCamelCase_ ) ) for name, mod in model.named_modules(): __a : Optional[Any] = getattr(lowerCamelCase_ , '_input_quantizer' , lowerCamelCase_ ) __a : int = getattr(lowerCamelCase_ , '_weight_quantizer' , lowerCamelCase_ ) if not hasattr(lowerCamelCase_ , 'weight' ): continue if type(lowerCamelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCamelCase_ ) is str and s in name]: continue __a : Any = f'''Act:{input_q.extra_repr()}''' __a : str = f'''Wgt:{weight_q.extra_repr()}''' __a : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCamelCase_ ) <= line_width: logger.info(lowerCamelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def UpperCAmelCase__ ( lowerCamelCase_ : List[str] ): __a : Optional[int] = 0 for name, mod in model.named_modules(): if isinstance(lowerCamelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str ): __a : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCamelCase_ , lowerCamelCase_ ) setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def UpperCAmelCase__ ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any="both" , **lowerCamelCase_ : Any ): __a : Union[str, Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCamelCase_ , lowerCamelCase_ , '_input_quantizer' , lowerCamelCase_ , lowerCamelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCamelCase_ , lowerCamelCase_ , '_weight_quantizer' , lowerCamelCase_ , lowerCamelCase_ ) logger.info(lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , '_input_quantizer' ) or hasattr(lowerCamelCase_ , '_weight_quantizer' ): for n in names: if re.search(lowerCamelCase_ , lowerCamelCase_ ): set_quantizers(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) elif name.endswith('_quantizer' ): for n in names: if re.search(lowerCamelCase_ , lowerCamelCase_ ): __a : Dict = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) logger.info(lowerCamelCase_ )
47
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
0
'''simple docstring''' UpperCAmelCase__ : str = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} UpperCAmelCase__ : Any = ["a", "b", "c", "d", "e"] def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = start # add current to visited visited.append(UpperCamelCase_ ) lowerCAmelCase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCAmelCase__ = topological_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase_ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): for vertice in vertices: if vertice not in visited: lowerCAmelCase__ = topological_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase__ : Dict = topological_sort("a", [], []) print(sort)
48
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
0
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = np.full((len(__lowerCAmelCase ), sequence_length, 2) , __lowerCAmelCase ) else: lowerCamelCase__ = np.full((len(__lowerCAmelCase ), sequence_length) , __lowerCAmelCase ) for i, tensor in enumerate(__lowerCAmelCase ): if padding_side == "right": if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = tensor[:sequence_length] else: lowerCamelCase__ = tensor[:sequence_length] else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = tensor[:sequence_length] else: lowerCamelCase__ = tensor[:sequence_length] return out_tensor.tolist() def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = ord(__lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True lowerCamelCase__ = unicodedata.category(__lowerCAmelCase ) if cat.startswith("""P""" ): return True return False @dataclass class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = True _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = -100 _UpperCamelCase = "pt" def UpperCamelCase_ ( self ,_lowerCAmelCase ): import torch lowerCamelCase__ = """label""" if """label""" in features[0].keys() else """labels""" lowerCamelCase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowerCamelCase__ = self.tokenizer.pad( _lowerCAmelCase ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" if labels is None else None ,) if labels is None: return batch lowerCamelCase__ = torch.tensor(batch["""entity_ids"""] ).shape[1] lowerCamelCase__ = self.tokenizer.padding_side if padding_side == "right": lowerCamelCase__ = [ list(_lowerCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(_lowerCAmelCase )) for label in labels ] else: lowerCamelCase__ = [ [self.label_pad_token_id] * (sequence_length - len(_lowerCAmelCase )) + list(_lowerCAmelCase ) for label in labels ] lowerCamelCase__ = [feature["""ner_tags"""] for feature in features] lowerCamelCase__ = padding_tensor(_lowerCAmelCase ,-1 ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = [feature["""original_entity_spans"""] for feature in features] lowerCamelCase__ = padding_tensor(_lowerCAmelCase ,(-1, -1) ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = {k: torch.tensor(_lowerCAmelCase ,dtype=torch.intaa ) for k, v in batch.items()} return batch
50
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None ) -> Union[str, Any]: """simple docstring""" if subparsers is not None: UpperCAmelCase = subparsers.add_parser('''test''' ) else: UpperCAmelCase = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=SCREAMING_SNAKE_CASE_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) return parser def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: UpperCAmelCase = script_name else: UpperCAmelCase = f"--config_file={args.config_file} {script_name}" UpperCAmelCase = ['''accelerate-launch'''] + test_args.split() UpperCAmelCase = execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = test_command_parser() UpperCAmelCase = parser.parse_args() test_command(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
51
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
0
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) A = ['''model.decoder.embed_positions.weights'''] def __A ( a_ :int) -> Optional[int]: if "emb" in name: __a : Union[str, Any] = name.replace('''emb''' , '''model.decoder.embed_tokens''') if "transformer" in name: __a : Optional[Any] = name.replace('''transformer''' , '''model.decoder''') if "cross_attention" in name: __a : Tuple = name.replace('''cross_attention''' , '''encoder_attn''') if "linear1" in name: __a : Any = name.replace('''linear1''' , '''fc1''') if "linear2" in name: __a : Any = name.replace('''linear2''' , '''fc2''') if "norm1" in name: __a : Union[str, Any] = name.replace('''norm1''' , '''self_attn_layer_norm''') if "norm_cross" in name: __a : int = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''') if "norm2" in name: __a : str = name.replace('''norm2''' , '''final_layer_norm''') if "out_norm" in name: __a : Dict = name.replace('''out_norm''' , '''model.decoder.layer_norm''') if "linears" in name: __a : List[str] = name.replace('''linears''' , '''lm_heads''') if "condition_provider.conditioners.description.output_proj" in name: __a : str = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''') return name def __A ( a_ :OrderedDict , a_ :int) -> Tuple[Dict, Dict]: __a : Optional[int] = list(state_dict.keys()) __a : Any = {} for key in keys: __a : Any = state_dict.pop(a_) __a : List[Any] = rename_keys(a_) if "in_proj_weight" in key: # split fused qkv proj __a : List[str] = val[:hidden_size, :] __a : List[str] = val[hidden_size : 2 * hidden_size, :] __a : int = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __a : int = val else: __a : Dict = val return state_dict, enc_dec_proj_state_dict def __A ( a_ :str) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __a : Optional[Any] = 10_24 __a : Tuple = 24 __a : Union[str, Any] = 16 elif checkpoint == "medium": __a : int = 15_36 __a : List[str] = 48 __a : List[str] = 24 elif checkpoint == "large": __a : int = 20_48 __a : Tuple = 48 __a : Optional[Any] = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""") __a : Tuple = MusicgenDecoderConfig( hidden_size=a_ , ffn_dim=hidden_size * 4 , num_hidden_layers=a_ , num_attention_heads=a_ , ) return config @torch.no_grad() def __A ( a_ :Any , a_ :List[Any]=None , a_ :List[Any]=None , a_ :Optional[Any]="cpu") -> str: __a : Dict = MusicGen.get_pretrained(a_ , device=a_) __a : str = decoder_config_from_checkpoint(a_) __a : List[str] = fairseq_model.lm.state_dict() __a , __a : str = rename_state_dict( a_ , hidden_size=decoder_config.hidden_size) __a : Dict = TaEncoderModel.from_pretrained('''t5-base''') __a : Optional[Any] = EncodecModel.from_pretrained('''facebook/encodec_32khz''') __a : Any = MusicgenForCausalLM(a_).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __a , __a : Optional[Any] = decoder.load_state_dict(a_ , strict=a_) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''')) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(a_) if len(a_) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""") if len(a_) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""") # init the composite model __a : int = MusicgenForConditionalGeneration(text_encoder=a_ , audio_encoder=a_ , decoder=a_) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(a_) # check we can do a forward pass __a : Optional[int] = torch.arange(0 , 8 , dtype=torch.long).reshape(2 , -1) __a : Optional[int] = input_ids.reshape(2 * 4 , -1) with torch.no_grad(): __a : List[str] = model(input_ids=a_ , decoder_input_ids=a_).logits if logits.shape != (8, 1, 20_48): raise ValueError('''Incorrect shape for logits''') # now construct the processor __a : Optional[int] = AutoTokenizer.from_pretrained('''t5-base''') __a : Optional[int] = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''') __a : Optional[Any] = MusicgenProcessor(feature_extractor=a_ , tokenizer=a_) # set the appropriate bos/pad token ids __a : Any = 20_48 __a : Optional[int] = 20_48 # set other default generation config params __a : str = int(30 * audio_encoder.config.frame_rate) __a : Tuple = True __a : List[Any] = 3.0 if pytorch_dump_folder is not None: Path(a_).mkdir(exist_ok=a_) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""") model.save_pretrained(a_) processor.save_pretrained(a_) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""") model.push_to_hub(a_) processor.push_to_hub(a_) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
52
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _snake_case : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
0
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class A ( nn.Module ): def __init__( self: Dict , _lowerCAmelCase: int = 16 , _lowerCAmelCase: int = 88 , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 32 , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: str = "geglu" , _lowerCAmelCase: Optional[int] = None , ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.ModuleList( [ TransformeraDModel( num_attention_heads=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , in_channels=_lowerCAmelCase , num_layers=_lowerCAmelCase , dropout=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , cross_attention_dim=_lowerCAmelCase , attention_bias=_lowerCAmelCase , sample_size=_lowerCAmelCase , num_vector_embeds=_lowerCAmelCase , activation_fn=_lowerCAmelCase , num_embeds_ada_norm=_lowerCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase_ =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase_ =[77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase_ =[1, 0] def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: Optional[int]=None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: bool = True , ) -> Dict: '''simple docstring''' UpperCAmelCase_ =hidden_states UpperCAmelCase_ =[] UpperCAmelCase_ =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase_ =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase_ =self.transformer_index_for_condition[i] UpperCAmelCase_ =self.transformers[transformer_index]( _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , timestep=_lowerCAmelCase , cross_attention_kwargs=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCAmelCase_ =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase_ =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_lowerCAmelCase )
54
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def _a ( self ): UpperCamelCase_: Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'depth_multiplier' ) ) class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3 , _lowerCamelCase=3_2 , _lowerCamelCase=0.2_5 , _lowerCamelCase=8 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=3_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu6" , _lowerCamelCase=1_2_8_0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=None , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: List[str] = batch_size UpperCamelCase_: int = num_channels UpperCamelCase_: Union[str, Any] = image_size UpperCamelCase_: int = depth_multiplier UpperCamelCase_: Optional[int] = depth_divisible_by UpperCamelCase_: Optional[int] = min_depth UpperCamelCase_: List[Any] = expand_ratio UpperCamelCase_: List[Any] = tf_padding UpperCamelCase_: str = output_stride UpperCamelCase_: Any = first_layer_is_expansion UpperCamelCase_: Optional[int] = finegrained_output UpperCamelCase_: Optional[int] = hidden_act UpperCamelCase_: Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCamelCase_: Optional[int] = classifier_dropout_prob UpperCamelCase_: Optional[Any] = use_labels UpperCamelCase_: Optional[Any] = is_training UpperCamelCase_: Optional[Any] = num_labels UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: Union[str, Any] = scope def _a ( self ): UpperCamelCase_: Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: Optional[Any] = None UpperCamelCase_: str = None if self.use_labels: UpperCamelCase_: List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_: List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _a ( self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any = MobileNetVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[Any] = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = self.num_labels UpperCamelCase_: Dict = MobileNetVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = self.num_labels UpperCamelCase_: Union[str, Any] = MobileNetVaForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase_: Dict = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _a ( self ): UpperCamelCase_: Dict = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Any = config_and_inputs UpperCamelCase_: Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : List[str] =( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) a : Dict =( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) a : List[str] =False a : Tuple =False a : List[Any] =False a : List[str] =False def _a ( self ): UpperCamelCase_: Any = MobileNetVaModelTester(self ) UpperCamelCase_: Tuple = MobileNetVaConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def _a ( self ): pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def _a ( self ): pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Any = model_class(_lowerCamelCase ) UpperCamelCase_: List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: str = [*signature.parameters.keys()] UpperCamelCase_: Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_: Tuple = outputs.hidden_states UpperCamelCase_: Union[str, Any] = 1_6 self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @slow def _a ( self ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: int = MobileNetVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case () -> List[str]: UpperCamelCase_: int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def _a ( self ): UpperCamelCase_: Optional[Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_lowerCamelCase ) UpperCamelCase_: Any = self.default_image_processor UpperCamelCase_: Optional[int] = prepare_img() UpperCamelCase_: int = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: Tuple = model(**_lowerCamelCase ) # verify the logits UpperCamelCase_: Any = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_: Dict = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def _a ( self ): UpperCamelCase_: Optional[Any] = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase_: List[Any] = model.to(_lowerCamelCase ) UpperCamelCase_: int = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase_: List[Any] = prepare_img() UpperCamelCase_: Dict = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: Dict = model(**_lowerCamelCase ) UpperCamelCase_: Optional[Any] = outputs.logits # verify the logits UpperCamelCase_: Optional[int] = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCamelCase_: int = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
57
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
0
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __lowerCAmelCase : Dict = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase ) -> int: '''simple docstring''' super().__init__() snake_case_ : int = torchvision.models.resnetaaa(pretrained=_lowercase ) snake_case_ : Tuple = list(model.children() )[:-2] snake_case_ : str = nn.Sequential(*_lowercase ) snake_case_ : Union[str, Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' snake_case_ : List[str] = self.pool(self.model(_lowercase ) ) snake_case_ : Any = torch.flatten(_lowercase , start_dim=2 ) snake_case_ : str = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' snake_case_ : Any = [json.loads(_lowercase ) for l in open(_lowercase )] snake_case_ : List[str] = os.path.dirname(_lowercase ) snake_case_ : str = tokenizer snake_case_ : Dict = labels snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Any = max_seq_length snake_case_ : Union[str, Any] = transforms def __len__( self ) -> Union[str, Any]: '''simple docstring''' return len(self.data ) def __getitem__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=_lowercase ) ) snake_case_ , snake_case_ , snake_case_ : List[str] = sentence[0], sentence[1:-1], sentence[-1] snake_case_ : Any = sentence[: self.max_seq_length] snake_case_ : Dict = torch.zeros(self.n_classes ) snake_case_ : Dict = 1 snake_case_ : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) snake_case_ : str = self.transforms(_lowercase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Tuple = [len(row["""sentence"""] ) for row in batch] snake_case_ , snake_case_ : str = len(__UpperCamelCase ), max(__UpperCamelCase ) snake_case_ : Optional[int] = torch.zeros(__UpperCamelCase , __UpperCamelCase , dtype=torch.long ) snake_case_ : Any = torch.zeros(__UpperCamelCase , __UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ): snake_case_ : Optional[int] = input_row["""sentence"""] snake_case_ : Any = 1 snake_case_ : str = torch.stack([row["""image"""] for row in batch] ) snake_case_ : List[Any] = torch.stack([row["""label"""] for row in batch] ) snake_case_ : Dict = torch.stack([row["""image_start_token"""] for row in batch] ) snake_case_ : Optional[Any] = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __lowerCAmelCase ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __lowerCAmelCase ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
58
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
0
from __future__ import annotations import requests __A = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def lowerCAmelCase_ ( __a , __a = 1 , __a = "new" , __a = None ) -> dict: """simple docstring""" lowerCamelCase__: Optional[int] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__a ) - valid_terms ) ): lowerCamelCase__: int =F"""Invalid search term: {invalid_search_terms}""" raise ValueError(__a ) lowerCamelCase__: List[str] =requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError lowerCamelCase__: Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__a )} lowerCamelCase__: Dict ={} for id_ in range(__a ): lowerCamelCase__: Dict ={ item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
59
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
0
def lowerCamelCase_ ( _UpperCamelCase = 1_000_000 ) -> int: """simple docstring""" snake_case_ : Dict = 1 snake_case_ : Dict = 1 snake_case_ : List[str] = {1: 1} for inputa in range(2 , _UpperCamelCase ): snake_case_ : Dict = 0 snake_case_ : List[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: snake_case_ : Dict = (3 * number) + 1 counter += 1 if inputa not in counters: snake_case_ : Tuple = counter if counter > pre_counter: snake_case_ : int = inputa snake_case_ : Dict = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
60
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "mctct" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=8_065 , SCREAMING_SNAKE_CASE__ : Tuple=1_536 , SCREAMING_SNAKE_CASE__ : int=36 , SCREAMING_SNAKE_CASE__ : List[Any]=6_144 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=384 , SCREAMING_SNAKE_CASE__ : Optional[Any]=920 , SCREAMING_SNAKE_CASE__ : Optional[int]=1e-5 , SCREAMING_SNAKE_CASE__ : str=0.3 , SCREAMING_SNAKE_CASE__ : Optional[Any]="relu" , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : str=0.3 , SCREAMING_SNAKE_CASE__ : List[Any]=0.3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : Any=0.3 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : Tuple=(7,) , SCREAMING_SNAKE_CASE__ : List[str]=(3,) , SCREAMING_SNAKE_CASE__ : Union[str, Any]=80 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : str="sum" , SCREAMING_SNAKE_CASE__ : Dict=False , **SCREAMING_SNAKE_CASE__ : str , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = attention_head_dim lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = layerdrop lowerCAmelCase__ = hidden_act lowerCAmelCase__ = initializer_range lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = conv_glu_dim lowerCAmelCase__ = conv_dropout lowerCAmelCase__ = num_conv_layers lowerCAmelCase__ = input_feat_per_channel lowerCAmelCase__ = input_channels lowerCAmelCase__ = conv_channels lowerCAmelCase__ = ctc_loss_reduction lowerCAmelCase__ = ctc_zero_infinity # prevents config testing fail with exporting to json lowerCAmelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = list(SCREAMING_SNAKE_CASE__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ' f'`config.num_conv_layers = {self.num_conv_layers}`.' )
61
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _a ): lowerCAmelCase__ = 'vivit' def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = num_frames _lowerCamelCase : Optional[int] = tubelet_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = qkv_bias super().__init__(**__lowerCAmelCase )
46
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging snake_case = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = "https://pypi.org/pypi/diffusers/json" SCREAMING_SNAKE_CASE : List[str] = json.loads(request.urlopen(lowercase ).read() )["releases"].keys() return sorted(lowercase , key=lambda lowercase : version.Version(lowercase ) ) def lowerCamelCase__ ( ): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) SCREAMING_SNAKE_CASE : List[str] = Path(lowercase ) / "__init__.py" if not init_path.exists(): init_path.touch() def lowerCamelCase__ ( lowercase ): """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE : Optional[Any] = Path(lowercase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowercase , exist_ok=lowercase ) SCREAMING_SNAKE_CASE : Any = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def lowerCamelCase__ ( lowercase ): """simple docstring""" with open(lowercase , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE : Dict = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE : int = re.findall("^\s*import\s+\.(\S+)\s*$" , lowercase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , lowercase , flags=re.MULTILINE ) # Unique-ify return list(set(lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : List[str] = [module_file] SCREAMING_SNAKE_CASE : Dict = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE : Optional[Any] = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowercase ) ) SCREAMING_SNAKE_CASE : str = Path(lowercase ).parent SCREAMING_SNAKE_CASE : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE : List[str] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE : Dict = [F'''{f}.py''' for f in new_import_files] SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) == 0 all_relative_imports.extend(lowercase ) return all_relative_imports def lowerCamelCase__ ( lowercase ): """simple docstring""" with open(lowercase , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE : Optional[Any] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE : int = re.findall("^\s*import\s+(\S+)\s*$" , lowercase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , lowercase , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE : List[Any] = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE : Tuple = list(set(lowercase ) ) SCREAMING_SNAKE_CASE : Any = [] for imp in imports: try: importlib.import_module(lowercase ) except ImportError: missing_packages.append(lowercase ) if len(lowercase ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F'''{', '.join(lowercase )}. Run `pip install {' '.join(lowercase )}`''' ) return get_relative_imports(lowercase ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = module_path.replace(os.path.sep , "." ) SCREAMING_SNAKE_CASE : Optional[Any] = importlib.import_module(lowercase ) if class_name is None: return find_pipeline_class(lowercase ) return getattr(lowercase , lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE : Union[str, Any] = dict(inspect.getmembers(lowercase , inspect.isclass ) ) SCREAMING_SNAKE_CASE : Tuple = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowercase ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) SCREAMING_SNAKE_CASE : Optional[int] = cls return pipeline_class def lowerCamelCase__ ( lowercase , lowercase , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = False , ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = str(lowercase ) SCREAMING_SNAKE_CASE : Dict = os.path.join(lowercase , lowercase ) if os.path.isfile(lowercase ): SCREAMING_SNAKE_CASE : Any = module_file_or_url SCREAMING_SNAKE_CASE : Any = "local" elif pretrained_model_name_or_path.count("/" ) == 0: SCREAMING_SNAKE_CASE : int = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE : int = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE : str = latest_version if latest_version[1:] in available_versions else "main" logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: SCREAMING_SNAKE_CASE : Tuple = F'''v{revision}''' elif revision == "main": SCREAMING_SNAKE_CASE : Optional[Any] = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE : Optional[Any] = COMMUNITY_PIPELINES_URL.format(revision=lowercase , pipeline=lowercase ) try: SCREAMING_SNAKE_CASE : Optional[int] = cached_download( lowercase , cache_dir=lowercase , force_download=lowercase , proxies=lowercase , resume_download=lowercase , local_files_only=lowercase , use_auth_token=lowercase , ) SCREAMING_SNAKE_CASE : str = "git" SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE : Optional[Any] = hf_hub_download( lowercase , lowercase , cache_dir=lowercase , force_download=lowercase , proxies=lowercase , resume_download=lowercase , local_files_only=lowercase , use_auth_token=lowercase , ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE : Optional[int] = check_imports(lowercase ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE : str = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowercase ) SCREAMING_SNAKE_CASE : Any = Path(lowercase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowercase , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE : Dict = F'''{module_needed}.py''' shutil.copy(os.path.join(lowercase , lowercase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE : List[Any] = HfFolder.get_token() else: SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Any = model_info(lowercase , revision=lowercase , token=lowercase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE : str = submodule_path / commit_hash SCREAMING_SNAKE_CASE : Union[str, Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowercase ) if not (submodule_path / module_file).exists(): shutil.copy(lowercase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowercase , F'''{module_needed}.py''' , cache_dir=lowercase , force_download=lowercase , resume_download=lowercase , proxies=lowercase , use_auth_token=lowercase , revision=lowercase , local_files_only=lowercase , ) return os.path.join(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = False , **lowercase , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = get_cached_module_file( lowercase , lowercase , cache_dir=lowercase , force_download=lowercase , resume_download=lowercase , proxies=lowercase , use_auth_token=lowercase , revision=lowercase , local_files_only=lowercase , ) return get_class_in_module(lowercase , final_module.replace(".py" , "" ) )
62
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : List[Any] = AudioLDMPipeline a : Optional[Any] = TEXT_TO_AUDIO_PARAMS a : Dict = TEXT_TO_AUDIO_BATCH_PARAMS a : Optional[int] = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def UpperCAmelCase ( self : Any ) -> List[str]: torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__lowercase , ) __UpperCAmelCase : Optional[int] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) __UpperCAmelCase : Optional[int] = ClapTextModelWithProjection(__lowercase ) __UpperCAmelCase : str = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) __UpperCAmelCase : Dict = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__lowercase , ) __UpperCAmelCase : int = SpeechTaHifiGan(__lowercase ) __UpperCAmelCase : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def UpperCAmelCase ( self : Optional[int] , __lowercase : Any , __lowercase : str=0 ) -> List[str]: if str(__lowercase ).startswith("""mps""" ): __UpperCAmelCase : Dict = torch.manual_seed(__lowercase ) else: __UpperCAmelCase : Tuple = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __UpperCAmelCase : Tuple = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : List[Any] = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Tuple = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : List[Any] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Union[str, Any] = audioldm_pipe(**__lowercase ) __UpperCAmelCase : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 256 __UpperCAmelCase : str = audio[:10] __UpperCAmelCase : List[Any] = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : Tuple ) -> Optional[int]: __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Any = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Tuple = audioldm_pipe.to(__lowercase ) __UpperCAmelCase : str = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Dict = 3 * [inputs["""prompt"""]] # forward __UpperCAmelCase : Union[str, Any] = audioldm_pipe(**__lowercase ) __UpperCAmelCase : int = output.audios[0] __UpperCAmelCase : List[str] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Any = 3 * [inputs.pop("""prompt""" )] __UpperCAmelCase : Tuple = audioldm_pipe.tokenizer( __lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowercase , return_tensors="""pt""" , ) __UpperCAmelCase : Optional[Any] = text_inputs["""input_ids"""].to(__lowercase ) __UpperCAmelCase : int = audioldm_pipe.text_encoder( __lowercase , ) __UpperCAmelCase : Dict = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __UpperCAmelCase : Tuple = F.normalize(__lowercase , dim=-1 ) __UpperCAmelCase : Tuple = prompt_embeds # forward __UpperCAmelCase : Dict = audioldm_pipe(**__lowercase ) __UpperCAmelCase : str = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def UpperCAmelCase ( self : Union[str, Any] ) -> str: __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Any = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Dict = audioldm_pipe.to(__lowercase ) __UpperCAmelCase : int = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Optional[Any] = 3 * ["""this is a negative prompt"""] __UpperCAmelCase : Optional[Any] = negative_prompt __UpperCAmelCase : Tuple = 3 * [inputs["""prompt"""]] # forward __UpperCAmelCase : int = audioldm_pipe(**__lowercase ) __UpperCAmelCase : Any = output.audios[0] __UpperCAmelCase : List[Any] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Tuple = 3 * [inputs.pop("""prompt""" )] __UpperCAmelCase : List[Any] = [] for p in [prompt, negative_prompt]: __UpperCAmelCase : List[str] = audioldm_pipe.tokenizer( __lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowercase , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = text_inputs["""input_ids"""].to(__lowercase ) __UpperCAmelCase : Optional[Any] = audioldm_pipe.text_encoder( __lowercase , ) __UpperCAmelCase : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __UpperCAmelCase : Any = F.normalize(__lowercase , dim=-1 ) embeds.append(__lowercase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = embeds # forward __UpperCAmelCase : str = audioldm_pipe(**__lowercase ) __UpperCAmelCase : str = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def UpperCAmelCase ( self : Dict ) -> Tuple: __UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[Any] = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=__lowercase ) __UpperCAmelCase : Tuple = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : str = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Optional[Any] = """egg cracking""" __UpperCAmelCase : Optional[Any] = audioldm_pipe(**__lowercase , negative_prompt=__lowercase ) __UpperCAmelCase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 256 __UpperCAmelCase : Union[str, Any] = audio[:10] __UpperCAmelCase : int = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : str ) -> Any: __UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[Any] = self.get_dummy_components() __UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=__lowercase ) __UpperCAmelCase : Tuple = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Tuple = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : str = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) __UpperCAmelCase : Union[str, Any] = audioldm_pipe(__lowercase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : int = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __UpperCAmelCase : int = 2 __UpperCAmelCase : str = audioldm_pipe(__lowercase , num_inference_steps=2 , num_waveforms_per_prompt=__lowercase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __UpperCAmelCase : Any = 2 __UpperCAmelCase : Tuple = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__lowercase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def UpperCAmelCase ( self : List[str] ) -> str: __UpperCAmelCase : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : int = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Dict = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : List[str] = audioldm_pipe.vocoder.config.sampling_rate __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.016 , **__lowercase ) __UpperCAmelCase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) / vocoder_sampling_rate == 0.016 __UpperCAmelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **__lowercase ) __UpperCAmelCase : Dict = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) / vocoder_sampling_rate == 0.032 def UpperCAmelCase ( self : Any ) -> List[Any]: __UpperCAmelCase : List[Any] = self.get_dummy_components() __UpperCAmelCase : Any = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Dict = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : List[str] = ["""hey"""] __UpperCAmelCase : Dict = audioldm_pipe(__lowercase , num_inference_steps=1 ) __UpperCAmelCase : Tuple = output.audios.shape assert audio_shape == (1, 256) __UpperCAmelCase : Optional[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __UpperCAmelCase : List[Any] = SpeechTaHifiGan(__lowercase ).to(__lowercase ) __UpperCAmelCase : Dict = audioldm_pipe(__lowercase , num_inference_steps=1 ) __UpperCAmelCase : int = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def UpperCAmelCase ( self : Dict ) -> Optional[int]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowercase ) def UpperCAmelCase ( self : str ) -> Any: self._test_inference_batch_single_identical(test_mean_pixel_difference=__lowercase ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowercase ) @slow class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : Dict ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any] , __lowercase : Optional[int] , __lowercase : int="cpu" , __lowercase : List[Any]=torch.floataa , __lowercase : Tuple=0 ) -> Dict: __UpperCAmelCase : int = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __UpperCAmelCase : Dict = np.random.RandomState(__lowercase ).standard_normal((1, 8, 128, 16) ) __UpperCAmelCase : Optional[Any] = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __UpperCAmelCase : int = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def UpperCAmelCase ( self : int ) -> List[str]: __UpperCAmelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __UpperCAmelCase : Union[str, Any] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Tuple = self.get_inputs(__lowercase ) __UpperCAmelCase : str = 25 __UpperCAmelCase : Optional[int] = audioldm_pipe(**__lowercase ).audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 81920 __UpperCAmelCase : Dict = audio[77230:77240] __UpperCAmelCase : Optional[Any] = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) __UpperCAmelCase : Optional[Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def UpperCAmelCase ( self : str ) -> Tuple: __UpperCAmelCase : Optional[Any] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __UpperCAmelCase : int = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : List[Any] = self.get_inputs(__lowercase ) __UpperCAmelCase : Optional[int] = audioldm_pipe(**__lowercase ).audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 81920 __UpperCAmelCase : int = audio[27780:27790] __UpperCAmelCase : Optional[Any] = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) __UpperCAmelCase : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
63
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
0
import os import pytest from attr import dataclass lowercase_ : Optional[Any] = 'us-east-1' # defaults region @dataclass class _lowerCamelCase : __a = 42 __a = "arn:aws:iam::558105141721:role/sagemaker_execution_role" __a = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } __a = {**hyperparameters, "max_steps": 1000} @property def UpperCamelCase_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCamelCase_ ( self ) -> str: return f'{self.framework}-transfromers-test' @property def UpperCamelCase_ ( self ) -> str: return f'./tests/sagemaker/scripts/{self.framework}' @property def UpperCamelCase_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def A__ ( snake_case_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__: Dict= SageMakerTestEnvironment(framework=request.cls.framework )
64
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
0
"""simple docstring""" __UpperCAmelCase = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on __UpperCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = """Morse code here!""" print(__UpperCamelCase ) UpperCAmelCase__ : List[str] = encrypt(__UpperCamelCase ) print(__UpperCamelCase ) UpperCAmelCase__ : int = decrypt(__UpperCamelCase ) print(__UpperCamelCase ) if __name__ == "__main__": main()
65
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCamelCase = ["bert-base-uncased", "bert-base-cased"] UpperCamelCase = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class lowerCAmelCase_ ( tf.keras.Model ): def __init__( self , _lowerCAmelCase ): super().__init__() _lowercase : Optional[int] = tokenizer _lowercase : Dict = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowercase : Any = TFAutoModel.from_config(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : int = self.tokenizer(_lowerCAmelCase ) _lowercase : int = self.bert(**_lowerCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): super().setUp() _lowercase : int = [ BertTokenizer.from_pretrained(_lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _lowercase : Optional[int] = [TFBertTokenizer.from_pretrained(_lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_lowerCAmelCase , use_fast_bert_tokenizer=_lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _lowercase : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _lowercase : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __a ( self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): _lowercase : str = tokenizer(_lowerCAmelCase , return_tensors='tf' , padding='longest' ) _lowercase : int = tf_tokenizer(_lowerCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def __a ( self ): for tf_tokenizer in self.tf_tokenizers: _lowercase : Union[str, Any] = tf_tokenizer(self.paired_sentences ) _lowercase : Any = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def __a ( self ): for tf_tokenizer in self.tf_tokenizers: _lowercase : Dict = tf.function(_lowerCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): _lowercase : List[str] = tf.constant(_lowerCAmelCase ) _lowercase : Union[str, Any] = compiled_tokenizer(_lowerCAmelCase ) _lowercase : Any = tf_tokenizer(_lowerCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __a ( self ): for tf_tokenizer in self.tf_tokenizers: _lowercase : Dict = ModelToSave(tokenizer=_lowerCAmelCase ) _lowercase : Any = tf.convert_to_tensor(self.test_sentences ) _lowercase : List[Any] = model(_lowerCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowercase : int = Path(_lowerCAmelCase ) / 'saved.model' model.save(_lowerCAmelCase ) _lowercase : Any = tf.keras.models.load_model(_lowerCAmelCase ) _lowercase : List[Any] = loaded_model(_lowerCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
66
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case = logging.get_logger(__name__) snake_case = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Optional[int]: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowercase = model_type_to_module_name(snake_case__ ) _lowercase = importlib.import_module(F""".{module_name}""" , 'transformers.models' ) try: return getattr(snake_case__ , snake_case__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case__ , '__name__' , snake_case__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowercase = importlib.import_module('transformers' ) if hasattr(snake_case__ , snake_case__ ): return getattr(snake_case__ , snake_case__ ) return None def SCREAMING_SNAKE_CASE__ ( snake_case__ :Union[str, os.PathLike] , snake_case__ :Optional[Union[str, os.PathLike]] = None , snake_case__ :bool = False , snake_case__ :bool = False , snake_case__ :Optional[Dict[str, str]] = None , snake_case__ :Optional[Union[bool, str]] = None , snake_case__ :Optional[str] = None , snake_case__ :bool = False , **snake_case__ :Any , ) -> Tuple: _lowercase = get_file_from_repo( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(snake_case__ , encoding='utf-8' ) as reader: return json.load(snake_case__ ) class A_ : """simple docstring""" def __init__( self : Any ) -> Tuple: raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__A ) def __UpperCAmelCase ( cls : str ,__A : Union[str, Any] ,**__A : List[Any] ) -> List[Any]: _lowercase = kwargs.pop('config' ,__A ) _lowercase = kwargs.pop('trust_remote_code' ,__A ) _lowercase = True _lowercase , _lowercase = ImageProcessingMixin.get_image_processor_dict(__A ,**__A ) _lowercase = config_dict.get('image_processor_type' ,__A ) _lowercase = None if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ): _lowercase = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowercase = config_dict.pop('feature_extractor_type' ,__A ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _lowercase = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ): _lowercase = config_dict['auto_map']['AutoFeatureExtractor'] _lowercase = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__A ,__A ): _lowercase = AutoConfig.from_pretrained(__A ,**__A ) # It could be in `config.image_processor_type`` _lowercase = getattr(__A ,'image_processor_type' ,__A ) if hasattr(__A ,'auto_map' ) and "AutoImageProcessor" in config.auto_map: _lowercase = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _lowercase = image_processor_class_from_name(__A ) _lowercase = image_processor_auto_map is not None _lowercase = image_processor_class is not None or type(__A ) in IMAGE_PROCESSOR_MAPPING _lowercase = resolve_trust_remote_code( __A ,__A ,__A ,__A ) if has_remote_code and trust_remote_code: _lowercase = get_class_from_dynamic_module( __A ,__A ,**__A ) _lowercase = kwargs.pop('code_revision' ,__A ) if os.path.isdir(__A ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__A ,**__A ) elif image_processor_class is not None: return image_processor_class.from_dict(__A ,**__A ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__A ) in IMAGE_PROCESSOR_MAPPING: _lowercase = IMAGE_PROCESSOR_MAPPING[type(__A )] return image_processor_class.from_dict(__A ,**__A ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __UpperCAmelCase ( __A : Any ,__A : int ) -> Union[str, Any]: IMAGE_PROCESSOR_MAPPING.register(__A ,__A )
67
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowercase__ ( A_: int ) -> Optional[Any]: """simple docstring""" if "resnet-50" in model_name: __UpperCAmelCase =ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: __UpperCAmelCase =ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) __UpperCAmelCase =DetrConfig(use_timm_backbone=A_ , backbone_config=A_ ) # set label attributes __UpperCAmelCase ="""panoptic""" in model_name if is_panoptic: __UpperCAmelCase =250 else: __UpperCAmelCase =91 __UpperCAmelCase ="""huggingface/label-files""" __UpperCAmelCase ="""coco-detection-id2label.json""" __UpperCAmelCase =json.load(open(hf_hub_download(A_ , A_ , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase ={int(A_ ): v for k, v in idalabel.items()} __UpperCAmelCase =idalabel __UpperCAmelCase ={v: k for k, v in idalabel.items()} return config, is_panoptic def lowercase__ ( A_: int ) -> Tuple: """simple docstring""" __UpperCAmelCase =[] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def lowercase__ ( A_: Dict , A_: str , A_: str ) -> Tuple: """simple docstring""" __UpperCAmelCase =state_dict.pop(A_ ) __UpperCAmelCase =val def lowercase__ ( A_: Union[str, Any] , A_: List[str]=False ) -> Optional[int]: """simple docstring""" __UpperCAmelCase ="""""" if is_panoptic: __UpperCAmelCase ="""detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCAmelCase =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __UpperCAmelCase =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase =in_proj_weight[:256, :] __UpperCAmelCase =in_proj_bias[:256] __UpperCAmelCase =in_proj_weight[256:512, :] __UpperCAmelCase =in_proj_bias[256:512] __UpperCAmelCase =in_proj_weight[-256:, :] __UpperCAmelCase =in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase =state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __UpperCAmelCase =state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase =in_proj_weight[:256, :] __UpperCAmelCase =in_proj_bias[:256] __UpperCAmelCase =in_proj_weight[256:512, :] __UpperCAmelCase =in_proj_bias[256:512] __UpperCAmelCase =in_proj_weight[-256:, :] __UpperCAmelCase =in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __UpperCAmelCase =state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) __UpperCAmelCase =state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __UpperCAmelCase =in_proj_weight_cross_attn[:256, :] __UpperCAmelCase =in_proj_bias_cross_attn[:256] __UpperCAmelCase =in_proj_weight_cross_attn[256:512, :] __UpperCAmelCase =in_proj_bias_cross_attn[256:512] __UpperCAmelCase =in_proj_weight_cross_attn[-256:, :] __UpperCAmelCase =in_proj_bias_cross_attn[-256:] def lowercase__ ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase =Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def lowercase__ ( A_: List[str] , A_: Dict=None , A_: Optional[int]=False ) -> int: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase =get_detr_config(A_ ) # load original model from torch hub __UpperCAmelCase ={ """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F'''Converting model {model_name}...''' ) __UpperCAmelCase =torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=A_ ).eval() __UpperCAmelCase =detr.state_dict() # rename keys for src, dest in create_rename_keys(A_ ): if is_panoptic: __UpperCAmelCase ="""detr.""" + src rename_key(A_ , A_ , A_ ) # query, key and value matrices need special treatment read_in_q_k_v(A_ , is_panoptic=A_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCAmelCase ="""detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): __UpperCAmelCase =state_dict.pop(A_ ) __UpperCAmelCase =val elif "class_labels_classifier" in key or "bbox_predictor" in key: __UpperCAmelCase =state_dict.pop(A_ ) __UpperCAmelCase =val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: __UpperCAmelCase =state_dict.pop(A_ ) __UpperCAmelCase =val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): __UpperCAmelCase =state_dict.pop(A_ ) __UpperCAmelCase =val # finally, create HuggingFace model and load state dict __UpperCAmelCase =DetrForSegmentation(A_ ) if is_panoptic else DetrForObjectDetection(A_ ) model.load_state_dict(A_ ) model.eval() # verify our conversion on an image __UpperCAmelCase ="""coco_panoptic""" if is_panoptic else """coco_detection""" __UpperCAmelCase =DetrImageProcessor(format=A_ ) __UpperCAmelCase =processor(images=prepare_img() , return_tensors="""pt""" ) __UpperCAmelCase =encoding["""pixel_values"""] __UpperCAmelCase =detr(A_ ) __UpperCAmelCase =model(A_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(A_ ).mkdir(exist_ok=A_ ) model.save_pretrained(A_ ) processor.save_pretrained(A_ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") __A = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
68
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
0
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 a : Optional[Any] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') a : Optional[Any] = get_tests_dir('''fixtures/vocab.json''') a : Optional[int] = get_tests_dir('''fixtures''') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def A ( self : Dict ): """simple docstring""" __snake_case = 0 def A ( self : Optional[int] ): """simple docstring""" __snake_case = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(a_ , a_ ) def A ( self : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = WavaVecaConfig() __snake_case = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(a_ ) processor.save_pretrained(a_ ) __snake_case = AutoProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(a_ , os.path.join(a_ , a_ ) ) copyfile(a_ , os.path.join(a_ , "vocab.json" ) ) __snake_case = AutoProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = WavaVecaFeatureExtractor() __snake_case = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) __snake_case = WavaVecaProcessor(a_ , a_ ) # save in new folder processor.save_pretrained(a_ ) # drop `processor_class` in tokenizer with open(os.path.join(a_ , a_ ) , "r" ) as f: __snake_case = json.load(a_ ) config_dict.pop("processor_class" ) with open(os.path.join(a_ , a_ ) , "w" ) as f: f.write(json.dumps(a_ ) ) __snake_case = AutoProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = WavaVecaFeatureExtractor() __snake_case = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) __snake_case = WavaVecaProcessor(a_ , a_ ) # save in new folder processor.save_pretrained(a_ ) # drop `processor_class` in feature extractor with open(os.path.join(a_ , a_ ) , "r" ) as f: __snake_case = json.load(a_ ) config_dict.pop("processor_class" ) with open(os.path.join(a_ , a_ ) , "w" ) as f: f.write(json.dumps(a_ ) ) __snake_case = AutoProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(a_ ) # copy relevant files copyfile(a_ , os.path.join(a_ , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(a_ , a_ ) , "w" ) as f: f.write("{}" ) __snake_case = AutoProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : List[Any] ): """simple docstring""" with self.assertRaises(a_ ): __snake_case = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a_ ): __snake_case = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a_ ) __snake_case = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=a_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) __snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) __snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version __snake_case = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a_ , use_fast=a_ ) __snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def A ( self : List[str] ): """simple docstring""" try: AutoConfig.register("custom" , a_ ) AutoFeatureExtractor.register(a_ , a_ ) AutoTokenizer.register(a_ , slow_tokenizer_class=a_ ) AutoProcessor.register(a_ , a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): AutoProcessor.register(a_ , a_ ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case = CustomFeatureExtractor.from_pretrained(a_ ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __snake_case = CustomTokenizer(a_ ) __snake_case = CustomProcessor(a_ , a_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(a_ ) __snake_case = AutoProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A ( self : Union[str, Any] ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = False class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = False class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """AutoFeatureExtractor""" __SCREAMING_SNAKE_CASE = """AutoTokenizer""" __SCREAMING_SNAKE_CASE = False try: AutoConfig.register("custom" , a_ ) AutoFeatureExtractor.register(a_ , a_ ) AutoTokenizer.register(a_ , slow_tokenizer_class=a_ ) AutoProcessor.register(a_ , a_ ) # If remote code is not set, the default is to use local classes. __snake_case = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __snake_case = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a_ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __snake_case = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a_ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def A ( self : str ): """simple docstring""" __snake_case = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def A ( cls : Optional[Any] ): """simple docstring""" __snake_case = TOKEN HfFolder.save_token(a_ ) @classmethod def A ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def A ( self : List[str] ): """simple docstring""" __snake_case = WavaVecaProcessor.from_pretrained(a_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(a_ , "test-processor" ) , push_to_hub=a_ , use_auth_token=self._token ) __snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(a_ , getattr(new_processor.feature_extractor , a_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A ( self : Tuple ): """simple docstring""" __snake_case = WavaVecaProcessor.from_pretrained(a_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(a_ , "test-processor-org" ) , push_to_hub=a_ , use_auth_token=self._token , organization="valid_org" , ) __snake_case = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(a_ , getattr(new_processor.feature_extractor , a_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A ( self : Any ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __snake_case = CustomFeatureExtractor.from_pretrained(a_ ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __snake_case = CustomTokenizer(a_ ) __snake_case = CustomProcessor(a_ , a_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) __snake_case = Repository(a_ , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(a_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(a_ , "tokenizer_config.json" ) ) as f: __snake_case = json.load(a_ ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(a_ , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(a_ , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(a_ , "custom_processing.py" ) ) ) repo.push_to_hub() __snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
69
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = str(lowercase ) return len(lowercase ) == 9 and set(lowercase ) == set('123456789' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' for base_num in range(99_99 , 49_99 , -1 ): lowerCamelCase_ = 10_00_02 * base_num if is_9_pandigital(lowercase ): return candidate for base_num in range(3_33 , 99 , -1 ): lowerCamelCase_ = 1_00_20_03 * base_num if is_9_pandigital(lowercase ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
70
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowerCamelCase = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" inspect_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = path + ".py" assert script_name in os.listdir(_SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def a__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" inspect_metric(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = path + ".py" assert script_name in os.listdir(_SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict ) -> str: """simple docstring""" UpperCAmelCase_ : int = get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" with pytest.raises(_SCREAMING_SNAKE_CASE ): get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = get_dataset_config_names(_SCREAMING_SNAKE_CASE ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" UpperCAmelCase_ : Any = get_dataset_infos(_SCREAMING_SNAKE_CASE ) assert list(infos.keys() ) == expected_configs UpperCAmelCase_ : Optional[Any] = expected_configs[0] assert expected_config in infos UpperCAmelCase_ : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[int] = get_dataset_infos(_SCREAMING_SNAKE_CASE ) assert expected_config in infos UpperCAmelCase_ : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" with pytest.raises(_SCREAMING_SNAKE_CASE ): get_dataset_split_names(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE )
71
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __magic_name__ ( __SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def _A( snake_case_ ): raise NotImplementedError() @abstractmethod def _A( self ): raise NotImplementedError()
72
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = ['a', 'b', 'c'] # Defaults to last layer if both are None SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(a , a , a) self.assertEqual(a , ['c']) self.assertEqual(a , [2]) # Out indices set to match out features SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(['a', 'c'] , a , a) self.assertEqual(a , ['a', 'c']) self.assertEqual(a , [0, 2]) # Out features set to match out indices SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(a , [0, 2] , a) self.assertEqual(a , ['a', 'c']) self.assertEqual(a , [0, 2]) # Out features selected from negative indices SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(a , [-3, -1] , a) self.assertEqual(a , ['a', 'c']) self.assertEqual(a , [-3, -1]) def SCREAMING_SNAKE_CASE__ ( self) -> int: # Stage names must be set with self.assertRaises(a): verify_out_features_out_indices(['a', 'b'] , (0, 1) , a) # Out features must be a list with self.assertRaises(a): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b']) # Out features must be a subset of stage names with self.assertRaises(a): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a']) # Out indices must be a list or tuple with self.assertRaises(a): verify_out_features_out_indices(a , 0 , ['a', 'b']) # Out indices must be a subset of stage names with self.assertRaises(a): verify_out_features_out_indices(a , (0, 1) , ['a']) # Out features and out indices must be the same length with self.assertRaises(a): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c']) # Out features should match out indices with self.assertRaises(a): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c']) # Out features and out indices should be in order with self.assertRaises(a): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b']) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd']) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = BackboneMixin() SCREAMING_SNAKE_CASE = ['a', 'b', 'c'] SCREAMING_SNAKE_CASE = ['a', 'c'] SCREAMING_SNAKE_CASE = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c']) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly SCREAMING_SNAKE_CASE = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b']) self.assertEqual(backbone.out_indices , [0, 1]) SCREAMING_SNAKE_CASE = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c']) self.assertEqual(backbone.out_indices , [-3, -1])
73
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
0
def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [] if len(snake_case ) == 1: return [nums.copy()] for _ in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE : Optional[int] = nums.pop(0 ) __SCREAMING_SNAKE_CASE : int = permute(snake_case ) for perm in permutations: perm.append(snake_case ) result.extend(snake_case ) nums.append(snake_case ) return result def a__ ( snake_case ): """simple docstring""" def backtrack(snake_case ): if start == len(snake_case ) - 1: output.append(nums[:] ) else: for i in range(snake_case , len(snake_case ) ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = nums[i], nums[start] backtrack(start + 1 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = nums[i], nums[start] # backtrack __SCREAMING_SNAKE_CASE : Optional[Any] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowercase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
74
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = ['pixel_values'] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_A : int , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : Dict = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase__ : int = get_size_dict(_A , default_to_square=_A ) UpperCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase__ : List[str] = get_size_dict(_A , param_name='''crop_size''' ) UpperCAmelCase__ : str = do_resize UpperCAmelCase__ : List[Any] = size UpperCAmelCase__ : int = resample UpperCAmelCase__ : int = do_center_crop UpperCAmelCase__ : List[str] = crop_size UpperCAmelCase__ : Union[str, Any] = do_rescale UpperCAmelCase__ : Optional[int] = rescale_factor UpperCAmelCase__ : List[Any] = do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase__ : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase_ ( self : str , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: UpperCAmelCase__ : Tuple = int((256 / 224) * size['''shortest_edge'''] ) UpperCAmelCase__ : Tuple = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) UpperCAmelCase__ : Dict = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( _A , size=(size_dict['''height'''], size_dict['''width''']) , resample=_A , data_format=_A , **_A ) def lowercase_ ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def lowercase_ ( self : List[str] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Dict , ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def lowercase_ ( self : Dict , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ): '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def lowercase_ ( self : Optional[Any] , _A : ImageInput , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = None , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[TensorType] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): '''simple docstring''' UpperCAmelCase__ : str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : Optional[int] = resample if resample is not None else self.resample UpperCAmelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : List[str] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : Tuple = size if size is not None else self.size UpperCAmelCase__ : int = get_size_dict(_A , default_to_square=_A ) UpperCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : int = get_size_dict(_A , param_name='''crop_size''' ) UpperCAmelCase__ : Union[str, Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase__ : int = [to_numpy_array(_A ) for image in images] if do_resize: UpperCAmelCase__ : str = [self.resize(_A , _A , _A ) for image in images] if do_center_crop: UpperCAmelCase__ : Tuple = [self.center_crop(_A , _A ) for image in images] if do_rescale: UpperCAmelCase__ : Optional[int] = [self.rescale(_A , _A ) for image in images] if do_normalize: UpperCAmelCase__ : Any = [self.normalize(_A , _A , _A ) for image in images] UpperCAmelCase__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] UpperCAmelCase__ : Dict = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
75
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a_ = False class UpperCAmelCase_ ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> int: __lowercase : Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : Optional[int] = '''A painting of a squirrel eating a burger ''' __lowercase : Optional[int] = torch.manual_seed(0 ) __lowercase : Any = pipe( prompt=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase_ ) __lowercase : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : Union[str, Any] = generator.manual_seed(0 ) __lowercase : List[Any] = pipe( prompt=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : str = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : str = '''A painting of a squirrel eating a burger ''' __lowercase : Any = torch.manual_seed(0 ) __lowercase : str = pipe( prompt=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images __lowercase : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowercase : Union[str, Any] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
76
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available A = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
77
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Optional[Any] ) -> int: '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(snake_case_ , n - 1 , snake_case_ ) * a) % mod else: UpperCAmelCase_ = binary_exponentiation(snake_case_ , n / 2 , snake_case_ ) return (b * b) % mod # a prime number SCREAMING_SNAKE_CASE_: Optional[int] =7_01 SCREAMING_SNAKE_CASE_: Any =10_00_00_00_00 SCREAMING_SNAKE_CASE_: Optional[Any] =10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
78
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=64 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : Optional[int] = seq_length UpperCAmelCase__ : str = is_training UpperCAmelCase__ : int = use_input_mask UpperCAmelCase__ : List[str] = use_token_type_ids UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : Tuple = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Tuple = type_sequence_label_size UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : int = num_choices UpperCAmelCase__ : Optional[Any] = scope UpperCAmelCase__ : Tuple = vocab_size - 1 def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Tuple = None if self.use_input_mask: UpperCAmelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : int = None if self.use_labels: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Any = self.get_config() return config, input_ids, input_mask, token_labels def __UpperCAmelCase ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ : Union[str, Any] = True return config, input_ids, input_mask, token_labels def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : List[str] = GPTNeoXModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) UpperCAmelCase__ : Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Dict = GPTNeoXModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : List[str] = GPTNeoXForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : Tuple = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : int = self.num_labels UpperCAmelCase__ : Tuple = GPTNeoXForQuestionAnswering(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : Tuple = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : List[str] = self.num_labels UpperCAmelCase__ : Optional[int] = GPTNeoXForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Any = self.num_labels UpperCAmelCase__ : Optional[Any] = GPTNeoXForTokenClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ : Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Any = GPTNeoXForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass UpperCAmelCase__ : Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase__ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase__ : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) UpperCAmelCase__ : str = output_from_no_past["""hidden_states"""][0] UpperCAmelCase__ : List[Any] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["""hidden_states"""][0] # select random slice UpperCAmelCase__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ : int = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase__ : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs UpperCAmelCase__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () __lowerCamelCase = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __UpperCAmelCase ( self ): UpperCAmelCase__ : str = GPTNeoXModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=64 , num_attention_heads=8 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self ): # This regression test was failing with PyTorch < 1.3 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ : int = None self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def __UpperCAmelCase ( self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : List[str] = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ : Optional[Any] = GPTNeoXModel(_lowerCAmelCase ) original_model.to(_lowerCAmelCase ) original_model.eval() UpperCAmelCase__ : List[str] = original_model(_lowerCAmelCase ).last_hidden_state UpperCAmelCase__ : Union[str, Any] = original_model(_lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ : Any = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase__ : int = GPTNeoXModel(_lowerCAmelCase ) scaled_model.to(_lowerCAmelCase ) scaled_model.eval() UpperCAmelCase__ : List[Any] = scaled_model(_lowerCAmelCase ).last_hidden_state UpperCAmelCase__ : Optional[Any] = scaled_model(_lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCAmelCase__ : Optional[int] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_lowerCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase__ : List[Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCAmelCase__ : str = model.generate(**_lowerCAmelCase , do_sample=_lowerCAmelCase , max_new_tokens=20 ) UpperCAmelCase__ : Tuple = tokenizer.batch_decode(_lowerCAmelCase )[0] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
79
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __UpperCamelCase : Dict = logging.get_logger(__name__) class __UpperCamelCase : def __init__( self : List[str] , _lowerCAmelCase : str = None , _lowerCAmelCase : uuid.UUID = None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Optional[Any]=None ) -> List[str]: """simple docstring""" if not conversation_id: __lowercase = uuid.uuida() if past_user_inputs is None: __lowercase = [] if generated_responses is None: __lowercase = [] __lowercase = conversation_id __lowercase = past_user_inputs __lowercase = generated_responses __lowercase = text def __eq__( self : List[str] , _lowerCAmelCase : str ) -> List[str]: """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _a ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> Tuple: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) __lowercase = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: __lowercase = text def _a ( self : Tuple ) -> str: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase = None def _a ( self : Dict , _lowerCAmelCase : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Dict ) -> Any: """simple docstring""" __lowercase = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): __lowercase = """user""" if is_user else """bot""" output += F'{name} >> {text} \n' return output @add_end_docstrings( _lowerCAmelCase , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : List[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) if self.tokenizer.pad_token_id is None: __lowercase = self.tokenizer.eos_token def _a ( self : Tuple , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Dict ) -> str: """simple docstring""" __lowercase = {} __lowercase = {} __lowercase = {} if min_length_for_response is not None: __lowercase = min_length_for_response if minimum_tokens is not None: __lowercase = minimum_tokens if "max_length" in generate_kwargs: __lowercase = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowerCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , _lowerCAmelCase : Union[Conversation, List[Conversation]] , _lowerCAmelCase : str=0 , **_lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" __lowercase = super().__call__(_lowerCAmelCase , num_workers=_lowerCAmelCase , **_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1: return outputs[0] return outputs def _a ( self : List[str] , _lowerCAmelCase : Conversation , _lowerCAmelCase : Optional[int]=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase = self.tokenizer._build_conversation_input_ids(_lowerCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase = self._legacy_parse_and_tokenize(_lowerCAmelCase ) if self.framework == "pt": __lowercase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any]=10 , **_lowerCAmelCase : int ) -> Dict: """simple docstring""" __lowercase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) __lowercase = max_length - minimum_tokens __lowercase = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase = model_inputs["""attention_mask"""][:, -trim:] __lowercase = model_inputs.pop("""conversation""" ) __lowercase = max_length __lowercase = self.model.generate(**_lowerCAmelCase , **_lowerCAmelCase ) if self.model.config.is_encoder_decoder: __lowercase = 1 else: __lowercase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=True ) -> List[Any]: """simple docstring""" __lowercase = model_outputs["""output_ids"""] __lowercase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , ) __lowercase = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(_lowerCAmelCase ) return conversation def _a ( self : Optional[int] , _lowerCAmelCase : Conversation ) -> Dict: """simple docstring""" __lowercase = self.tokenizer.eos_token_id __lowercase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) if len(_lowerCAmelCase ) > self.tokenizer.model_max_length: __lowercase = input_ids[-self.tokenizer.model_max_length :] return input_ids
80
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : int = logging.get_logger(__name__) # TODO Update this _snake_case : Tuple = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = "esm" def __init__( self : Dict , lowerCamelCase : Dict=None , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Optional[int]=768 , lowerCamelCase : Dict=12 , lowerCamelCase : str=12 , lowerCamelCase : List[Any]=3072 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : str=0.1 , lowerCamelCase : Dict=1026 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : Optional[Any]=1E-12 , lowerCamelCase : Optional[int]="absolute" , lowerCamelCase : str=True , lowerCamelCase : Any=None , lowerCamelCase : List[Any]=False , lowerCamelCase : int=False , lowerCamelCase : Dict=None , lowerCamelCase : Any=None , **lowerCamelCase : Any , ) -> int: super().__init__(pad_token_id=lowerCamelCase , mask_token_id=lowerCamelCase , **lowerCamelCase ) __snake_case : Optional[int] = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : Dict = max_position_embeddings __snake_case : Any = initializer_range __snake_case : int = layer_norm_eps __snake_case : str = position_embedding_type __snake_case : List[str] = use_cache __snake_case : Tuple = emb_layer_norm_before __snake_case : str = token_dropout __snake_case : Any = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) __snake_case : int = EsmFoldConfig() elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Union[str, Any] = EsmFoldConfig(**lowerCamelCase ) __snake_case : List[str] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) __snake_case : int = get_default_vocab_list() else: __snake_case : int = vocab_list else: __snake_case : List[Any] = None __snake_case : List[str] = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , lowerCamelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def __snake_case ( self : Dict ) -> List[Any]: __snake_case : Any = super().to_dict() if isinstance(self.esmfold_config , lowerCamelCase ): __snake_case : int = self.esmfold_config.to_dict() return output @dataclass class a : """simple docstring""" __UpperCAmelCase : str = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : float = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : int = 128 __UpperCAmelCase : "TrunkConfig" = None def __snake_case ( self : Union[str, Any] ) -> Union[str, Any]: if self.trunk is None: __snake_case : Optional[Any] = TrunkConfig() elif isinstance(self.trunk , lowerCamelCase ): __snake_case : Any = TrunkConfig(**self.trunk ) def __snake_case ( self : Optional[Any] ) -> Optional[Any]: __snake_case : Optional[Any] = asdict(self ) __snake_case : Tuple = self.trunk.to_dict() return output @dataclass class a : """simple docstring""" __UpperCAmelCase : int = 48 __UpperCAmelCase : int = 1024 __UpperCAmelCase : int = 128 __UpperCAmelCase : int = 32 __UpperCAmelCase : int = 32 __UpperCAmelCase : int = 32 __UpperCAmelCase : float = 0 __UpperCAmelCase : float = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : int = 4 __UpperCAmelCase : Optional[int] = 128 __UpperCAmelCase : "StructureModuleConfig" = None def __snake_case ( self : List[Any] ) -> Any: if self.structure_module is None: __snake_case : Union[str, Any] = StructureModuleConfig() elif isinstance(self.structure_module , lowerCamelCase ): __snake_case : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __snake_case : List[Any] = self.sequence_state_dim // self.sequence_head_width __snake_case : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def __snake_case ( self : int ) -> Dict: __snake_case : str = asdict(self ) __snake_case : Any = self.structure_module.to_dict() return output @dataclass class a : """simple docstring""" __UpperCAmelCase : int = 384 __UpperCAmelCase : int = 128 __UpperCAmelCase : int = 16 __UpperCAmelCase : int = 128 __UpperCAmelCase : int = 12 __UpperCAmelCase : int = 4 __UpperCAmelCase : int = 8 __UpperCAmelCase : float = 0.1 __UpperCAmelCase : int = 8 __UpperCAmelCase : int = 1 __UpperCAmelCase : int = 2 __UpperCAmelCase : int = 7 __UpperCAmelCase : int = 10 __UpperCAmelCase : float = 1e-8 __UpperCAmelCase : float = 1e5 def __snake_case ( self : Dict ) -> Any: return asdict(self ) def lowerCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
81
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : int=True , _UpperCAmelCase : str=99 , _UpperCAmelCase : Optional[Any]=36 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Union[str, Any]=512 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Optional[int]=6 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[str]=1000 , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = coordinate_size UpperCAmelCase_ = shape_size UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope UpperCAmelCase_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase_ = text_seq_length UpperCAmelCase_ = (image_size // patch_size) ** 2 + 1 UpperCAmelCase_ = self.text_seq_length + self.image_seq_length def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCAmelCase_ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ = bbox[i, j, 3] UpperCAmelCase_ = bbox[i, j, 1] UpperCAmelCase_ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ = bbox[i, j, 2] UpperCAmelCase_ = bbox[i, j, 0] UpperCAmelCase_ = tmp_coordinate UpperCAmelCase_ = tf.constant(_UpperCAmelCase ) UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ) -> int: '''simple docstring''' UpperCAmelCase_ = TFLayoutLMvaModel(config=_UpperCAmelCase ) # text + image UpperCAmelCase_ = model(_UpperCAmelCase , pixel_values=_UpperCAmelCase , training=_UpperCAmelCase ) UpperCAmelCase_ = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , training=_UpperCAmelCase , ) UpperCAmelCase_ = model(_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase_ = model(_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase_ = model({"pixel_values": pixel_values} , training=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFLayoutLMvaForSequenceClassification(config=_UpperCAmelCase ) UpperCAmelCase_ = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFLayoutLMvaForTokenClassification(config=_UpperCAmelCase ) UpperCAmelCase_ = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = 2 UpperCAmelCase_ = TFLayoutLMvaForQuestionAnswering(config=_UpperCAmelCase ) UpperCAmelCase_ = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , training=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = config_and_inputs UpperCAmelCase_ = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' return True def lowercase__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any]=False ) -> dict: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(_UpperCAmelCase ) if model_class in get_values(_UpperCAmelCase ): UpperCAmelCase_ = { k: tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_UpperCAmelCase ): UpperCAmelCase_ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): UpperCAmelCase_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCAmelCase_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): UpperCAmelCase_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): UpperCAmelCase_ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = TFLayoutLMvaModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) if getattr(_UpperCAmelCase , "hf_compute_loss" , _UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label UpperCAmelCase_ = self._prepare_for_class(inputs_dict.copy() , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_UpperCAmelCase )[0] ] UpperCAmelCase_ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCAmelCase_ = self._prepare_for_class(inputs_dict.copy() , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = prepared_for_class.pop("input_ids" ) UpperCAmelCase_ = model(_UpperCAmelCase , **_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCAmelCase_ = self._prepare_for_class(inputs_dict.copy() , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: UpperCAmelCase_ = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCAmelCase_ = -100 UpperCAmelCase_ = tf.convert_to_tensor(_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , **_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCAmelCase_ = self._prepare_for_class(inputs_dict.copy() , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCAmelCase_ = self._prepare_for_class(inputs_dict.copy() , _UpperCAmelCase , return_labels=_UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function UpperCAmelCase_ = prepared_for_class.keys() - inputs_dict.keys() UpperCAmelCase_ = inspect.signature(model.call ).parameters UpperCAmelCase_ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCAmelCase_ = {0: "input_ids"} for label_key in label_keys: UpperCAmelCase_ = signature_names.index(_UpperCAmelCase ) UpperCAmelCase_ = label_key UpperCAmelCase_ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCAmelCase_ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCAmelCase_ = prepared_for_class[value] UpperCAmelCase_ = tuple(_UpperCAmelCase ) # Send to model UpperCAmelCase_ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : int ) -> str: '''simple docstring''' ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFLayoutLMvaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) if is_vision_available() else None @slow def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="tf" ).pixel_values UpperCAmelCase_ = tf.constant([[1, 2]] ) UpperCAmelCase_ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCAmelCase_ = model(input_ids=_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , training=_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , _UpperCAmelCase ) UpperCAmelCase_ = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
82
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __snake_case ( _lowercase): snake_case__ : int = "wav2vec2" def __init__( self : List[str] , __lowerCAmelCase : Tuple=3_2 , __lowerCAmelCase : Tuple=7_6_8 , __lowerCAmelCase : Union[str, Any]=1_2 , __lowerCAmelCase : Optional[Any]=1_2 , __lowerCAmelCase : Optional[int]=3_0_7_2 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : str=0.0 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : Optional[Any]=1E-5 , __lowerCAmelCase : List[str]="group" , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __lowerCAmelCase : Tuple=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase : Any=(1_0, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Any=1_2_8 , __lowerCAmelCase : Optional[Any]=1_6 , __lowerCAmelCase : int=False , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[int]=0.05 , __lowerCAmelCase : Union[str, Any]=1_0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : List[str]=1_0 , __lowerCAmelCase : Tuple=0 , __lowerCAmelCase : Tuple=3_2_0 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Dict=1_0_0 , __lowerCAmelCase : Union[str, Any]=2_5_6 , __lowerCAmelCase : str=2_5_6 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : int="sum" , __lowerCAmelCase : Any=False , __lowerCAmelCase : str=False , __lowerCAmelCase : Dict=2_5_6 , __lowerCAmelCase : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __lowerCAmelCase : Optional[Any]=(5, 3, 3, 1, 1) , __lowerCAmelCase : Optional[int]=(1, 2, 3, 1, 1) , __lowerCAmelCase : List[str]=5_1_2 , __lowerCAmelCase : Any=0 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=None , **__lowerCAmelCase : int , ): """simple docstring""" super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = feat_extract_norm _lowerCamelCase : Dict = feat_extract_activation _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : Tuple = list(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = list(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Any = num_conv_pos_embeddings _lowerCamelCase : Any = num_conv_pos_embedding_groups _lowerCamelCase : Dict = len(self.conv_dim ) _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : List[Any] = hidden_dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : List[Any] = activation_dropout _lowerCamelCase : Tuple = feat_proj_dropout _lowerCamelCase : List[Any] = final_dropout _lowerCamelCase : List[Any] = layerdrop _lowerCamelCase : List[str] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : str = vocab_size _lowerCamelCase : int = do_stable_layer_norm _lowerCamelCase : Optional[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Union[str, Any] = apply_spec_augment _lowerCamelCase : Any = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : Tuple = mask_time_min_masks _lowerCamelCase : str = mask_feature_prob _lowerCamelCase : Union[str, Any] = mask_feature_length _lowerCamelCase : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase : List[Any] = num_codevectors_per_group _lowerCamelCase : List[str] = num_codevector_groups _lowerCamelCase : Dict = contrastive_logits_temperature _lowerCamelCase : str = feat_quantizer_dropout _lowerCamelCase : Optional[int] = num_negatives _lowerCamelCase : Optional[int] = codevector_dim _lowerCamelCase : Union[str, Any] = proj_codevector_dim _lowerCamelCase : str = diversity_loss_weight # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : List[str] = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Dict = adapter_stride _lowerCamelCase : Dict = num_adapter_layers _lowerCamelCase : Optional[int] = output_hidden_size or hidden_size _lowerCamelCase : Optional[Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : Union[str, Any] = list(__lowerCAmelCase ) _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = list(__lowerCAmelCase ) _lowerCamelCase : Tuple = xvector_output_dim @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
83
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _a ): lowerCAmelCase__ = 'vivit' def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = num_frames _lowerCamelCase : Optional[int] = tubelet_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = qkv_bias super().__init__(**__lowerCAmelCase )
46
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase = ''' Human: <<task>> Assistant: ''' UpperCAmelCase = '''huggingface-tools/default-prompts''' UpperCAmelCase = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="run" ): if prompt_or_repo_id is None: lowercase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __SCREAMING_SNAKE_CASE ) is not None: return prompt_or_repo_id lowercase = cached_file( __SCREAMING_SNAKE_CASE , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: return f.read()
84
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
from __future__ import annotations def _a ( lowercase__ : list[float] ): '''simple docstring''' if len(lowercase__ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) SCREAMING_SNAKE_CASE__ : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
0
__a :Tuple = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
86
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
0
def SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int: """simple docstring""" A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
87
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False, False, False @dataclass class lowercase__ : __UpperCAmelCase = None __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) __UpperCAmelCase = field(default='''Audio''' ,init=A_ ,repr=A_ ) def __call__( self) -> Optional[int]: return self.pa_type def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""") from err if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): return {"bytes": None, "path": value} elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : str = BytesIO() sf.write(SCREAMING_SNAKE_CASE , value["""array"""] , value["""sampling_rate"""] , format="""wav""") return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""") is not None and os.path.isfile(value["""path"""]): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm"""): # "PCM" only has raw audio bytes if value.get("""sampling_rate""") is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""") if value.get("""bytes"""): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : Dict = np.frombuffer(value["""bytes"""] , dtype=np.intaa).astype(np.floataa) / 3_2767 else: _lowerCamelCase : Optional[Any] = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""").astype(np.floataa) / 3_2767 _lowerCamelCase : List[Any] = BytesIO(bytes()) sf.write(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , value["""sampling_rate"""] , format="""wav""") return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""")} elif value.get("""bytes""") is not None or value.get("""path""") is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes"""), "path": value.get("""path""")} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.') def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None) -> dict: if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""") _lowerCamelCase , _lowerCamelCase : Optional[Any] = (value["""path"""], BytesIO(value["""bytes"""])) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.') try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""") from err _lowerCamelCase : List[Any] = xsplitext(SCREAMING_SNAKE_CASE)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """) if file is None: _lowerCamelCase : List[Any] = token_per_repo_id or {} _lowerCamelCase : Dict = path.split("""::""")[-1] try: _lowerCamelCase : str = string_to_dict(SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL)["""repo_id"""] _lowerCamelCase : Tuple = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : Tuple = None with xopen(SCREAMING_SNAKE_CASE , """rb""" , use_auth_token=SCREAMING_SNAKE_CASE) as f: _lowerCamelCase , _lowerCamelCase : Dict = sf.read(SCREAMING_SNAKE_CASE) else: _lowerCamelCase , _lowerCamelCase : Tuple = sf.read(SCREAMING_SNAKE_CASE) _lowerCamelCase : str = array.T if self.mono: _lowerCamelCase : Optional[int] = librosa.to_mono(SCREAMING_SNAKE_CASE) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : Optional[Any] = librosa.resample(SCREAMING_SNAKE_CASE , orig_sr=SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate) _lowerCamelCase : Dict = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCamelCase_ ( self) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""") return { "bytes": Value("""binary"""), "path": Value("""string"""), } def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> pa.StructArray: if pa.types.is_string(storage.type): _lowerCamelCase : Dict = pa.array([None] * len(SCREAMING_SNAKE_CASE) , type=pa.binary()) _lowerCamelCase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): _lowerCamelCase : List[Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE) , type=pa.string()) _lowerCamelCase : List[Any] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("""array"""): _lowerCamelCase : List[Any] = pa.array([Audio().encode_example(SCREAMING_SNAKE_CASE) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("""bytes""") >= 0: _lowerCamelCase : Any = storage.field("""bytes""") else: _lowerCamelCase : List[Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE) , type=pa.binary()) if storage.type.get_field_index("""path""") >= 0: _lowerCamelCase : List[Any] = storage.field("""path""") else: _lowerCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE) , type=pa.string()) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null()) return array_cast(SCREAMING_SNAKE_CASE , self.pa_type) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE): with xopen(SCREAMING_SNAKE_CASE , """rb""") as f: _lowerCamelCase : int = f.read() return bytes_ _lowerCamelCase : Any = pa.array( [ (path_to_bytes(x["""path"""]) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowerCamelCase : Tuple = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE) if path is not None else None for path in storage.field("""path""").to_pylist()] , type=pa.string() , ) _lowerCamelCase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null()) return array_cast(SCREAMING_SNAKE_CASE , self.pa_type)
88
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('DownBlock2D', 'AttnDownBlock2D'), up_block_types=('AttnUpBlock2D', 'UpBlock2D'), ) return model def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = self.dummy_uncond_unet _lowercase : Tuple = ScoreSdeVeScheduler() _lowercase : str = ScoreSdeVePipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) sde_ve.to(lowerCamelCase) sde_ve.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = torch.manual_seed(0) _lowercase : Tuple = sde_ve(num_inference_steps=2, output_type='numpy', generator=lowerCamelCase).images _lowercase : Any = torch.manual_seed(0) _lowercase : Any = sde_ve(num_inference_steps=2, output_type='numpy', generator=lowerCamelCase, return_dict=lowerCamelCase)[ 0 ] _lowercase : Optional[Any] = image[0, -3:, -3:, -1] _lowercase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = 'google/ncsnpp-church-256' _lowercase : Dict = UNetaDModel.from_pretrained(lowerCamelCase) _lowercase : Dict = ScoreSdeVeScheduler.from_pretrained(lowerCamelCase) _lowercase : Union[str, Any] = ScoreSdeVePipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) sde_ve.to(lowerCamelCase) sde_ve.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = torch.manual_seed(0) _lowercase : str = sde_ve(num_inference_steps=10, output_type='numpy', generator=lowerCamelCase).images _lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _lowercase : Dict = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
89
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]: os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) lowerCAmelCase__ = {'''source''': '''What is love ?''', '''target''': '''life'''} lowerCAmelCase__ = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase__ = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCamelCase_ , F"""{split}.{field}""" ) , '''w''' ) as f: f.write(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = "pytorch" ) -> List[str]: lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = os.path.join(lowerCamelCase_ , '''output''' ) lowerCAmelCase__ = os.path.join(lowerCamelCase_ , '''data''' ) self._create_dummy_data(data_dir=lowerCamelCase_ ) lowerCAmelCase__ = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) lowerCAmelCase__ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCamelCase_ , env=self.get_env() ) lowerCAmelCase__ = os.path.join(lowerCamelCase_ , '''metrics.json''' ) with open(lowerCamelCase_ ) as f: lowerCAmelCase__ = json.load(lowerCamelCase_ ) return result @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
90
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
0
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : list[int] ): if not nums: return 0 A = nums[0] A = 0 for num in nums[1:]: A , A = ( max_excluding + num, max(snake_case__ , snake_case__ ), ) return max(snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
91
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str=14 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Any=99 , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Dict=512 , UpperCAmelCase__ : Tuple=16 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Dict=None , ): '''simple docstring''' lowercase : List[str] =parent lowercase : Union[str, Any] =batch_size lowercase : Optional[int] =seq_length lowercase : List[Any] =is_training lowercase : List[Any] =use_token_type_ids lowercase : str =use_input_mask lowercase : Dict =use_labels lowercase : Optional[int] =use_mc_token_ids lowercase : Union[str, Any] =vocab_size lowercase : int =hidden_size lowercase : Optional[int] =num_hidden_layers lowercase : Optional[Any] =num_attention_heads lowercase : Optional[Any] =intermediate_size lowercase : int =hidden_act lowercase : str =hidden_dropout_prob lowercase : int =attention_probs_dropout_prob lowercase : str =max_position_embeddings lowercase : Tuple =type_vocab_size lowercase : Union[str, Any] =type_sequence_label_size lowercase : List[Any] =initializer_range lowercase : Any =num_labels lowercase : Optional[int] =num_choices lowercase : List[Any] =scope lowercase : Union[str, Any] =self.vocab_size - 1 def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : int =None if self.use_mc_token_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowercase : Dict =None lowercase : Any =None lowercase : Optional[Any] =None if self.use_labels: lowercase : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Any =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =self.get_config() lowercase : Tuple =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , *UpperCAmelCase__ : Any ): '''simple docstring''' lowercase : int =CTRLModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowercase : int =model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , *UpperCAmelCase__ : Tuple ): '''simple docstring''' lowercase : int =CTRLLMHeadModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : List[str] =model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : List[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , *UpperCAmelCase__ : str ): '''simple docstring''' lowercase : Optional[int] =self.num_labels lowercase : Dict =CTRLForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCamelCase_ = (CTRLLMHeadModel,) if is_torch_available() else () lowerCamelCase_ = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False def lowerCamelCase_ ( self : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : str =CTRLModelTester(self ) lowercase : Any =ConfigTester(self , config_class=UpperCAmelCase__ , n_embd=37 ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCamelCase_ ( self : int ): '''simple docstring''' pass @slow def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict =CTRLModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : str =CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(UpperCAmelCase__ ) lowercase : str =torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=UpperCAmelCase__ ) # Legal the president is lowercase : Optional[Any] =[ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowercase : List[Any] =model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase__ )
92
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
0
"""simple docstring""" from __future__ import annotations def __A (_SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :str = [True] * limit lowerCAmelCase__ :Optional[int] = False lowerCAmelCase__ :str = False lowerCAmelCase__ :Dict = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCAmelCase__ :Union[str, Any] = i * 2 while index < limit: lowerCAmelCase__ :Dict = False lowerCAmelCase__ :Any = index + i lowerCAmelCase__ :List[Any] = [2] for i in range(3 , _SCREAMING_SNAKE_CASE , 2 ): if is_prime[i]: primes.append(_SCREAMING_SNAKE_CASE ) return primes def __A (_SCREAMING_SNAKE_CASE = 100_0000 ) ->int: """simple docstring""" lowerCAmelCase__ :Tuple = prime_sieve(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = 0 lowerCAmelCase__ :Any = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + length , len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCAmelCase__ :List[str] = j - i lowerCAmelCase__ :Tuple = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
93
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
0
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def lowercase_ ( __A : str ) -> Any: """simple docstring""" lowercase : Dict =numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__A )[0] @deprecated(__A , '''Please use tf.data to implement this functionality.''' ) def lowercase_ ( __A : Union[str, Any] ) -> List[str]: """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__A ) as bytestream: lowercase : int =_readaa(__A ) if magic != 2_0_5_1: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) lowercase : Optional[Any] =_readaa(__A ) lowercase : int =_readaa(__A ) lowercase : Dict =_readaa(__A ) lowercase : Union[str, Any] =bytestream.read(rows * cols * num_images ) lowercase : Union[str, Any] =numpy.frombuffer(__A , dtype=numpy.uinta ) lowercase : Tuple =data.reshape(__A , __A , __A , 1 ) return data @deprecated(__A , '''Please use tf.one_hot on tensors.''' ) def lowercase_ ( __A : Dict , __A : Any ) -> List[str]: """simple docstring""" lowercase : str =labels_dense.shape[0] lowercase : int =numpy.arange(__A ) * num_classes lowercase : List[str] =numpy.zeros((num_labels, num_classes) ) lowercase : Tuple =1 return labels_one_hot @deprecated(__A , '''Please use tf.data to implement this functionality.''' ) def lowercase_ ( __A : List[str] , __A : Union[str, Any]=False , __A : Tuple=1_0 ) -> Optional[int]: """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__A ) as bytestream: lowercase : List[Any] =_readaa(__A ) if magic != 2_0_4_9: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) lowercase : str =_readaa(__A ) lowercase : Optional[int] =bytestream.read(__A ) lowercase : List[str] =numpy.frombuffer(__A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__A , __A ) return labels class UpperCAmelCase_ : """simple docstring""" @deprecated( UpperCAmelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[Any]=dtypes.floataa , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=None , ) -> List[str]: '''simple docstring''' lowercase , lowercase : Union[str, Any] =random_seed.get_seed(UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowercase : Optional[int] =dtypes.as_dtype(UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: lowercase : Dict =1_0000 lowercase : Union[str, Any] =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' lowercase : List[str] =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowercase : int =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowercase : Optional[Any] =images.astype(numpy.floataa ) lowercase : Tuple =numpy.multiply(UpperCAmelCase , 1.0 / 2_5_5.0 ) lowercase : Tuple =images lowercase : Optional[int] =labels lowercase : Union[str, Any] =0 lowercase : Any =0 @property def A__ ( self : List[str] ) -> int: '''simple docstring''' return self._images @property def A__ ( self : str ) -> Dict: '''simple docstring''' return self._labels @property def A__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return self._num_examples @property def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' return self._epochs_completed def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : str=True ) -> int: '''simple docstring''' if fake_data: lowercase : Optional[Any] =[1] * 784 lowercase : Any =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCAmelCase )], [fake_label for _ in range(UpperCAmelCase )], ) lowercase : List[str] =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowercase : int =numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase ) lowercase : Union[str, Any] =self.images[perma] lowercase : List[str] =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowercase : Optional[int] =self._num_examples - start lowercase : Tuple =self._images[start : self._num_examples] lowercase : Optional[Any] =self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowercase : List[str] =numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase ) lowercase : Optional[int] =self.images[perm] lowercase : Union[str, Any] =self.labels[perm] # Start next epoch lowercase : str =0 lowercase : Optional[int] =batch_size - rest_num_examples lowercase : Optional[int] =self._index_in_epoch lowercase : str =self._images[start:end] lowercase : Dict =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowercase : Union[str, Any] =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__A , '''Please write your own downloading logic.''' ) def lowercase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Optional[int] ) -> Dict: """simple docstring""" if not gfile.Exists(__A ): gfile.MakeDirs(__A ) lowercase : Optional[int] =os.path.join(__A , __A ) if not gfile.Exists(__A ): urllib.request.urlretrieve(__A , __A ) # noqa: S310 with gfile.GFile(__A ) as f: lowercase : Dict =f.size() print('''Successfully downloaded''' , __A , __A , '''bytes.''' ) return filepath @deprecated( __A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def lowercase_ ( __A : Any , __A : Union[str, Any]=False , __A : Tuple=False , __A : Optional[Any]=dtypes.floataa , __A : List[Any]=True , __A : str=5_0_0_0 , __A : Any=None , __A : Any=DEFAULT_SOURCE_URL , ) -> Dict: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__A , one_hot=__A , dtype=__A , seed=__A ) lowercase : Tuple =fake() lowercase : Union[str, Any] =fake() lowercase : int =fake() return _Datasets(train=__A , validation=__A , test=__A ) if not source_url: # empty string check lowercase : List[Any] =DEFAULT_SOURCE_URL lowercase : List[Any] ='''train-images-idx3-ubyte.gz''' lowercase : List[str] ='''train-labels-idx1-ubyte.gz''' lowercase : List[Any] ='''t10k-images-idx3-ubyte.gz''' lowercase : List[str] ='''t10k-labels-idx1-ubyte.gz''' lowercase : Dict =_maybe_download( __A , __A , source_url + train_images_file ) with gfile.Open(__A , '''rb''' ) as f: lowercase : Union[str, Any] =_extract_images(__A ) lowercase : Dict =_maybe_download( __A , __A , source_url + train_labels_file ) with gfile.Open(__A , '''rb''' ) as f: lowercase : Tuple =_extract_labels(__A , one_hot=__A ) lowercase : Any =_maybe_download( __A , __A , source_url + test_images_file ) with gfile.Open(__A , '''rb''' ) as f: lowercase : Dict =_extract_images(__A ) lowercase : int =_maybe_download( __A , __A , source_url + test_labels_file ) with gfile.Open(__A , '''rb''' ) as f: lowercase : Any =_extract_labels(__A , one_hot=__A ) if not 0 <= validation_size <= len(__A ): lowercase : str =( '''Validation size should be between 0 and ''' F'{len(__A )}. Received: {validation_size}.' ) raise ValueError(__A ) lowercase : int =train_images[:validation_size] lowercase : Any =train_labels[:validation_size] lowercase : List[Any] =train_images[validation_size:] lowercase : List[Any] =train_labels[validation_size:] lowercase : int ={'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} lowercase : Any =_DataSet(__A , __A , **__A ) lowercase : List[str] =_DataSet(__A , __A , **__A ) lowercase : Tuple =_DataSet(__A , __A , **__A ) return _Datasets(train=__A , validation=__A , test=__A )
94
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
0
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Union[str, Any] = old_name if "patch_embed" in old_name: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = old_name.split("." ) if layer == "0": UpperCAmelCase_ : List[Any] = old_name.replace("0" ,"convolution1" ) elif layer == "1": UpperCAmelCase_ : List[str] = old_name.replace("1" ,"batchnorm_before" ) elif layer == "3": UpperCAmelCase_ : Union[str, Any] = old_name.replace("3" ,"convolution2" ) else: UpperCAmelCase_ : Union[str, Any] = old_name.replace("4" ,"batchnorm_after" ) if "network" in old_name and re.search(r"\d\.\d" ,A__ ): UpperCAmelCase_ : int = r"\b\d{2}\b" if bool(re.search(A__ ,A__ ) ): UpperCAmelCase_ : List[Any] = re.search(r"\d\.\d\d." ,A__ ).group() else: UpperCAmelCase_ : Tuple = re.search(r"\d\.\d." ,A__ ).group() if int(match[0] ) < 6: UpperCAmelCase_ : List[Any] = old_name.replace(A__ ,"" ) UpperCAmelCase_ : str = trimmed_name.replace("network" ,match[0] + ".meta4D_layers.blocks." + match[2:-1] ) UpperCAmelCase_ : List[Any] = "intermediate_stages." + trimmed_name else: UpperCAmelCase_ : Dict = old_name.replace(A__ ,"" ) if int(match[2] ) < num_meta4D_last_stage: UpperCAmelCase_ : List[Any] = trimmed_name.replace("network" ,"meta4D_layers.blocks." + match[2] ) else: UpperCAmelCase_ : Dict = str(int(match[2] ) - num_meta4D_last_stage ) UpperCAmelCase_ : List[Any] = trimmed_name.replace("network" ,"meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: UpperCAmelCase_ : Tuple = trimmed_name.replace("norm1" ,"layernorm1" ) elif "norm2" in old_name: UpperCAmelCase_ : Dict = trimmed_name.replace("norm2" ,"layernorm2" ) elif "fc1" in old_name: UpperCAmelCase_ : Tuple = trimmed_name.replace("fc1" ,"linear_in" ) elif "fc2" in old_name: UpperCAmelCase_ : str = trimmed_name.replace("fc2" ,"linear_out" ) UpperCAmelCase_ : str = "last_stage." + trimmed_name elif "network" in old_name and re.search(r".\d." ,A__ ): UpperCAmelCase_ : Any = old_name.replace("network" ,"intermediate_stages" ) if "fc" in new_name: UpperCAmelCase_ : Dict = new_name.replace("fc" ,"convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCAmelCase_ : Optional[Any] = new_name.replace("norm1" ,"batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCAmelCase_ : List[str] = new_name.replace("norm2" ,"batchnorm_after" ) if "proj" in new_name: UpperCAmelCase_ : Dict = new_name.replace("proj" ,"projection" ) if "dist_head" in new_name: UpperCAmelCase_ : Tuple = new_name.replace("dist_head" ,"distillation_classifier" ) elif "head" in new_name: UpperCAmelCase_ : Any = new_name.replace("head" ,"classifier" ) elif "patch_embed" in new_name: UpperCAmelCase_ : int = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCAmelCase_ : Tuple = new_name.replace("norm" ,"layernorm" ) UpperCAmelCase_ : Optional[int] = "efficientformer." + new_name else: UpperCAmelCase_ : Any = "efficientformer.encoder." + new_name return new_name def snake_case ( A__ ,A__ ): for key in checkpoint.copy().keys(): UpperCAmelCase_ : int = checkpoint.pop(A__ ) UpperCAmelCase_ : Tuple = val return checkpoint def snake_case ( ): UpperCAmelCase_ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : int = Image.open(requests.get(A__ ,stream=A__ ).raw ) return image def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : List[Any] = torch.load(A__ ,map_location="cpu" )["model"] UpperCAmelCase_ : Any = EfficientFormerConfig.from_json_file(A__ ) UpperCAmelCase_ : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(A__ ) UpperCAmelCase_ : Optional[int] = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) UpperCAmelCase_ : Optional[Any] = config.depths[-1] - config.num_metaad_blocks + 1 UpperCAmelCase_ : List[str] = convert_torch_checkpoint(A__ ,A__ ) model.load_state_dict(A__ ) model.eval() UpperCAmelCase_ : Any = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Tuple = 2_56 UpperCAmelCase_ : Any = 2_24 UpperCAmelCase_ : str = EfficientFormerImageProcessor( size={"shortest_edge": image_size} ,crop_size={"height": crop_size, "width": crop_size} ,resample=pillow_resamplings["bicubic"] ,) UpperCAmelCase_ : List[str] = processor(images=A__ ,return_tensors="pt" ).pixel_values # original processing pipeline UpperCAmelCase_ : List[Any] = Compose( [ Resize(A__ ,interpolation=pillow_resamplings["bicubic"] ), CenterCrop(A__ ), ToTensor(), Normalize(A__ ,A__ ), ] ) UpperCAmelCase_ : str = image_transforms(A__ ).unsqueeze(0 ) assert torch.allclose(A__ ,A__ ) UpperCAmelCase_ : Optional[Any] = model(A__ ) UpperCAmelCase_ : int = outputs.logits UpperCAmelCase_ : Tuple = (1, 10_00) if "l1" in model_name: UpperCAmelCase_ : Dict = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] ,A__ ,atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCAmelCase_ : Optional[Any] = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] ,A__ ,atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCAmelCase_ : int = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(A__ ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" ,commit_message="Add model" ,use_temp_dir=A__ ,) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" ,commit_message="Add image processor" ,use_temp_dir=A__ ,) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) lowerCamelCase_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
95
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers __lowerCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def a ( ) -> Union[str, Any]: __magic_name__: List[Any] = os.path.dirname(os.path.realpath(__UpperCAmelCase ) ) __magic_name__: Dict = os.path.join(__UpperCAmelCase , """words.txt""" ) __magic_name__: Dict = """""" with open(__UpperCAmelCase ) as f: __magic_name__: Any = f.readline() __magic_name__: Optional[Any] = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] __magic_name__: int = [ word for word in [sum(ord(__UpperCAmelCase ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__UpperCAmelCase ) if __name__ == "__main__": print(solution())
96
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __a = logging.getLogger(__name__) @dataclass class lowercase__: """simple docstring""" a :str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a :Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a :Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a :Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a :bool = field(default=UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) a :bool = field(default=UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class lowercase__: """simple docstring""" a :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) a :Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) a :Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a :Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a :Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) a :Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a :Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) a :Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) a :Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) a :Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) a :Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) a :Optional[int] = field(default=UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) a :bool = field( default=UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def a ( snake_case__: Dict , snake_case__: Optional[int] , snake_case__: List[str] ): '''simple docstring''' logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(snake_case__ , os.path.join(snake_case__ , F'''{split}_results.json''' ) ) def a ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() check_output_dir(snake_case__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase_ = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case__ , snake_case__ , snake_case__ ): assert hasattr(snake_case__ , snake_case__ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) ) lowercase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case__ , snake_case__ ): lowercase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase_ = SeqaSeqDataset # Get datasets lowercase_ = ( dataset_class( snake_case__ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) lowercase_ = ( dataset_class( snake_case__ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase_ = ( dataset_class( snake_case__ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase_ = ( build_compute_metrics_fn(data_args.task , snake_case__ ) if training_args.predict_with_generate else None ) lowercase_ = SeqaSeqTrainer( model=snake_case__ , args=snake_case__ , data_args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , data_collator=SeqaSeqDataCollator( snake_case__ , snake_case__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case__ , tokenizer=snake_case__ , ) lowercase_ = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) lowercase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase_ = train_result.metrics lowercase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case__ , training_args.output_dir ) all_metrics.update(snake_case__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase_ = trainer.evaluate(metric_key_prefix='''val''' ) lowercase_ = data_args.n_val lowercase_ = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case__ , training_args.output_dir ) all_metrics.update(snake_case__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) lowercase_ = trainer.predict(test_dataset=snake_case__ , metric_key_prefix='''test''' ) lowercase_ = test_output.metrics lowercase_ = data_args.n_test if trainer.is_world_process_zero(): lowercase_ = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case__ , training_args.output_dir ) all_metrics.update(snake_case__ ) if training_args.predict_with_generate: lowercase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowercase_ = lmap(str.strip , snake_case__ ) write_txt_file(snake_case__ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case__ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def a ( snake_case__: List[str] ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
97
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
0
'''simple docstring''' from math import factorial lowercase__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def a__ ( lowercase : int ) -> int: """simple docstring""" if not isinstance(lowercase, lowercase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase ) ) def a__ ( lowercase : int = 60, lowercase : int = 1000000 ) -> int: """simple docstring""" if not isinstance(lowercase, lowercase ) or not isinstance(lowercase, lowercase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length _UpperCamelCase = 0 # the cached sizes of the previous chains _UpperCamelCase = {} for start_chain_element in range(1, lowercase ): # The temporary set will contain the elements of the chain _UpperCamelCase = set() _UpperCamelCase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _UpperCamelCase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase ) chain_set_length += 1 _UpperCamelCase = digit_factorial_sum(lowercase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _UpperCamelCase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
98
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) __a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def snake_case_ ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) @require_multi_gpu def snake_case_ ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) @require_multi_gpu def snake_case_ ( self ): __a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) @require_multi_gpu def snake_case_ ( self ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(__A , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = (accelerator.state.process_index + 2, 1_0) SCREAMING_SNAKE_CASE = torch.randint(0, 1_0, shape).to(accelerator.device) SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
99
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __snake_case ( lowerCAmelCase_ ) -> Union[str, Any]: return EnvironmentCommand() def __snake_case ( lowerCAmelCase_ ) -> Tuple: return EnvironmentCommand(args.accelerate_config_file ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def lowercase_ ( A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parser.add_parser('''env''' ) download_parser.set_defaults(func=A_ ) download_parser.add_argument( '''--accelerate-config_file''' , default=A_ , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=A_ ) def __init__( self , A_ , *A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = accelerate_config_file def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''not installed''' if is_safetensors_available(): import safetensors SCREAMING_SNAKE_CASE__ = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors SCREAMING_SNAKE_CASE__ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(A_ ): SCREAMING_SNAKE_CASE__ = load_config_from_file(self._accelerate_config_file ).to_dict() SCREAMING_SNAKE_CASE__ = ( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(A_ , A_ ) else f'''\t{accelerate_config}''' ) SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = torch.__version__ SCREAMING_SNAKE_CASE__ = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = '''NA''' if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ = tf.__version__ try: # deprecated in v2.1 SCREAMING_SNAKE_CASE__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool SCREAMING_SNAKE_CASE__ = bool(tf.config.list_physical_devices('''GPU''' ) ) SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = '''NA''' if is_flax_available(): import flax import jax import jaxlib SCREAMING_SNAKE_CASE__ = flax.__version__ SCREAMING_SNAKE_CASE__ = jax.__version__ SCREAMING_SNAKE_CASE__ = jaxlib.__version__ SCREAMING_SNAKE_CASE__ = jax.lib.xla_bridge.get_backend().platform SCREAMING_SNAKE_CASE__ = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f'''{safetensors_version}''', '''Accelerate version''': f'''{accelerate_version}''', '''Accelerate config''': f'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': f'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': f'''{flax_version} ({jax_backend})''', '''Jax version''': f'''{jax_version}''', '''JaxLib version''': f'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(A_ ) ) return info @staticmethod def lowercase_ ( A_ ): '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
100
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowerCAmelCase__ : Optional[int] =0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowerCAmelCase__ : str =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __lowercase : """simple docstring""" def __init__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = WATERMARK_BITS SCREAMING_SNAKE_CASE_ : int = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if images.shape[-1] < 2_5_6: return images SCREAMING_SNAKE_CASE_ : Tuple = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE_ : Optional[int] = [self.encoder.encode(lowerCAmelCase__ , 'dwtDct' ) for image in images] SCREAMING_SNAKE_CASE_ : List[str] = torch.from_numpy(np.array(lowerCAmelCase__ ) ).permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 ) return images
101
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowercase__ : """simple docstring""" def __init__( self , _A , _A=1_3 , _A=2 , _A=2_4 , _A=1_6 , _A=True , _A=True , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=None , _A=2 , _A=2 , ): '''simple docstring''' UpperCamelCase : Tuple = parent UpperCamelCase : str = batch_size UpperCamelCase : Optional[Any] = patch_size UpperCamelCase : Optional[int] = max_length UpperCamelCase : str = num_mel_bins UpperCamelCase : Optional[int] = is_training UpperCamelCase : str = use_labels UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = type_sequence_label_size UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Optional[Any] = scope UpperCamelCase : List[Any] = frequency_stride UpperCamelCase : Tuple = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase : Optional[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCamelCase : Dict = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCamelCase : List[str] = frequency_out_dimension * time_out_dimension UpperCamelCase : int = num_patches + 2 def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Dict = self.get_config() return config, input_values, labels def _a ( self ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : List[str] = ASTModel(config=_A ) model.to(_A ) model.eval() UpperCamelCase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : List[str] = config_and_inputs UpperCamelCase : Union[str, Any] = {"""input_values""": input_values} return config, inputs_dict @require_torch class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __lowerCAmelCase : Any = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Any = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Union[str, Any] = False def _a ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _a ( self ): '''simple docstring''' UpperCamelCase : str = ASTModelTester(self ) UpperCamelCase : int = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def _a ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Tuple = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def _a ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Dict = model_class(_A ) UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : int = [*signature.parameters.keys()] UpperCamelCase : Any = ["""input_values"""] self.assertListEqual(arg_names[:1] , _A ) def _a ( self ): '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) @slow def _a ( self ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : int = ASTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase (): UpperCamelCase : Optional[Any] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) UpperCamelCase , UpperCamelCase : Dict = torchaudio.load(SCREAMING_SNAKE_CASE ) return audio, sampling_rate @require_torch @require_torchaudio class lowercase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.default_feature_extractor UpperCamelCase : Any = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_A ) UpperCamelCase : Union[str, Any] = self.default_feature_extractor UpperCamelCase , UpperCamelCase : List[Any] = prepare_audio() UpperCamelCase : Optional[Any] = audio.squeeze().numpy() UpperCamelCase : Union[str, Any] = feature_extractor(_A , sampling_rate=_A , return_tensors="""pt""" ).to(_A ) # forward pass with torch.no_grad(): UpperCamelCase : Optional[Any] = model(**_A ) # verify the logits UpperCamelCase : List[Any] = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , _A ) UpperCamelCase : Optional[Any] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
102
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
0
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration snake_case = HfArgumentParser(InitializationArguments) snake_case = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization snake_case = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks snake_case = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) snake_case = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config snake_case = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
103
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : str ) -> bool: """simple docstring""" A__ = len(UpperCAmelCase_ ) A__ = len(UpperCAmelCase_ ) A__ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] A__ = True for i in range(UpperCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: A__ = True if a[i].islower(): A__ = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
104
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : complex , lowerCamelCase_ : str = "x" , lowerCamelCase_ : float = 10**-10 , lowerCamelCase_ : int = 1 , ) -> complex: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = symbols(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = lambdify(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = lambdify(lowerCamelCase_ , diff(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Dict = starting_point while True: if diff_function(lowerCamelCase_ ) != 0: SCREAMING_SNAKE_CASE_ : Optional[int] = prev_guess - multiplicity * func(lowerCamelCase_ ) / diff_function( lowerCamelCase_ ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess SCREAMING_SNAKE_CASE_ : str = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', F"""{newton_raphson("exp(x) - 1", 10, precision=0.0_05)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
105
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _a ): lowerCAmelCase__ = 'vivit' def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = num_frames _lowerCamelCase : Optional[int] = tubelet_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = qkv_bias super().__init__(**__lowerCAmelCase )
46
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=False , __UpperCamelCase : Any=10 , __UpperCamelCase : str=3 , __UpperCamelCase : Dict=32 * 4 , __UpperCamelCase : Dict=32 * 6 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple=32 , ) -> List[Any]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = mask_feature_size def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __UpperCamelCase ) A = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__UpperCamelCase ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__UpperCamelCase ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) , device=__UpperCamelCase ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __UpperCamelCase ( self : List[Any] ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ) -> List[Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCamelCase ) , config.decoder_config.decoder_layers ) def __UpperCamelCase ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any=False ) -> Union[str, Any]: with torch.no_grad(): A = MaskFormerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(pixel_values=__UpperCamelCase , pixel_mask=__UpperCamelCase ) A = model(__UpperCamelCase , output_hidden_states=__UpperCamelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ) -> Optional[int]: A = MaskFormerForInstanceSegmentation(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() def comm_check_on_output(__UpperCamelCase : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=__UpperCamelCase , pixel_mask=__UpperCamelCase ) A = model(__UpperCamelCase ) comm_check_on_output(__UpperCamelCase ) A = model( pixel_values=__UpperCamelCase , pixel_mask=__UpperCamelCase , mask_labels=__UpperCamelCase , class_labels=__UpperCamelCase ) comm_check_on_output(__UpperCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : Any = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () A_ : Any = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) A_ : Dict = False A_ : Dict = False A_ : Optional[Any] = False A_ : List[Any] = False def __UpperCamelCase ( self : Tuple ) -> List[str]: A = MaskFormerModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[str] ) -> int: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCamelCase , **__UpperCamelCase , output_hidden_states=__UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__UpperCamelCase ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def __UpperCamelCase ( self : Optional[int] ) -> Any: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def __UpperCamelCase ( self : str ) -> List[str]: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __UpperCamelCase ( self : str ) -> Tuple: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: pass def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) @slow def __UpperCamelCase ( self : int ) -> List[str]: for model_name in ["facebook/maskformer-swin-small-coco"]: A = MaskFormerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) , device=__UpperCamelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=__UpperCamelCase ), 'class_labels': torch.zeros(2 , 10 , device=__UpperCamelCase ).long(), } A = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__UpperCamelCase ) A = model(**__UpperCamelCase ) self.assertTrue(outputs.loss is not None ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCamelCase , **__UpperCamelCase , output_hidden_states=__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ).to(__UpperCamelCase ) A = model(**__UpperCamelCase , output_attentions=__UpperCamelCase ) self.assertTrue(outputs.attentions is not None ) def __UpperCamelCase ( self : Dict ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() A = model(__UpperCamelCase , mask_labels=__UpperCamelCase , class_labels=__UpperCamelCase ).loss loss.backward() def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() A = model(__UpperCamelCase , mask_labels=__UpperCamelCase , class_labels=__UpperCamelCase ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__UpperCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __snake_case :Optional[Any] =1E-4 def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : List[str] ) -> Dict: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: A = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(__UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCamelCase , (1, 3, 800, 1_088) ) with torch.no_grad(): A = model(**__UpperCamelCase ) A = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(__UpperCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) A = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(__UpperCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) A = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(__UpperCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def __UpperCamelCase ( self : str ) -> int: A = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(__UpperCamelCase ) .eval() ) A = self.default_image_processor A = prepare_img() A = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCamelCase , (1, 3, 800, 1_088) ) with torch.no_grad(): A = model(**__UpperCamelCase ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] A = torch.tensor(__UpperCamelCase ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def __UpperCamelCase ( self : Tuple ) -> int: A = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(__UpperCamelCase ) .eval() ) A = self.default_image_processor A = prepare_img() A = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCamelCase , (1, 3, 800, 1_088) ) with torch.no_grad(): A = model(**__UpperCamelCase ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] A = torch.tensor(__UpperCamelCase ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def __UpperCamelCase ( self : Any ) -> List[Any]: A = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(__UpperCamelCase ) .eval() ) A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) A = inputs['pixel_values'].to(__UpperCamelCase ) A = [el.to(__UpperCamelCase ) for el in inputs['mask_labels']] A = [el.to(__UpperCamelCase ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**__UpperCamelCase ) self.assertTrue(outputs.loss is not None )
106
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( __snake_case : str ): _A = 0 # if input_string is "aba" than new_input_string become "a|b|a" _A = '' _A = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _A , _A = 0, 0 # length[i] shows the length of palindromic substring with center i _A = [1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _A = 0 for j in range(len(__snake_case ) ): _A = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _A = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _A = j - k + 1 # noqa: E741 _A = j + k - 1 # update max_length and start position if max_length < length[j]: _A = length[j] _A = j # create that string _A = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
107
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __a: List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''upernet''' def __init__( self : str , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=512 , lowerCamelCase : List[str]=0.02 , lowerCamelCase : int=[1, 2, 3, 6] , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Tuple=0.4 , lowerCamelCase : Union[str, Any]=384 , lowerCamelCase : Dict=256 , lowerCamelCase : List[Any]=1 , lowerCamelCase : Any=False , lowerCamelCase : Any=255 , **lowerCamelCase : Optional[int] , ) -> Tuple: """simple docstring""" super().__init__(**lowerCamelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowerCamelCase , lowerCamelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(lowerCamelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCamelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
108
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : int ,lowerCamelCase : Dict=7 ,lowerCamelCase : Optional[Any]=3 ,lowerCamelCase : int=30 ,lowerCamelCase : Any=400 ,lowerCamelCase : Union[str, Any]=True ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : Any=True ,lowerCamelCase : Any=[0.5, 0.5, 0.5] ,lowerCamelCase : Dict=[0.5, 0.5, 0.5] ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=1 / 255 ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_pad def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Dict ,lowerCamelCase : List[Any]=False ): '''simple docstring''' if not batched: __SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(lowerCamelCase ,Image.Image ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.size else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: __SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] __SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: __SCREAMING_SNAKE_CASE = [] for image in image_inputs: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __SCREAMING_SNAKE_CASE = max(lowerCamelCase ,key=lambda lowerCamelCase : item[0] )[0] __SCREAMING_SNAKE_CASE = max(lowerCamelCase ,key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : List[str] = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_rescale""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_pad""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=lowerCamelCase ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad ,lowerCamelCase ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase ) __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" ,"""r""" ) as f: __SCREAMING_SNAKE_CASE = json.loads(f.read() ) __SCREAMING_SNAKE_CASE = {"""image_id""": 3_9769, """annotations""": target} # encode them __SCREAMING_SNAKE_CASE = DeformableDetrImageProcessor() __SCREAMING_SNAKE_CASE = image_processing(images=lowerCamelCase ,annotations=lowerCamelCase ,return_tensors="""pt""" ) # verify pixel values __SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,lowerCamelCase ,atol=1E-4 ) ) # verify area __SCREAMING_SNAKE_CASE = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,lowerCamelCase ) ) # verify boxes __SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,lowerCamelCase ,atol=1E-3 ) ) # verify image_id __SCREAMING_SNAKE_CASE = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,lowerCamelCase ) ) # verify is_crowd __SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,lowerCamelCase ) ) # verify class_labels __SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,lowerCamelCase ) ) # verify orig_size __SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,lowerCamelCase ) ) # verify size __SCREAMING_SNAKE_CASE = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,lowerCamelCase ) ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" ,"""r""" ) as f: __SCREAMING_SNAKE_CASE = json.loads(f.read() ) __SCREAMING_SNAKE_CASE = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __SCREAMING_SNAKE_CASE = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __SCREAMING_SNAKE_CASE = DeformableDetrImageProcessor(format="""coco_panoptic""" ) __SCREAMING_SNAKE_CASE = image_processing(images=lowerCamelCase ,annotations=lowerCamelCase ,masks_path=lowerCamelCase ,return_tensors="""pt""" ) # verify pixel values __SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,lowerCamelCase ,atol=1E-4 ) ) # verify area __SCREAMING_SNAKE_CASE = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,lowerCamelCase ) ) # verify boxes __SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,lowerCamelCase ,atol=1E-3 ) ) # verify image_id __SCREAMING_SNAKE_CASE = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,lowerCamelCase ) ) # verify is_crowd __SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,lowerCamelCase ) ) # verify class_labels __SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,lowerCamelCase ) ) # verify masks __SCREAMING_SNAKE_CASE = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() ,lowerCamelCase ) # verify orig_size __SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,lowerCamelCase ) ) # verify size __SCREAMING_SNAKE_CASE = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,lowerCamelCase ) )
109
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a ( lowercase ): def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __snake_case ( self ): with self.assertRaises(UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __snake_case ( self ): with self.assertRaises(UpperCamelCase_ ): UpperCAmelCase__ : List[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def __snake_case ( self ): UpperCAmelCase__ : str = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __snake_case ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__ : List[str] = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def __snake_case ( self ): UpperCAmelCase__ : int = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __snake_case ( self ): UpperCAmelCase__ : Any = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def __snake_case ( self ): UpperCAmelCase__ : int = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def __snake_case ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__ : int = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def __snake_case ( self ): UpperCAmelCase__ : str = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def __snake_case ( self ): UpperCAmelCase__ : List[Any] = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __snake_case ( self ): import PIL.Image UpperCAmelCase__ : Tuple = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=UpperCamelCase_ ) as mock_cast_to_python_objects: UpperCAmelCase__ : List[str] = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image] , type=Image() ) ) UpperCAmelCase__ , UpperCAmelCase__ : Any = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , UpperCamelCase_ ) self.assertFalse(kwargs['optimize_list_casting'] ) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : str = pa.BufferReader(_snake_case ) if isinstance(_snake_case ,pa.Buffer ) else pa.memory_map(_snake_case ) UpperCAmelCase__ : Any = pa.ipc.open_stream(_snake_case ) UpperCAmelCase__ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] ) @pytest.mark.parametrize( 'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : Optional[Any] = pa.BufferOutputStream() UpperCAmelCase__ : List[str] = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase__ , UpperCAmelCase__ : Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ : Optional[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase ( ): UpperCAmelCase__ : Tuple = pa.BufferOutputStream() UpperCAmelCase__ : Optional[Any] = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=_snake_case ,features=_snake_case ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCAmelCase__ : List[str] = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ : Optional[Any] = pa.ipc.open_stream(_snake_case ) UpperCAmelCase__ : pa.Table = f.read_all() UpperCAmelCase__ : List[Any] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_snake_case ) @pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] ) def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : Optional[int] = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case ,writer_batch_size=_snake_case ,hash_salt='split_name' ,check_duplicates=_snake_case ,) as writer: with pytest.raises(_snake_case ): writer.write({'col_1': 'foo', 'col_2': 1} ,key=[1, 2] ) UpperCAmelCase__ , UpperCAmelCase__ : str = writer.finalize() @pytest.mark.parametrize('writer_batch_size' ,[None, 2, 10] ) def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case ,writer_batch_size=_snake_case ,hash_salt='split_name' ,check_duplicates=_snake_case ,) as writer: with pytest.raises(_snake_case ): writer.write({'col_1': 'foo', 'col_2': 1} ,key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} ,key=10 ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' ,[None, 2, 10] ) def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : int = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case ,writer_batch_size=_snake_case ,hash_salt='split_name' ,check_duplicates=_snake_case ,) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ,key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} ,key=2 ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] ) @pytest.mark.parametrize( 'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : List[Any] = pa.BufferOutputStream() UpperCAmelCase__ : Tuple = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ : Any = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] ) @pytest.mark.parametrize( 'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : List[Any] = pa.BufferOutputStream() UpperCAmelCase__ : Tuple = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] ) @pytest.mark.parametrize( 'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : List[str] = pa.BufferOutputStream() UpperCAmelCase__ : List[str] = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase ( ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()} UpperCAmelCase__ : Optional[int] = os.path.join(_snake_case ,'test.arrow' ) with ArrowWriter(path=_snake_case ,schema=pa.schema(_snake_case ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata ) _check_output(_snake_case ,1 ) def lowerCamelCase ( _snake_case ): if pa.types.is_list(_snake_case ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowerCamelCase ( _snake_case ,_snake_case ): if isinstance(lst[0] ,_snake_case ): change_first_primitive_element_in_list(lst[0] ,_snake_case ) else: UpperCAmelCase__ : Optional[int] = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' ,[(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : Any = pa.array(TypedSequence(_snake_case ,optimized_int_type=_snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' ,[ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] ,) @pytest.mark.parametrize('sequence' ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): # in range UpperCAmelCase__ : List[str] = pa.array(OptimizedTypedSequence(_snake_case ,col=_snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCAmelCase__ : Union[str, Any] = copy.deepcopy(_snake_case ) UpperCAmelCase__ : Tuple = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_snake_case ,_snake_case ) UpperCAmelCase__ : Optional[Any] = pa.array(OptimizedTypedSequence(_snake_case ,col=_snake_case ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' ,[False, True] ) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : str = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=_snake_case ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : Dict = 'mock://dataset-train.arrow' with ArrowWriter(path=_snake_case ,storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs ,type(_snake_case ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_snake_case ) def lowerCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter(stream=_snake_case ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCAmelCase__ : Optional[Any] = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ : pa.Table = pq.read_table(_snake_case ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' ,[False, True] ) def lowerCamelCase ( _snake_case ,_snake_case ): import PIL.Image UpperCAmelCase__ : str = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) ,dtype=np.uinta ) ).save(_snake_case ,format='png' ) UpperCAmelCase__ : Any = pa.BufferOutputStream() with ParquetWriter( stream=_snake_case ,features=Features({'image': Image()} ) ,embed_local_files=_snake_case ) as writer: writer.write({'image': image_path} ) writer.finalize() UpperCAmelCase__ : str = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ : pa.Table = pq.read_table(_snake_case ) UpperCAmelCase__ : List[str] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] ,_snake_case ) with open(_snake_case ,'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = pa.schema([pa.field('col_1' ,pa.string() ,nullable=_snake_case )] ) UpperCAmelCase__ : Optional[Any] = pa.BufferOutputStream() with ArrowWriter(stream=_snake_case ) as writer: writer._build_writer(inferred_schema=_snake_case ) assert writer._schema == pa.schema([pa.field('col_1' ,pa.string() )] )
110
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowercase__ : int = ['''small''', '''medium''', '''large'''] lowercase__ : str = '''lm_head.decoder.weight''' lowercase__ : List[Any] = '''lm_head.weight''' def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = torch.load(_lowerCamelCase ) snake_case_ = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) lowercase__ : Union[str, Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowercase__ : Optional[int] = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') lowercase__ : List[str] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
376
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_ (tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self :List[str] ,__snake_case :float ,__snake_case :Callable ,__snake_case :int ,__snake_case :float = 1.0 ,__snake_case :str = None ,) -> Any: super().__init__() a__ = initial_learning_rate a__ = warmup_steps a__ = power a__ = decay_schedule_fn a__ = name def __call__( self :List[str] ,__snake_case :int ) -> Optional[Any]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. a__ = tf.cast(__lowerCAmelCase ,tf.floataa ) a__ = tf.cast(self.warmup_steps ,tf.floataa ) a__ = global_step_float / warmup_steps_float a__ = self.initial_learning_rate * tf.math.pow(__lowerCAmelCase ,self.power ) return tf.cond( global_step_float < warmup_steps_float ,lambda: warmup_learning_rate ,lambda: self.decay_schedule_fn(step - self.warmup_steps ) ,name=__lowerCAmelCase ,) def lowerCamelCase__( self :Any ) -> Any: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] = 0.0 , __lowerCAmelCase : Any = 0.9 , __lowerCAmelCase : Union[str, Any] = 0.999 , __lowerCAmelCase : Union[str, Any] = 1E-8 , __lowerCAmelCase : List[str] = None , __lowerCAmelCase : Optional[Any] = None , __lowerCAmelCase : Optional[Any] = 0.0 , __lowerCAmelCase : Any = 1.0 , __lowerCAmelCase : Union[str, Any] = None , ): a__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_lowerCamelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_lowerCamelCase , ) if num_warmup_steps: a__ = WarmUp( initial_learning_rate=_lowerCamelCase , decay_schedule_fn=_lowerCamelCase , warmup_steps=_lowerCamelCase , ) if weight_decay_rate > 0.0: a__ = AdamWeightDecay( learning_rate=_lowerCamelCase , weight_decay_rate=_lowerCamelCase , beta_a=_lowerCamelCase , beta_a=_lowerCamelCase , epsilon=_lowerCamelCase , clipnorm=_lowerCamelCase , global_clipnorm=_lowerCamelCase , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=_lowerCamelCase , ) else: a__ = tf.keras.optimizers.Adam( learning_rate=_lowerCamelCase , beta_a=_lowerCamelCase , beta_a=_lowerCamelCase , epsilon=_lowerCamelCase , clipnorm=_lowerCamelCase , global_clipnorm=_lowerCamelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_ (_a ): def __init__( self :Optional[int] ,__snake_case :Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_01 ,__snake_case :float = 0.9 ,__snake_case :float = 0.9_99 ,__snake_case :float = 1E-7 ,__snake_case :bool = False ,__snake_case :float = 0.0 ,__snake_case :Optional[List[str]] = None ,__snake_case :Optional[List[str]] = None ,__snake_case :str = "AdamWeightDecay" ,**__snake_case :Tuple ,) -> Any: super().__init__(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ) a__ = weight_decay_rate a__ = include_in_weight_decay a__ = exclude_from_weight_decay @classmethod def lowerCamelCase__( cls :Union[str, Any] ,__snake_case :Union[str, Any] ) -> List[Any]: a__ = {"WarmUp": WarmUp} return super(__lowerCAmelCase ,cls ).from_config(__lowerCAmelCase ,custom_objects=__lowerCAmelCase ) def lowerCamelCase__( self :List[str] ,__snake_case :Dict ,__snake_case :Tuple ,__snake_case :Tuple ) -> int: super(__lowerCAmelCase ,self )._prepare_local(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) a__ = tf.constant( self.weight_decay_rate ,name='adam_weight_decay_rate' ) def lowerCamelCase__( self :Any ,__snake_case :Any ,__snake_case :Optional[Any] ,__snake_case :Optional[Any] ) -> Dict: a__ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] ,use_locking=self._use_locking ,) return tf.no_op() def lowerCamelCase__( self :List[str] ,__snake_case :Tuple ,__snake_case :Union[str, Any]=None ,**__snake_case :Union[str, Any] ) -> List[str]: a__ = list(zip(*__lowerCAmelCase ) ) return super(__lowerCAmelCase ,self ).apply_gradients(zip(__lowerCAmelCase ,__lowerCAmelCase ) ,name=__lowerCAmelCase ,**__lowerCAmelCase ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> List[Any]: if apply_state is None: return self._decayed_lr_t[var_dtype], {} a__ = apply_state or {} a__ = apply_state.get((var_device, var_dtype) ) if coefficients is None: a__ = self._fallback_apply_state(__lowerCAmelCase ,__lowerCAmelCase ) a__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__( self :Optional[int] ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :Union[str, Any]=None ) -> str: a__ = self._get_lr(var.device ,var.dtype.base_dtype ,__lowerCAmelCase ) a__ = self._decay_weights_op(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) with tf.control_dependencies([decay] ): return super(__lowerCAmelCase ,self )._resource_apply_dense(__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ) def lowerCamelCase__( self :List[str] ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Any ,__snake_case :Tuple=None ) -> Union[str, Any]: a__ = self._get_lr(var.device ,var.dtype.base_dtype ,__lowerCAmelCase ) a__ = self._decay_weights_op(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) with tf.control_dependencies([decay] ): return super(__lowerCAmelCase ,self )._resource_apply_sparse(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ) def lowerCamelCase__( self :int ) -> Dict: a__ = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowerCamelCase__( self :Tuple ,__snake_case :Any ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__lowerCAmelCase ,__lowerCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__lowerCAmelCase ,__lowerCAmelCase ) is not None: return False return True class snake_case_ (_a ): def __init__( self :Tuple ) -> Optional[int]: a__ = [] a__ = None @property def lowerCamelCase__( self :Dict ) -> str: if self._accum_steps is None: a__ = tf.Variable( tf.constant(0 ,dtype=tf.intaa ) ,trainable=__lowerCAmelCase ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) return self._accum_steps.value() @property def lowerCamelCase__( self :Dict ) -> Any: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self :str ,__snake_case :Tuple ) -> List[Any]: if not self._gradients: a__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__lowerCAmelCase ) ,trainable=__lowerCAmelCase ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) if gradient is not None else gradient for gradient in gradients ] ) if len(__lowerCAmelCase ) != len(self._gradients ): raise ValueError(F'Expected {len(self._gradients )} gradients, but got {len(__lowerCAmelCase )}' ) for accum_gradient, gradient in zip(self._gradients ,__lowerCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__lowerCAmelCase ) self._accum_steps.assign_add(1 ) def lowerCamelCase__( self :Optional[int] ) -> Dict: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__lowerCAmelCase ) )
335
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : int = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
529
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : Any =field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be trained."""} ) __UpperCAmelCase : Any =field( default="""./""" ,metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __UpperCAmelCase : Optional[int] =field( default="""codeparrot/codeparrot-clean-train""" ,metadata={"""help""": """Name or path of training dataset."""} ) __UpperCAmelCase : Tuple =field( default="""codeparrot/codeparrot-clean-valid""" ,metadata={"""help""": """Name or path of validation dataset."""} ) __UpperCAmelCase : Dict =field(default=2 ,metadata={"""help""": """Batch size for training."""} ) __UpperCAmelCase : Union[str, Any] =field(default=2 ,metadata={"""help""": """Batch size for evaluation."""} ) __UpperCAmelCase : str =field(default=0.1 ,metadata={"""help""": """Value of weight decay."""} ) __UpperCAmelCase : Optional[Any] =field( default=1_0_0_0_0 ,metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __UpperCAmelCase : int =field(default=2E-4 ,metadata={"""help""": """Learning rate fo training."""} ) __UpperCAmelCase : Any =field(default="""cosine""" ,metadata={"""help""": """Learning rate."""} ) __UpperCAmelCase : str =field( default=7_5_0 ,metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __UpperCAmelCase : Dict =field( default=1_6 ,metadata={"""help""": """Number of gradient accumulation steps."""} ) __UpperCAmelCase : List[Any] =field( default=_a ,metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __UpperCAmelCase : Dict =field(default=5_0_0_0_0 ,metadata={"""help""": """Maximum number of training steps."""} ) __UpperCAmelCase : int =field( default=-1 ,metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __UpperCAmelCase : List[Any] =field(default=1_0_2_4 ,metadata={"""help""": """Sequence lengths used for training."""} ) __UpperCAmelCase : Dict =field(default=1 ,metadata={"""help""": """Training seed."""} ) __UpperCAmelCase : List[str] =field( default=1_0_2_4 ,metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} ,) __UpperCAmelCase : Optional[Any] =field( default=_a ,metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __UpperCAmelCase : Dict =field(default=_a ,metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be evaluated."""} ) __UpperCAmelCase : Union[str, Any] =field( default="""codeparrot/codeparrot-clean-valid""" ,metadata={"""help""": """Name or path of validation dataset."""} ) __UpperCAmelCase : Union[str, Any] =field(default=2 ,metadata={"""help""": """Batch size used for evaluation."""} ) __UpperCAmelCase : int =field( default=-1 ,metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __UpperCAmelCase : Union[str, Any] =field(default=1_0_2_4 ,metadata={"""help""": """Length of sequences to be evaluated."""} ) __UpperCAmelCase : Optional[Any] =field(default=1 ,metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : Tuple =field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be evaluated."""} ) __UpperCAmelCase : Any =field(default=_a ,metadata={"""help""": """Number of workers used for code evaluation."""} ) __UpperCAmelCase : int =field( default=_a ,metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} ,) __UpperCAmelCase : Tuple =field( default=_a ,metadata={"""help""": """Sample from the language model\'s output distribution."""} ) __UpperCAmelCase : int =field(default=0.2 ,metadata={"""help""": """Sampling temperature used for generation."""} ) __UpperCAmelCase : List[str] =field(default=2_5_6 ,metadata={"""help""": """Maximum number of newly generated tokens."""} ) __UpperCAmelCase : List[Any] =field(default=0 ,metadata={"""help""": """Top-k parameter used for generation."""} ) __UpperCAmelCase : List[Any] =field(default=0.95 ,metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __UpperCAmelCase : List[Any] =field(default=1_0 ,metadata={"""help""": """Number of generations to run in parallel."""} ) __UpperCAmelCase : str =field( default=2_0_0 ,metadata={"""help""": """Number of completions to generate for each sample."""} ) __UpperCAmelCase : Optional[Any] =field(default=1 ,metadata={"""help""": """Random seed used for evaluation."""} ) __UpperCAmelCase : List[Any] =field( default="""eval_results.json""" ,metadata={"""help""": """Random seed used for evaluation."""} ) __UpperCAmelCase : List[Any] =field( default="""0""" ,metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __UpperCAmelCase : Union[str, Any] =field( default=-1 ,metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } ,) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : List[str] =field( default=_a ,metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } ,) __UpperCAmelCase : Tuple =field( default="""transformersbook/codeparrot""" ,metadata={"""help""": """Folder or name of dataset to process."""} ) __UpperCAmelCase : Optional[Any] =field( default="""codeparrot-clean""" ,metadata={"""help""": """Folder to save processed processed dataset."""} ) __UpperCAmelCase : List[Any] =field( default=1_0_0_0_0_0 ,metadata={"""help""": """Number of files to save per JSON output file."""} ) __UpperCAmelCase : Optional[Any] =field(default="""content""" ,metadata={"""help""": """Column containing text data to process."""} ) __UpperCAmelCase : Optional[int] =field( default=1_0_0_0 ,metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __UpperCAmelCase : Any =field( default=1_0_0 ,metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __UpperCAmelCase : int =field( default=0.25 ,metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __UpperCAmelCase : int =field( default=1.5 ,metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __UpperCAmelCase : List[str] =field( default=0.7 ,metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __UpperCAmelCase : Any =field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Name or path to the tokenizer."""} ,) __UpperCAmelCase : Dict =field( default=_a ,metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __UpperCAmelCase : Optional[int] =field( default=0.85 ,metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : List[str] =field( default="""gpt2""" ,metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __UpperCAmelCase : str =field( default="""transformersbook/codeparrot-train""" ,metadata={"""help""": """Dataset to train tokenizer on."""} ) __UpperCAmelCase : List[str] =field(default="""content""" ,metadata={"""help""": """Column containing text data to process."""} ) __UpperCAmelCase : Optional[int] =field(default=2_0_0_0_0_0 ,metadata={"""help""": """Number of examples to train tokenizer on."""} ) __UpperCAmelCase : Optional[int] =field( default=3_2_7_6_8 ,metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __UpperCAmelCase : Union[str, Any] =field(default="""codeparrot""" ,metadata={"""help""": """Name of new tokenizer."""} ) __UpperCAmelCase : Optional[int] =field(default=_a ,metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Name or path to the tokenizer."""} ) __UpperCAmelCase : int =field( default="""codeparrot/codeparrot-clean-train""" ,metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __UpperCAmelCase : int =field( default="""tokenized-codeparrot-train""" ,metadata={"""help""": """Repo name of the pretokenized data."""} ) __UpperCAmelCase : List[Any] =field(default=_a ,metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( default="""gpt2-large""" ,metadata={"""help""": """Configuration to use for model initialization."""} ) __UpperCAmelCase : str =field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Tokenizer attached to model."""} ) __UpperCAmelCase : List[Any] =field(default="""codeparrot""" ,metadata={"""help""": """Name of the created model."""} ) __UpperCAmelCase : Union[str, Any] =field(default=_a ,metadata={"""help""": """Push saved tokenizer to the hub."""} )
636
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
0
"""simple docstring""" import os from distutils.util import strtobool def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): for e in env_keys: lowerCAmelCase = int(os.environ.get(_lowerCamelCase , -1 ) ) if val >= 0: return val return default def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Tuple=False ): lowerCAmelCase = os.environ.get(_lowerCamelCase , str(_lowerCamelCase ) ) return strtobool(_lowerCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str="no" ): lowerCAmelCase = os.environ.get(_lowerCamelCase , str(_lowerCamelCase ) ) return value
4
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
0
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=30 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=10 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=0.6 ,SCREAMING_SNAKE_CASE__=None ,) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = parent __SCREAMING_SNAKE_CASE :int = batch_size __SCREAMING_SNAKE_CASE :int = image_size __SCREAMING_SNAKE_CASE :Optional[Any] = patch_size __SCREAMING_SNAKE_CASE :List[Any] = num_channels __SCREAMING_SNAKE_CASE :Tuple = is_training __SCREAMING_SNAKE_CASE :Optional[Any] = use_labels __SCREAMING_SNAKE_CASE :Tuple = hidden_size __SCREAMING_SNAKE_CASE :List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE :str = num_attention_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE :List[Any] = hidden_act __SCREAMING_SNAKE_CASE :Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE :List[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Union[str, Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE :List[str] = initializer_range __SCREAMING_SNAKE_CASE :int = mask_ratio __SCREAMING_SNAKE_CASE :Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE :Union[str, Any] = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE :Optional[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE :int = None if self.use_labels: __SCREAMING_SNAKE_CASE :List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :Any = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ) -> Any: """simple docstring""" return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = TFViTMAEModel(config=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = model(__lowerCAmelCase ,training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = TFViTMAEForPreTraining(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Any = model(__lowerCAmelCase ,training=__lowerCAmelCase ) # expected sequence length = num_patches __SCREAMING_SNAKE_CASE :Union[str, Any] = (self.image_size // self.patch_size) ** 2 __SCREAMING_SNAKE_CASE :Any = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __SCREAMING_SNAKE_CASE :Dict = 1 __SCREAMING_SNAKE_CASE :Optional[Any] = TFViTMAEForPreTraining(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE :List[str] = model(__lowerCAmelCase ,training=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.prepare_config_and_inputs() (__SCREAMING_SNAKE_CASE) :List[Any] = config_and_inputs __SCREAMING_SNAKE_CASE :List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE( _a , _a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : str = False def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :int = TFViTMAEModelTester(self ) __SCREAMING_SNAKE_CASE :Tuple = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Optional[int] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __SCREAMING_SNAKE_CASE :int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,tf.keras.layers.Layer ) ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Any = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE :int = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE :Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) __SCREAMING_SNAKE_CASE :int = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :List[Any] = int((config.image_size // config.patch_size) ** 2 ) __SCREAMING_SNAKE_CASE :Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Union[str, Any] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :int = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :str = copy.deepcopy(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE :Dict = model(**__lowerCAmelCase ,noise=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = outputs_dict[0].numpy() __SCREAMING_SNAKE_CASE :int = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" np.random.seed(2 ) __SCREAMING_SNAKE_CASE :int = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Optional[int] = int((config.image_size // config.patch_size) ** 2 ) __SCREAMING_SNAKE_CASE :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :List[str] = {} for k, v in inputs_dict.items(): if tf.is_tensor(__lowerCAmelCase ): __SCREAMING_SNAKE_CASE :Optional[int] = v.numpy() else: __SCREAMING_SNAKE_CASE :Optional[int] = np.array(__lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :List[str] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Dict = prepare_numpy_arrays(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Any = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = model(**__lowerCAmelCase ,noise=__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) __SCREAMING_SNAKE_CASE :Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __SCREAMING_SNAKE_CASE :str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __SCREAMING_SNAKE_CASE :Optional[int] = tf.constant(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __SCREAMING_SNAKE_CASE :Tuple = tf_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _UpperCamelCase ( self ) -> str: """simple docstring""" np.random.seed(2 ) __SCREAMING_SNAKE_CASE :List[str] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__lowerCAmelCase ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__lowerCAmelCase ,__lowerCAmelCase ),) if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__lowerCAmelCase ,'''_keras_serializable''' ,__lowerCAmelCase ) } __SCREAMING_SNAKE_CASE :List[str] = int((config.image_size // config.patch_size) ** 2 ) __SCREAMING_SNAKE_CASE :int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __SCREAMING_SNAKE_CASE :Optional[int] = tf.convert_to_tensor(__lowerCAmelCase ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: __SCREAMING_SNAKE_CASE :Optional[Any] = main_layer_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __SCREAMING_SNAKE_CASE :Union[str, Any] = tf.keras.Model(__lowerCAmelCase ,outputs=main_layer(__lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE :List[Any] = model(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE :Union[str, Any] = os.path.join(__lowerCAmelCase ,'''keras_model.h5''' ) model.save(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :str = tf.keras.models.load_model( __lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__lowerCAmelCase ,tf.keras.Model ) __SCREAMING_SNAKE_CASE :int = model(__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase ) @slow def _UpperCamelCase ( self ) -> Any: """simple docstring""" np.random.seed(2 ) __SCREAMING_SNAKE_CASE :Dict = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) __SCREAMING_SNAKE_CASE :List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Tuple = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": __SCREAMING_SNAKE_CASE :Optional[int] = outputs.last_hidden_state.numpy() __SCREAMING_SNAKE_CASE :List[str] = 0 else: __SCREAMING_SNAKE_CASE :str = outputs.logits.numpy() __SCREAMING_SNAKE_CASE :str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ,saved_model=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Dict = model_class.from_pretrained(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": __SCREAMING_SNAKE_CASE :int = after_outputs["last_hidden_state"].numpy() __SCREAMING_SNAKE_CASE :Dict = 0 else: __SCREAMING_SNAKE_CASE :List[Any] = after_outputs["logits"].numpy() __SCREAMING_SNAKE_CASE :Optional[Any] = 0 __SCREAMING_SNAKE_CASE :int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1E-5 ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" np.random.seed(2 ) __SCREAMING_SNAKE_CASE :Tuple = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :List[Any] = int((config.image_size // config.patch_size) ** 2 ) __SCREAMING_SNAKE_CASE :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :List[Any] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :List[Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[Any] = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __SCREAMING_SNAKE_CASE :Dict = model_class.from_config(model.config ) __SCREAMING_SNAKE_CASE :str = new_model(__lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) __SCREAMING_SNAKE_CASE :Union[str, Any] = new_model(__lowerCAmelCase ,noise=__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.''' ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" pass @slow def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__lowerCAmelCase ) def __lowerCamelCase ( ) -> int: __SCREAMING_SNAKE_CASE :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> int: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> Any: """simple docstring""" np.random.seed(2 ) __SCREAMING_SNAKE_CASE :List[str] = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) __SCREAMING_SNAKE_CASE :List[str] = self.default_image_processor __SCREAMING_SNAKE_CASE :Optional[Any] = prepare_img() __SCREAMING_SNAKE_CASE :Any = image_processor(images=__lowerCAmelCase ,return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __SCREAMING_SNAKE_CASE :Dict = ViTMAEConfig() __SCREAMING_SNAKE_CASE :Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __SCREAMING_SNAKE_CASE :Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass __SCREAMING_SNAKE_CASE :str = model(**__lowerCAmelCase ,noise=__lowerCAmelCase ) # verify the logits __SCREAMING_SNAKE_CASE :Tuple = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,__lowerCAmelCase ,atol=1E-4 )
498
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : str = 16 A : Dict = 32 def _a ( lowerCamelCase_ , lowerCamelCase_ = 16 ): snake_case : List[Any] =AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case : List[Any] =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) snake_case : Dict =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case : Any =datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case : List[Any] =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case : Union[str, Any] =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case : str =16 elif accelerator.mixed_precision != "no": snake_case : Union[str, Any] =8 else: snake_case : Optional[int] =None return tokenizer.pad( _lowerCamelCase , padding='''longest''' , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case : Any =DataLoader( tokenized_datasets['''train'''] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) snake_case : List[str] =DataLoader( tokenized_datasets['''validation'''] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Dict = mocked_dataloaders # noqa: F811 def _a ( lowerCamelCase_ , lowerCamelCase_ ): if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _lowerCamelCase ) == "1": snake_case : List[str] =2 # New Code # snake_case : Any =int(args.gradient_accumulation_steps ) # Initialize accelerator snake_case : Dict =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : Tuple =config["lr"] snake_case : int =int(config['''num_epochs'''] ) snake_case : Any =int(config['''seed'''] ) snake_case : Optional[int] =int(config['''batch_size'''] ) snake_case : Optional[int] =evaluate.load('''glue''' , '''mrpc''' ) set_seed(_lowerCamelCase ) snake_case : Union[str, Any] =get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : Tuple =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case : List[str] =model.to(accelerator.device ) # Instantiate optimizer snake_case : Any =AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler snake_case : List[Any] =get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case : Optional[Any] =accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCamelCase ): snake_case : List[str] =model(**_lowerCamelCase ) snake_case : Dict =output.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case : str =model(**_lowerCamelCase ) snake_case : Any =outputs.logits.argmax(dim=-1 ) snake_case : Dict =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) snake_case : int =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCamelCase ) def _a ( ): snake_case : List[str] =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_lowerCamelCase , default=_lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=_lowerCamelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) snake_case : Any =parser.parse_args() snake_case : Dict ={"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
349
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
0
from __future__ import annotations import requests def a_ ( _A ) -> dict: """simple docstring""" snake_case__ = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowerCamelCase ).json() def a_ ( _A = 10 ) -> list[dict]: """simple docstring""" snake_case__ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" snake_case__ = requests.get(_lowerCamelCase ).json()[:max_stories] return [get_hackernews_story(_lowerCamelCase ) for story_id in story_ids] def a_ ( _A = 10 ) -> str: """simple docstring""" snake_case__ = hackernews_top_stories(_lowerCamelCase ) return "\n".join('* [{title}]({url})'.format(**_lowerCamelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
328
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowercase_ = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
562
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 1 _lowerCamelCase : int = 3 _lowerCamelCase : Tuple = (3_2, 3_2) _lowerCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" def extract(*__lowerCAmelCase : Tuple , **__lowerCAmelCase : Tuple ): class __snake_case : def __init__( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = torch.ones([0] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any] ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Any = self.dummy_cond_unet _lowerCamelCase : int = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_vae _lowerCamelCase : List[str] = self.dummy_text_encoder _lowerCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _lowerCamelCase : Union[str, Any] = 7_7 _lowerCamelCase : List[Any] = self.dummy_image.to(__lowerCAmelCase ) _lowerCamelCase : List[str] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowerCamelCase : int = AltDiffusionImgaImgPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) _lowerCamelCase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = alt_pipe.to(__lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Dict = "A painting of a squirrel eating a burger" _lowerCamelCase : List[str] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _lowerCamelCase : int = alt_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__lowerCAmelCase , ) _lowerCamelCase : Dict = output.images _lowerCamelCase : Any = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _lowerCamelCase : Union[str, Any] = alt_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCamelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase : List[str] = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[int] = self.dummy_cond_unet _lowerCamelCase : str = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) _lowerCamelCase : int = self.dummy_vae _lowerCamelCase : int = self.dummy_text_encoder _lowerCamelCase : List[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _lowerCamelCase : Tuple = 7_7 _lowerCamelCase : Any = self.dummy_image.to(__lowerCAmelCase ) # put models in fp16 _lowerCamelCase : List[str] = unet.half() _lowerCamelCase : Union[str, Any] = vae.half() _lowerCamelCase : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk _lowerCamelCase : Optional[Any] = AltDiffusionImgaImgPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) _lowerCamelCase : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = alt_pipe.to(__lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = "A painting of a squirrel eating a burger" _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = alt_pipe( [prompt] , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , image=__lowerCAmelCase , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCamelCase : List[str] = init_image.resize((7_6_0, 5_0_4) ) _lowerCamelCase : Any = "BAAI/AltDiffusion" _lowerCamelCase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCAmelCase , safety_checker=__lowerCAmelCase , ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCamelCase : Optional[Any] = "A fantasy landscape, trending on artstation" _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : Any = output.images[0] _lowerCamelCase : Optional[int] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) _lowerCamelCase : List[Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase : Union[str, Any] = init_image.resize((7_6_8, 5_1_2) ) _lowerCamelCase : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) _lowerCamelCase : Dict = "BAAI/AltDiffusion" _lowerCamelCase : str = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCAmelCase , safety_checker=__lowerCAmelCase , ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCamelCase : Optional[int] = "A fantasy landscape, trending on artstation" _lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
83
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration UpperCAmelCase_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCAmelCase_ ( lowercase: Tuple ) -> Dict: '''simple docstring''' _UpperCamelCase: Tuple = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCAmelCase_ ( lowercase: Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase: Union[str, Any] = list(s_dict.keys() ) for key in keys: _UpperCamelCase: int = key for k, v in WHISPER_MAPPING.items(): if k in key: _UpperCamelCase: List[Any] = new_key.replace(_lowerCamelCase , _lowerCamelCase ) print(F"""{key} -> {new_key}""" ) _UpperCamelCase: Union[str, Any] = s_dict.pop(_lowerCamelCase ) return s_dict def lowerCAmelCase_ ( lowercase: Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase: Any = emb.weight.shape _UpperCamelCase: Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) _UpperCamelCase: List[Any] = emb.weight.data return lin_layer def lowerCAmelCase_ ( lowercase: List[Any] , lowercase: Optional[Any] ) -> bytes: '''simple docstring''' os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _UpperCamelCase: Optional[Any] = os.path.basename(_lowerCamelCase ) _UpperCamelCase: Union[str, Any] = url.split('''/''' )[-2] _UpperCamelCase: Union[str, Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ) and not os.path.isfile(_lowerCamelCase ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(_lowerCamelCase ): _UpperCamelCase: List[Any] = open(_lowerCamelCase , '''rb''' ).read() if hashlib.shaaaa(_lowerCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(_lowerCamelCase ) as source, open(_lowerCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_lowerCamelCase , unit_divisor=1_024 ) as loop: while True: _UpperCamelCase: str = source.read(8_192 ) if not buffer: break output.write(_lowerCamelCase ) loop.update(len(_lowerCamelCase ) ) _UpperCamelCase: Dict = open(_lowerCamelCase , '''rb''' ).read() if hashlib.shaaaa(_lowerCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCAmelCase_ ( lowercase: Any , lowercase: List[Any] ) -> str: '''simple docstring''' if ".pt" not in checkpoint_path: _UpperCamelCase: Tuple = _download(_MODELS[checkpoint_path] ) else: _UpperCamelCase: List[Any] = torch.load(_lowerCamelCase , map_location='''cpu''' ) _UpperCamelCase: Dict = original_checkpoint["dims"] _UpperCamelCase: Union[str, Any] = original_checkpoint["model_state_dict"] _UpperCamelCase: int = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(_lowerCamelCase ) rename_keys(_lowerCamelCase ) _UpperCamelCase: Union[str, Any] = True _UpperCamelCase: List[str] = state_dict["decoder.layers.0.fc1.weight"].shape[0] _UpperCamelCase: Dict = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_lowerCamelCase , decoder_ffn_dim=_lowerCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) _UpperCamelCase: List[str] = WhisperForConditionalGeneration(_lowerCamelCase ) _UpperCamelCase: int = model.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) if len(_lowerCamelCase ) > 0 and not set(_lowerCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F""" but all the following weights are missing {missing}""" ) if tie_embeds: _UpperCamelCase: Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCamelCase: Tuple = proj_out_weights model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
271
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
def lowerCamelCase__ ( _A ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("check_bouncy() accepts only integer arguments" ) snake_case_ = str(_lowerCamelCase ) snake_case_ = "".join(sorted(_lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowerCamelCase__ ( _A = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) snake_case_ = 0 snake_case_ = 1 while True: if check_bouncy(_lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
376
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
import os import platform import sys snake_case : Union[str, Any] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
335
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
0
import os import sys import unittest __lowerCAmelCase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : Union[str, Any] = os.path.join(git_repo_path, 'src', 'diffusers') class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__lowerCAmelCase , """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __magic_name__ = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__lowerCAmelCase , """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __magic_name__ = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__lowerCAmelCase , """torch_and_transformers_and_onnx""" ) def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , __lowerCAmelCase ) self.assertIn("""torch_and_transformers""" , __lowerCAmelCase ) self.assertIn("""flax_and_transformers""" , __lowerCAmelCase ) self.assertIn("""torch_and_transformers_and_onnx""" , __lowerCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""" , objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""" , objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""" , objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""" , objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""" , objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""" , objects["""torch_and_transformers_and_onnx"""] ) def _lowercase ( self : List[str] ) -> Tuple: """simple docstring""" __magic_name__ = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(__lowerCAmelCase , """\nCONSTANT = None\n""" ) __magic_name__ = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( __lowerCAmelCase , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __magic_name__ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" __magic_name__ = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __magic_name__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" __magic_name__ = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , __lowerCAmelCase )
529
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( _a ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =MgpstrTokenizer __UpperCAmelCase : int =False __UpperCAmelCase : str ={} __UpperCAmelCase : Dict =False def snake_case ( self ): super().setUp() # fmt: off __lowerCAmelCase = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on __lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def snake_case ( self , **__a ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case ( self , __a ): __lowerCAmelCase = "tester" __lowerCAmelCase = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowerCAmelCase = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) __lowerCAmelCase = tokenizer.encode([special_token] , add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) , 1 ) __lowerCAmelCase = tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case ( self ): __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowerCAmelCase = self.get_input_output_texts(__lowerCAmelCase ) __lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) __lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) , 0 ) __lowerCAmelCase = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(text_a.replace(" " , "" ) , __lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case ( self ): pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case ( self ): pass
636
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : List[Any] = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
0
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE( _a ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '''autoformer''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = "student_t" ,SCREAMING_SNAKE_CASE__ = "nll" ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4, 5, 6, 7] ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 64 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 32 ,SCREAMING_SNAKE_CASE__ = 32 ,SCREAMING_SNAKE_CASE__ = "gelu" ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 1_00 ,SCREAMING_SNAKE_CASE__ = 0.0_2 ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__ = 10 ,SCREAMING_SNAKE_CASE__ = 25 ,SCREAMING_SNAKE_CASE__ = 3 ,**SCREAMING_SNAKE_CASE__ ,) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :str = prediction_length __SCREAMING_SNAKE_CASE :Union[str, Any] = context_length if context_length is not None else prediction_length __SCREAMING_SNAKE_CASE :Tuple = distribution_output __SCREAMING_SNAKE_CASE :Tuple = loss __SCREAMING_SNAKE_CASE :Any = input_size __SCREAMING_SNAKE_CASE :Tuple = num_time_features __SCREAMING_SNAKE_CASE :Optional[Any] = lags_sequence __SCREAMING_SNAKE_CASE :Optional[Any] = scaling __SCREAMING_SNAKE_CASE :int = num_dynamic_real_features __SCREAMING_SNAKE_CASE :Dict = num_static_real_features __SCREAMING_SNAKE_CASE :int = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __SCREAMING_SNAKE_CASE :int = cardinality else: __SCREAMING_SNAKE_CASE :Any = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = embedding_dimension else: __SCREAMING_SNAKE_CASE :Tuple = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] __SCREAMING_SNAKE_CASE :Union[str, Any] = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE :List[Any] = input_size * len(self.lags_sequence ) + self._number_of_features __SCREAMING_SNAKE_CASE :str = d_model __SCREAMING_SNAKE_CASE :Optional[int] = encoder_attention_heads __SCREAMING_SNAKE_CASE :int = decoder_attention_heads __SCREAMING_SNAKE_CASE :Tuple = encoder_ffn_dim __SCREAMING_SNAKE_CASE :Union[str, Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE :Any = encoder_layers __SCREAMING_SNAKE_CASE :Any = decoder_layers __SCREAMING_SNAKE_CASE :Optional[Any] = dropout __SCREAMING_SNAKE_CASE :Dict = attention_dropout __SCREAMING_SNAKE_CASE :int = activation_dropout __SCREAMING_SNAKE_CASE :Dict = encoder_layerdrop __SCREAMING_SNAKE_CASE :Union[str, Any] = decoder_layerdrop __SCREAMING_SNAKE_CASE :Optional[Any] = activation_function __SCREAMING_SNAKE_CASE :List[str] = init_std __SCREAMING_SNAKE_CASE :str = use_cache # Autoformer __SCREAMING_SNAKE_CASE :Dict = label_length __SCREAMING_SNAKE_CASE :Optional[Any] = moving_average __SCREAMING_SNAKE_CASE :Optional[int] = autocorrelation_factor super().__init__(is_encoder_decoder=__lowerCAmelCase ,**__lowerCAmelCase ) @property def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
498
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _a ): lowerCAmelCase__ = 'vivit' def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = num_frames _lowerCamelCase : Optional[int] = tubelet_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = qkv_bias super().__init__(**__lowerCAmelCase )
46
0
'''simple docstring''' def _a ( lowerCamelCase_ , lowerCamelCase_ ): return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.25) = }") print(f"{price_plus_tax(125.50, 0.05) = }")
349
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __SCREAMING_SNAKE_CASE: def __init__( self: Dict , UpperCamelCase: str , UpperCamelCase: List[str]=13 , UpperCamelCase: int=2 , UpperCamelCase: Dict=24 , UpperCamelCase: int=16 , UpperCamelCase: Dict=True , UpperCamelCase: Optional[int]=True , UpperCamelCase: Optional[int]=32 , UpperCamelCase: Optional[int]=5 , UpperCamelCase: Optional[Any]=4 , UpperCamelCase: Optional[Any]=37 , UpperCamelCase: str="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: List[Any]=10 , UpperCamelCase: Tuple=0.02 , UpperCamelCase: Any=None , UpperCamelCase: Dict=2 , UpperCamelCase: Dict=2 , ) -> Optional[Any]: snake_case__ = parent snake_case__ = batch_size snake_case__ = patch_size snake_case__ = max_length snake_case__ = num_mel_bins snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = scope snake_case__ = frequency_stride snake_case__ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) snake_case__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 snake_case__ = (self.max_length - self.patch_size) // self.time_stride + 1 snake_case__ = frequency_out_dimension * time_out_dimension snake_case__ = num_patches + 2 def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: snake_case__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = self.get_config() return config, input_values, labels def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowerCAmelCase_ ( self: int , UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: int ) -> Union[str, Any]: snake_case__ = ASTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() snake_case__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] ) -> int: snake_case__ = self.prepare_config_and_inputs() ( snake_case__ ) = config_and_inputs snake_case__ = {"input_values": input_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( _a , _a , unittest.TestCase ): _UpperCAmelCase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _UpperCAmelCase = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: List[str] ) -> Tuple: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowerCAmelCase_ ( self: Optional[int] ) -> str: snake_case__ = ASTModelTester(self ) snake_case__ = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def lowerCAmelCase_ ( self: Tuple ) -> Any: pass def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[Any]: snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(__lowerCAmelCase ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ["input_values"] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def lowerCAmelCase_ ( self: Any ) -> Union[str, Any]: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Any: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = ASTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def a_ ( ) -> str: """simple docstring""" snake_case__ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) snake_case__ = torchaudio.load(_lowerCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self: Dict ) -> Any: return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def lowerCAmelCase_ ( self: Optional[Any] ) -> int: snake_case__ = self.default_feature_extractor snake_case__ = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(__lowerCAmelCase ) snake_case__ = self.default_feature_extractor snake_case__ = prepare_audio() snake_case__ = audio.squeeze().numpy() snake_case__ = feature_extractor(__lowerCAmelCase , sampling_rate=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): snake_case__ = model(**__lowerCAmelCase ) # verify the logits snake_case__ = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) snake_case__ = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) )
328
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=7 , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : Any=1_8 , SCREAMING_SNAKE_CASE_ : Any=3_0 , SCREAMING_SNAKE_CASE_ : Tuple=4_0_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : List[Any]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_ : Tuple=[0.5, 0.5, 0.5] , ): _a = size if size is not None else {"shortest_edge": 1_8} _a = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_center_crop _a = crop_size _a = do_normalize _a = image_mean _a = image_std def _UpperCAmelCase ( self : Union[str, Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCamelCase ( _a , unittest.TestCase ): '''simple docstring''' _A = LevitImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : List[str] ): _a = LevitImageProcessingTester(self ) @property def _UpperCAmelCase ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : List[str] ): _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'size' ) ) def _UpperCAmelCase ( self : List[str] ): _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self : Optional[Any] ): pass def _UpperCAmelCase ( self : str ): _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _a = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self : Dict ): _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _a = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self : Any ): _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _a = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
562
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __snake_case : def __init__( self : List[str] , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : str = "openai/clip-vit-large-patch14" ): """simple docstring""" _lowerCamelCase : List[str] = device _lowerCamelCase : Dict = CLIPTokenizerFast.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] _lowerCamelCase : List[Any] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] _lowerCamelCase : Tuple = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCamelCase : Optional[Any] = torchvision.transforms.Resize(2_2_4 ) _lowerCamelCase : List[Any] = torchvision.transforms.CenterCrop(2_2_4 ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = self.resize(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.center_crop(__lowerCAmelCase ) _lowerCamelCase : List[str] = self.normalize(__lowerCAmelCase ) return images def __call__( self : Optional[int] , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[Any]=None , **__lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[Any] = self.tokenizer(text=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Any = self.preprocess_img(__lowerCAmelCase ) _lowerCamelCase : List[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __snake_case ( nn.Module): def __init__( self : Tuple , __lowerCAmelCase : Any=1_0 , __lowerCAmelCase : List[Any]=0.01 , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]="image" , __lowerCAmelCase : int=True , __lowerCAmelCase : int=False , __lowerCAmelCase : str=False , __lowerCAmelCase : Any=False , ): """simple docstring""" super().__init__() _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Any = device if device else get_device() if vqgan: _lowerCamelCase : Any = vqgan else: _lowerCamelCase : List[str] = load_vqgan(self.device , conf_path=__lowerCAmelCase , ckpt_path=__lowerCAmelCase ) self.vqgan.eval() if clip: _lowerCamelCase : Any = clip else: _lowerCamelCase : List[Any] = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _lowerCamelCase : Optional[int] = ProcessorGradientFlow(device=self.device ) _lowerCamelCase : int = iterations _lowerCamelCase : Tuple = lr _lowerCamelCase : Any = log _lowerCamelCase : Dict = make_grid _lowerCamelCase : Optional[int] = return_val _lowerCamelCase : Union[str, Any] = quantize _lowerCamelCase : List[str] = self.vqgan.decoder.z_shape def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : List[Any]=True ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [] if output_path is None: _lowerCamelCase : Optional[Any] = "./animation.gif" if input_path is None: _lowerCamelCase : Optional[Any] = self.save_path _lowerCamelCase : Dict = sorted(glob(input_path + '''/*''' ) ) if not len(__lowerCAmelCase ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(__lowerCAmelCase ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _lowerCamelCase : Any = total_duration / len(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [frame_duration] * len(__lowerCAmelCase ) if extend_frames: _lowerCamelCase : Dict = 1.5 _lowerCamelCase : List[Any] = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(__lowerCAmelCase ) ) imageio.mimsave(__lowerCAmelCase , __lowerCAmelCase , duration=__lowerCAmelCase ) print(f'''gif saved to {output_path}''' ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Optional[Any]=None ): """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _lowerCamelCase : Tuple = preprocess(Image.open(__lowerCAmelCase ) , target_image_size=2_5_6 ).to(self.device ) _lowerCamelCase : str = preprocess_vqgan(__lowerCAmelCase ) _lowerCamelCase : List[str] = self.vqgan.encode(__lowerCAmelCase ) return z def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.latent.detach().requires_grad_() _lowerCamelCase : str = base_latent + transform_vector if self.quantize: _lowerCamelCase : List[Any] = self.vqgan.quantize(__lowerCAmelCase ) else: _lowerCamelCase : str = trans_latent return self.vqgan.decode(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict=None ): """simple docstring""" _lowerCamelCase : List[str] = self.clip_preprocessor(text=__lowerCAmelCase , images=__lowerCAmelCase , return_tensors='''pt''' , padding=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.clip(**__lowerCAmelCase ) _lowerCamelCase : Dict = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase : Union[str, Any] = similarity_logits * weights return similarity_logits.sum() def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = self._get_clip_similarity(pos_prompts['''prompts'''] , __lowerCAmelCase , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _lowerCamelCase : List[Any] = self._get_clip_similarity(neg_prompts['''prompts'''] , __lowerCAmelCase , weights=neg_prompts['''weights'''] ) else: _lowerCamelCase : Union[str, Any] = torch.tensor([1] , device=self.device ) _lowerCamelCase : List[str] = -torch.log(__lowerCAmelCase ) + torch.log(__lowerCAmelCase ) return loss def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = torch.randn_like(self.latent , requires_grad=__lowerCAmelCase , device=self.device ) _lowerCamelCase : Union[str, Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase : List[str] = self._add_vector(__lowerCAmelCase ) _lowerCamelCase : Dict = loop_post_process(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self._get_CLIP_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print('''CLIP loss''' , __lowerCAmelCase ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=__lowerCAmelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : List[str] ): """simple docstring""" wandb.init(reinit=__lowerCAmelCase , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _lowerCamelCase : Dict = Image.open(__lowerCAmelCase ) _lowerCamelCase : int = image.resize((2_5_6, 2_5_6) ) wandb.log('''Original Image''' , wandb.Image(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Any ): """simple docstring""" if not prompts: return [] _lowerCamelCase : List[Any] = [] _lowerCamelCase : Any = [] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : Optional[Any] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(__lowerCAmelCase , (tuple, list) ): _lowerCamelCase : Optional[int] = prompt[0] _lowerCamelCase : Optional[int] = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase : Union[str, Any] = prompt.split(''':''' ) _lowerCamelCase : Dict = float(__lowerCAmelCase ) else: _lowerCamelCase : Any = prompt _lowerCamelCase : int = 1.0 processed_prompts.append(__lowerCAmelCase ) weights.append(__lowerCAmelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(__lowerCAmelCase , device=self.device ), } def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : str=None , ): """simple docstring""" if image_path: _lowerCamelCase : Optional[Any] = self._get_latent(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase : Union[str, Any] = self.process_prompts(__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.process_prompts(__lowerCAmelCase ) if save_final and save_path is None: _lowerCamelCase : Union[str, Any] = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) else: _lowerCamelCase : List[Any] = save_path + "_" + get_timestamp() os.makedirs(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = save_path _lowerCamelCase : Optional[int] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(__lowerCAmelCase ) ) _lowerCamelCase : int = loop_post_process(__lowerCAmelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ): if show_intermediate: show_pil(__lowerCAmelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(__lowerCAmelCase )} ) if show_final: show_pil(__lowerCAmelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
83
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __magic_name__ : """simple docstring""" def __init__( self : List[str] , _lowercase : List[str] , _lowercase : List[Any]=13 , _lowercase : Optional[int]=7 , _lowercase : str=True , _lowercase : Tuple=True , _lowercase : Any=True , _lowercase : List[Any]=True , _lowercase : Tuple=99 , _lowercase : Optional[Any]=64 , _lowercase : Optional[Any]=32 , _lowercase : Dict=5 , _lowercase : Tuple=4 , _lowercase : Union[str, Any]=37 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : Optional[int]=512 , _lowercase : Tuple=16 , _lowercase : Tuple=2 , _lowercase : List[str]=0.02 , _lowercase : Optional[int]=3 , _lowercase : Tuple=4 , _lowercase : int=None , ): """simple docstring""" _UpperCamelCase: Union[str, Any] = parent _UpperCamelCase: Optional[Any] = batch_size _UpperCamelCase: List[Any] = seq_length _UpperCamelCase: Tuple = is_training _UpperCamelCase: str = use_input_mask _UpperCamelCase: List[str] = use_token_type_ids _UpperCamelCase: Union[str, Any] = use_labels _UpperCamelCase: Any = vocab_size _UpperCamelCase: Tuple = hidden_size _UpperCamelCase: Optional[Any] = embedding_size _UpperCamelCase: List[Any] = num_hidden_layers _UpperCamelCase: Optional[int] = num_attention_heads _UpperCamelCase: Dict = intermediate_size _UpperCamelCase: Optional[int] = hidden_act _UpperCamelCase: Tuple = hidden_dropout_prob _UpperCamelCase: Optional[Any] = attention_probs_dropout_prob _UpperCamelCase: List[str] = max_position_embeddings _UpperCamelCase: List[str] = type_vocab_size _UpperCamelCase: List[str] = type_sequence_label_size _UpperCamelCase: Any = initializer_range _UpperCamelCase: Optional[int] = num_labels _UpperCamelCase: str = num_choices _UpperCamelCase: Optional[Any] = scope def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase: List[Any] = None if self.use_input_mask: _UpperCamelCase: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase: Any = None if self.use_token_type_ids: _UpperCamelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase: List[Any] = None _UpperCamelCase: List[str] = None _UpperCamelCase: int = None if self.use_labels: _UpperCamelCase: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase: Dict = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase: Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : int , _lowercase : Optional[Any] , _lowercase : Any ): """simple docstring""" _UpperCamelCase: Union[str, Any] = MegatronBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCamelCase: str = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _UpperCamelCase: int = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _UpperCamelCase: Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : List[str] , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Optional[int] ): """simple docstring""" _UpperCamelCase: List[Any] = MegatronBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCamelCase: List[str] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Tuple , _lowercase : Dict , _lowercase : Any , _lowercase : List[str] , _lowercase : str , _lowercase : Dict , _lowercase : str , _lowercase : str ): """simple docstring""" _UpperCamelCase: int = MegatronBertForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCamelCase: Dict = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : List[Any] ): """simple docstring""" _UpperCamelCase: Any = MegatronBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCamelCase: List[Any] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Optional[int] ): """simple docstring""" _UpperCamelCase: List[Any] = MegatronBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCamelCase: int = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , next_sentence_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : int , _lowercase : Tuple , _lowercase : Tuple , _lowercase : int , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Dict ): """simple docstring""" _UpperCamelCase: Optional[int] = MegatronBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCamelCase: Optional[int] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[Any] , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Union[str, Any] ): """simple docstring""" _UpperCamelCase: List[Any] = self.num_labels _UpperCamelCase: List[str] = MegatronBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCamelCase: Optional[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Optional[Any] ): """simple docstring""" _UpperCamelCase: Tuple = self.num_labels _UpperCamelCase: Dict = MegatronBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCamelCase: Optional[int] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : str , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : int , _lowercase : Optional[int] ): """simple docstring""" _UpperCamelCase: Optional[Any] = self.num_choices _UpperCamelCase: Optional[int] = MegatronBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCamelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase: Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase: Dict = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: List[str] = self.prepare_config_and_inputs() ( _UpperCamelCase ): Any = config_and_inputs _UpperCamelCase: int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( _a , _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Tuple = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase : Any = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : int = True # test_resize_embeddings = False lowerCAmelCase : Dict = False def lowerCAmelCase ( self : List[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Optional[Any]=False ): """simple docstring""" _UpperCamelCase: List[str] = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCamelCase: Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) _UpperCamelCase: List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: str = MegatronBertModelTester(self ) _UpperCamelCase: Dict = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__lowerCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( lowercase: Any ) -> int: '''simple docstring''' return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) UpperCAmelCase_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('''Model is not available.''' ) def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Optional[int] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: _UpperCamelCase: Optional[int] = os.path.join(os.environ['''MYDIR'''] , __lowerCAmelCase ) _UpperCamelCase: Optional[int] = MegatronBertModel.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.half() _UpperCamelCase: Optional[int] = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): _UpperCamelCase: Any = model(__lowerCAmelCase )[0] _UpperCamelCase: List[str] = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCamelCase: Any = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): _UpperCamelCase: str = output[0, ii, jj] _UpperCamelCase: Optional[int] = expected[3 * ii + jj] _UpperCamelCase: Union[str, Any] = "ii={} jj={} a={} b={}".format(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertTrue(math.isclose(__lowerCAmelCase , __lowerCAmelCase , rel_tol=__lowerCAmelCase , abs_tol=__lowerCAmelCase ) , msg=__lowerCAmelCase )
271
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
0
def lowerCamelCase__ ( _A = 50 ): '''simple docstring''' snake_case_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
376
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
0
import os def __lowercase ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: a__ = str(file.readlines()[0] ) a__ = names.replace('\"' , '' ).split(',' ) names.sort() a__ = 0 a__ = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 6_4 total_score += (i + 1) * name_score a__ = 0 return total_score if __name__ == "__main__": print(solution())
335
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
0
def a__ ( A_ ): '''simple docstring''' __magic_name__ = [[0 for _ in range(_lowerCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __magic_name__ = 1 for n in range(m + 1 ): for k in range(1, _lowerCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __lowerCAmelCase : Optional[Any] = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __lowerCAmelCase : Dict = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
529
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=13 , __a=30 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.0_2 , __a=3 , __a=None , __a=2 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def snake_case ( self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def snake_case ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = TFDeiTModel(config=__lowerCAmelCase ) __lowerCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = TFDeiTForMaskedImageModeling(config=__lowerCAmelCase ) __lowerCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForMaskedImageModeling(__lowerCAmelCase ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = TFDeiTForImageClassification(__lowerCAmelCase ) __lowerCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForImageClassification(__lowerCAmelCase ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( _a ,_a ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict =( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __UpperCAmelCase : Dict =( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __UpperCAmelCase : Optional[int] =False __UpperCAmelCase : List[Any] =False __UpperCAmelCase : Optional[Any] =False __UpperCAmelCase : Dict =False def snake_case ( self ): __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , tf.keras.layers.Dense ) ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowerCAmelCase ) __lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def snake_case ( self , __a , __a , __a=False ): __lowerCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def snake_case ( self ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFDeiTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def snake_case ( self ): __lowerCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__lowerCAmelCase , return_tensors="tf" ) # forward pass __lowerCAmelCase = model(**__lowerCAmelCase ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) __lowerCAmelCase = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) )
636
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
0
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
4
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
0
"""simple docstring""" from __future__ import annotations def __lowerCamelCase ( a_ : Any , a_ : List[str] ) -> int: if len(_lowerCamelCase ) < k or k < 0: raise ValueError('''Invalid Input''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = sum(array[:k] ) for i in range(len(_lowerCamelCase ) - k ): __SCREAMING_SNAKE_CASE :Optional[int] = current_sum - array[i] + array[i + k] __SCREAMING_SNAKE_CASE :Union[str, Any] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCamelCase_ = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)] lowerCamelCase_ = randint(0, 1_1_0) print(f'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
498
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
0
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): snake_case : Tuple ={ "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } snake_case : Any =input_paths_and_base_extractors[compression_format] if input_path is None: snake_case : Any =F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_lowerCamelCase ) assert base_extractor.is_extractable(_lowerCamelCase ) snake_case : Tuple =tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(_lowerCamelCase , _lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case : Union[str, Any] =file_path.read_text(encoding='''utf-8''' ) else: snake_case : Any =output_path.read_text(encoding='''utf-8''' ) snake_case : Optional[int] =text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): snake_case : str ={ "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } snake_case : List[Any] =input_paths[compression_format] if input_path is None: snake_case : List[str] =F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_lowerCamelCase ) snake_case : Tuple =Extractor.infer_extractor_format(_lowerCamelCase ) assert extractor_format is not None snake_case : int =tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case : str =file_path.read_text(encoding='''utf-8''' ) else: snake_case : Dict =output_path.read_text(encoding='''utf-8''' ) snake_case : Union[str, Any] =text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def _a ( lowerCamelCase_ , lowerCamelCase_ ): import tarfile snake_case : Optional[Any] =tmp_path / "data_dot_dot" directory.mkdir() snake_case : Optional[int] =directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(_lowerCamelCase , '''w''' ) as f: f.add(_lowerCamelCase , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def _a ( lowerCamelCase_ ): import tarfile snake_case : Optional[Any] =tmp_path / "data_sym_link" directory.mkdir() snake_case : List[Any] =directory / "tar_file_with_sym_link.tar" os.symlink('''..''' , directory / '''subdir''' , target_is_directory=_lowerCamelCase ) with tarfile.TarFile(_lowerCamelCase , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Union[str, Any] ={ "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } snake_case : Any =insecure_tar_files[insecure_tar_file] snake_case : Tuple =tmp_path / "extracted" TarExtractor.extract(_lowerCamelCase , _lowerCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _a ( lowerCamelCase_ ): snake_case : Dict =tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 snake_case : Dict =( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open('''wb''' ) as f: f.write(_lowerCamelCase ) assert zipfile.is_zipfile(str(_lowerCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_lowerCamelCase ) # but we're right
349
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __UpperCamelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __SCREAMING_SNAKE_CASE( nn.Module ): def __init__( self: Optional[int] , UpperCamelCase: Any ) -> List[Any]: super().__init__() snake_case__ = torchvision.models.resnetaaa(pretrained=__lowerCAmelCase ) snake_case__ = list(model.children() )[:-2] snake_case__ = nn.Sequential(*__lowerCAmelCase ) snake_case__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int ) -> Union[str, Any]: snake_case__ = self.pool(self.model(__lowerCAmelCase ) ) snake_case__ = torch.flatten(__lowerCAmelCase , start_dim=2 ) snake_case__ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class __SCREAMING_SNAKE_CASE( _a ): def __init__( self: str , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Any , UpperCamelCase: int ) -> Optional[int]: snake_case__ = [json.loads(__lowerCAmelCase ) for l in open(__lowerCAmelCase )] snake_case__ = os.path.dirname(__lowerCAmelCase ) snake_case__ = tokenizer snake_case__ = labels snake_case__ = len(__lowerCAmelCase ) snake_case__ = max_seq_length snake_case__ = transforms def __len__( self: List[Any] ) -> Union[str, Any]: return len(self.data ) def __getitem__( self: Tuple , UpperCamelCase: List[Any] ) -> Optional[int]: snake_case__ = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=__lowerCAmelCase ) ) snake_case__ = sentence[0], sentence[1:-1], sentence[-1] snake_case__ = sentence[: self.max_seq_length] snake_case__ = torch.zeros(self.n_classes ) snake_case__ = 1 snake_case__ = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) snake_case__ = self.transforms(__lowerCAmelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: snake_case__ = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def a_ ( _A ) -> str: """simple docstring""" snake_case__ = [len(row['sentence'] ) for row in batch] snake_case__ = len(_lowerCamelCase ), max(_lowerCamelCase ) snake_case__ = torch.zeros(_lowerCamelCase , _lowerCamelCase , dtype=torch.long ) snake_case__ = torch.zeros(_lowerCamelCase , _lowerCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowerCamelCase , _lowerCamelCase ) ): snake_case__ = input_row["sentence"] snake_case__ = 1 snake_case__ = torch.stack([row['image'] for row in batch] ) snake_case__ = torch.stack([row['label'] for row in batch] ) snake_case__ = torch.stack([row['image_start_token'] for row in batch] ) snake_case__ = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def a_ ( ) -> int: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def a_ ( ) -> Tuple: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
328
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
0